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Abstract

It is well known that the population of Wolf-Rayet (WR) stars cannot be ex-

plained by single star evolution alone. Especially in low metallicity environments,

it is suspected that a large fraction of the WR stars is formed in binary systems.

However, the binary formation channel is so far not well explored. Here, we want

to remedy this by using large grids of binary evolution models, as well as single

star evolution models, in order to build a synthetic WR population that can be

compared to the presumably complete sample of WR stars observed in the Large

Magellanic Cloud.

In this thesis, we use the publicly available MESA code to compute large grids

of detailed evolutionary binary models. For those models which enter a common

envelope evolution, we apply a simple energy criterion to to investigate which of

them may avoid merging and contribute short-period WR binaries. The majority

of the remaining models are calculated through Roche-lobe overflow and mass

transfer, and through the WR+OB star phase.

We find that only a small fraction of binary systems with an initial primary

mass near 10 M� are expected to survive a common envelope evolution with-

out merging. Their contribution to the observed WR population is therefore ne-

glected. The systems which undergo stable mass transfer, on the other hand, are

shown to produce WR+OB star binaries within a large range of orbital periods.

We build a synthetic WR population based on these binary models, augmented

with WR stars produced by single star models, which reproduces the WR popu-

lation of the Large Magellanic Cloud to significant detail. However, our models

overpredict the number of long-period WR binaries, arguably due to an obser-

vational bias towards short periods. Our models also underpredict the shortest-

period WR binaries. This might indicate a lack of understanding of the common

envelope evolution, with potential implications for the progenitors of double black

hole mergers.
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Daniel Pauli 1 INTRODUCTION

1 Introduction

After the big bang, the universe consisted of hydrogen and helium. The early universe

lacked heavier elements, which are called metals in astronomy. The first stars that were

formed are metal-free. The heaviest elements, like carbon, oxygen, and nitrogen as

well as iron, are formed inside the cores of massive stars. Nowadays, one observes that

the interstellar medium, which is material located between the stars, contains fractions

of these heavy elements. In the late phases of a massive star, it is expected to have an

iron core and shells with heavier elements on top. It can be interpreted as an onion-like

structure with the lightest elements on top and the heaviest elements in the core. If a

star explodes as a supernova the core collapses and the remaining material is transferred

into the interstellar medium and alters the chemical composition. Furthermore, massive

stars develop strong stellar winds which lead to strong mass-loss rates. These mass-loss

rates also contribute to the enrichment of the interstellar medium. Therefore, massive

stars play a crucial role in the formation of the universe.

Some properties of stars are metallicity dependent, as the mass-loss rates. The mass-

loss rates increase with increasing metallicity. If the mass-loss rates get strong enough

a star might be able to strip of its hydrogen-rich envelope and to become a helium star.

If this helium star has an optically thick wind, it can be observed as a Wolf-Rayet star.

These stars have winds that are much stronger than the winds of core hydrogen burning

stars and therefore have a larger impact on the enrichment of the interstellar medium.

The Small Magellanic Cloud (SMC) and the Large Magellanic Cloud (LMC) are dwarf

galaxies that orbit our galaxy. Both have different metallicities, the SMC has ∼ 1/7 and

the LMC ∼ 1/3 of the solar metallicity. From observations, it is known that the total

number of Wolf-Rayet stars decreases with decreasing metallicity. As Wolf-Rayet stars

are expected to dominate the feedback processes into the interstellar medium, it is of

major interest to test if the theoretical models are capable to reproduce the observed

populations.

By only taking single stellar models into account it gets clear that these models alone

can not explain the observed Wolf-Rayet populations. From observations, it is known

that about half of the stars that are formed will be in a binary system. The evolution

of a star in a binary system differs from the single star scenario as both stars are able

to interact during their evolution. For example, if one of the stars expands, at some

point mass will be transferred from the expanding star on the other one. During this

mass transfer phase, it is possible that the hydrogen-rich envelope of the donor star

will be removed. This leads to an additional formation channel of Wolf-Rayet stars.

Moreover, it is possible if the mass transfer is unstable, that both stars orbit inside a

common envelope. This is followed by a spiral-in process where the orbital energy is

deposited inside the envelope. If the common envelope cannot be ejected both stars

merge. However, if the common envelope can be ejected the binary system is expected

to consist of a helium star and its companion with a tight orbit. Therefore, it is im-
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portant to understand the outcomes of the common envelope evolution of massive post

main-sequence stars with a main-sequence companion in order to understand how this

channel contributes to the Wolf-Rayet population. As one can see there are many pos-

sibilities of how a Wolf-Rayet can be formed. However, the impact of the different

formation channels is rather unknown and needs to be studied in more detail.

To tackle these questions concerning the outcomes of a common envelope evolution

of a post main-sequence star and a main sequence companion as well as the different

formation channels of Wolf-Rayet in the LMC large grids of detailed binary models,

including single star models, are used in this thesis. In the later analysis, the used single

star and binary physics are explained in more detail so that the reader will get familiar

with the most important mechanisms during the evolution of a single star as well as of

a star in a binary system. In this thesis binary models at SMC and LMC metallicity are

used to study the outcomes of a common envelope evolution of a post main-sequence

star with a main-sequence companion in order to determine if these systems are able

to produce Wolf-Rayet stars or not. Furthermore, it will be studied, how the binding

and orbital energy changes during a mass transfer phase and if this can lead to more

successful common envelope ejections. Regarding the Wolf-Rayet population of the

LMC, a new grid of binary models with more accurate mass-loss rates for the Wolf-

Rayet phase is calculated. These binary models will be used for a population synthesis

to check if the models are capable to explain the observed luminosity distribution of

the Wolf-Rayet stars in the LMC.

2
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2 Theoretical Background

The basic concepts that go into a physical description of single stars are covered in

Section 2.1. Section 2.2 contains a description of the most important properties of a

binary system. A detailed description of the concept of a common envelope phase, a

phase where two stars orbit inside a shared envelope, is given in Section 2.3.

2.1 Single Stars

In the current section, the basic physical principles of the structure and evolution of

single stars will be described. For a more detailed overview, see Pols (2009). The first

question that should be answered, is how to define a star. A simple way to define a

star is to say it is a spherical body out of gas which is bound gravitationally by itself.

Furthermore, a star produces energy via complex fusion processes in its center which

is then radiated away from the surface of the star. When a molecular cloud is gravi-

tationally disturbed and collapses several stars can be formed. The gas collapses until

the internal pressure stabilizes the object and a star is formed. The star contains all the

elements of the molecular cloud, mostly hydrogen and helium. Fusion processes in the

interior of the star can take place once the temperature is large enough. At first, the

hydrogen in the core of the star is burned, which takes about 90% of its total lifetime.

However, as the amount of the available hydrogen is finite, an end of core hydrogen

burning will be reached. If the core temperature is high enough advanced fusion pro-

cesses will take place. The collapse of the molecular cloud is a short-lived phase while

core hydrogen burning takes place for a long time. This implies the following two

things: First, the timescales during the evolution of a star can be totally different and

therefore have to be discussed in more detail. Second, the structure of the star evolves

with time. For example, most of the hydrogen is turned into helium, which alters the

chemical composition in the cores of stars.

2.1.1 Timescales of Stellar Evolution

In the evolutionary phases of a star, there are three different timescales that deter-

mine the duration. The main goal of a star is to achieve stability or equilibrium. The

timescales that describe the duration of a certain phase are therefore a measure of how

long it takes to reach a certain state of equilibrium. In order to discuss this in a sim-

ple way, it is assumed that a star is spherically symmetric, meaning that all physical

quantities only depend on the radius or mass coordinate. Equilibrium is given if the

total change in energy is constant for example when the force of the internal pressure

cancels out the gravitational force throughout the whole star.

3
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Hydrostatic Equilibrium

If a star has no internal energy source one can assume that there are only the gravita-

tional force and a pressure gradient present throughout the star. If both balance each

other in such a way that there is no acceleration in the stellar interior and therefore

no expansion or contraction can be observed, the star is in hydrostatic or mechanical

equilibrium.

Dynamical Timescale

If a star is not in hydrostatic equilibrium it will expand or contract until the state of

equilibrium will be maintained. The time a star needs to get back into hydrostatic

equilibrium is called the dynamic timescale which is given by the following formula

τdyn =

�

R3

GM
(2.1)

in which R represents the radius and M is the mass of the star, G represents the gravita-

tional constant. A typical value for the dynamical timescale of a sun-like star is in the

order of 30 minutes which is short compared to the total lifetime of a star. Therefore,

one can assume that almost all stars are in hydrostatic equilibrium. If a star is unable

to retain hydrostatic equilibrium it is expected to collapse or explode.

Thermal Equilibrium

Nuclear fusion processes in the interior of the star serve as internal energy sources.

Their energy will be radiated away at the surface of the star, keeping the total energy

constant. This implies that it is impossible for the star to contract and cool while

holding the total energy constant. Therefore stars with internal energy sources that

keep the total energy constant are in thermal equilibrium.

Thermal Timescale

As the dynamical timescale is a measurement of the duration of a star to retain hydro-

static equilibrium after a perturbation, the thermal timescale covers the time it takes

a star to get into thermal equilibrium. If the nuclear source in the interior of a star is

absent the star will get its energy from gravitational contraction until it is able to retain

thermal equilibrium again. The thermal timescale can be expressed as

τth =
Eint

L
=

GM2

2RL
(2.2)

and only depends on the mass M, the radius R, and the luminosity L of the star. A

typical estimate for the thermal timescale of a star like our sun is in the order of 10

million years. This is much larger than the dynamical timescale τth� τdyn.

4
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As a star will produce its energy most of the time via nuclear fusion, it is common to

assume that a large fraction of the stars is in thermal equilibrium. This brings us to the

next and last timescale, the nuclear timescale.

Nuclear Timescale

As already mentioned above, as long as a star is able to get its energy from nuclear

fusion processes it remains in thermal equilibrium. Therefore, it is reasonable to ask

how long a star can maintain in thermal equilibrium. The answer is given by the nuclear

timescale which can be expressed as

τnuc =
Enuc

L
= Φ fnuc

Mc2

L
(2.3)

where Φ is the fraction of rest mass released by the fusion process that is converted to

energy and fnuc is the fraction of the total mass of the star that can be used for nuclear

fusion processes. A typical value for a hydrogen burning sun-like star is in the order

of 10 billion years. For more advanced burning stages this time reduces drastically by

a factor of 10 or more. However, the nuclear timescale is still larger than the thermal

timescale τnuc� τth.

2.1.2 Stellar Structure

The changes in the stellar structure of a star, like an expansion or contraction, are

caused by changes in the density profile, opacities, or chemical composition. These

changes can originate from energy transport mechanisms present in the different re-

gions of a star as well as mixing processes. To get familiar with the evolution of the

stellar structure and therefore the star itself it is important to understand how these

processes change the stellar structure. These ideas will be discussed in this section.

Energy Transport

In the previous section, it was already mentioned that the produced energy in the core

has to be radiated away at the surface of the star in order to be in thermal equilibrium.

Therefore, it is important to understand which processes can transport energy in a

star. There are mainly two energy transport mechanisms present in stars, radiative and

convective energy transport.

The used description of radiative energy transport is based on the assumption that a

photon travels only a certain distance before interacting with its surrounding. This

distance is called mean free path. If the mean free path is much smaller than the radius

of the star, which is true for most of the radiation, the photons get scattered and do a

’random walk’ and slowly diffuse outwards.

The second kind of energy transport is convection. If the temperature gradient of the

gas is not large enough to support energy transport via radiation, the mean free path

5
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for the photons gets smaller than the mean free path of the gas-particle, which leads

to instabilities in the gas. These instabilities can be understood as bubbles of gas that

are heated and rise up, cool, and fall back down again. This phenomenon is known as

convection and similarly occurs when boiling water in a pot.

Following the descriptions of convective and radiative energy transport, it gets evident

that these two mechanisms are strongly dependent on the temperature gradient and

therefore on the distance a photon can travel before interacting with the surroundings.

Opacity

To determine which energy transport mechanism is present in each region of the star

one uses the opacity κ. This can be understood as a measure of how large a temperature

gradient must be to carry a given luminosity by radiation. There are different sources

that contribute to the opacity: Electron scattering, free-free, bound-free, and bound-

bound absorption. Talking about all of them in detail extends beyond the reasonable

bounds of this thesis. Still, it is worth mentioning that the different opacities depend

on the chemical composition, density, and temperature. Or simply spoken, the opacity

throughout a star is not constant.

Eddington Luminosity

As there are regions in the star where energy can be transported via radiation, the pres-

sure term contains an additional term of the radiation itself which acts as an outward

force. As the stellar surface is always radiative, one can think of an upper limit for

the luminosity that is needed to gravitationally unbind the star. This limit is called the

Eddington limit or Eddington luminosity

LEdd =
4πcGM

κ
(2.4)

and it depends on the opacity κ at the surface and the mass M of the star. Because of

the mass-luminosity relation for main-sequence stars, an upper limit for the luminosity

implies that there must be an upper limit for the initial mass. Nevertheless, observations

show that there are more massive stars than the limit would allow which alludes to the

next section.

Inflation

The Eddington limit as it is defined in Equation 2.4 is only valid for the stellar surface,

yet it is possible to rewrite this as a local limit within the star. The opacity is not con-

stant throughout the star, implying that it is possible that the local Eddington limit is

reached before reaching the Eddington limit at the surface of the star. If this happens

the gravitational force that stabilizes the star will be overcome by the internal pressure.

6
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For a star to be stable there must be an additional term in form of an extra pressure gra-

dient acting inwards. This is understood as a density inversion, a region inside the star

where the density increases instead of decreases, so that hydrostatic equilibrium can be

maintained. Further, as the opacity in these regions is very high the diffusive process

of radiative energy transport gets very inefficient and the energy gets transported by

convection. Still, the stability of this is not very well understood as small perturbations

would lead to instabilities and maybe to pulsations or ejection of the inflated regions

of the stars (Sanyal et al. 2015).

Convective Overshooting

nside a convective region, the material is moved, which is a very efficient way to trans-

port energy. At the boundary of a convective region where it transitions into a radiative

region this transport of material may lead to some complications, as it is possible that

some bubbles of material shoot out of the convective region into the radiative one.

This process is called convective overshooting. Of course, these overshooting bubbles

are slowed down as the acceleration changes sign in the radiative region. The impor-

tance of overshooting should not be underestimated: For example, massive stars have

a convective core and a radiative envelope. If the core is overshooting material into

the radiative envelope, the matter of the envelope gets mixed into the core which feeds

the core with additional hydrogen and leads to longer burning phases. This example

illustrates how mixing processes influence the evolution of stars and therefore, the next

part will focus on the different kinds of mixing processes.

Mixing Processes

Another aspect of convection, besides the efficient energy transport it induces, is mix-

ing. As the material is moved in a convective region there is also a mixing process

going on which is very efficient and acts on a dynamical timescale leading to a homo-

geneous chemical composition in the convective region.

If a region is stable against convection, it still can have some mixing processes. For ex-

ample, a displaced blob of material can exchange heat with its surrounding. This mix-

ing process is called semiconvection. This process takes place on timescales shorter

than the thermal timescale but much longer than the dynamical timescale and is, there-

fore, less efficient than convective mixing. However, this process can still have a strong

impact on the late phases of the main sequence for massive stars and on core helium

burning phases (Heger et al. 2000).

Another mixing process that is mainly important for stars in binary systems is thermo-

haline mixing. This process occurs as well as semiconvection in regions that are stable

against convection. However, these regions additionally need an increasing molecular

weight meaning that the heavier elements are located on top of lighter elements. As

in most single stars, the heavy elements are in the core thermohaline mixing is less

7
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important for them. However, in a binary system mass gets transferred from one star

to the other, which may lead to the formation of an increasing molecular weight. It is

important to mention that the constraints on the efficiency of thermohaline mixing and

semiconvection are highly uncertain (Heger et al. 2000).

The last mixing process that needs to be mentioned it rotational mixing. For a fast

rotating star, the centrifugal force is of major importance and leads to an additional

mixing process. If the rotation rate of a star is fast enough, the entire star can be mixed

so that all hydrogen can be burned. This is called chemical homogeneous evolution

(Heger et al. 2000). As well as the previously mentioned mixing processes rotational

mixing also occurs in radiative regions of a star. This process becomes more important

for massive stars with radiative envelopes as well as for stars in binary systems that are

tidally locked and are able to maintain their initial high rotation rate.

2.1.3 Evolution of Massive Stars

To discuss the evolution of stars, the so-called Hertzsprung-Russell Diagram (HRD)

in which the luminosity of a star is plotted against the effective temperature is used.

Observationally these two values correspond to the absolute magnitude and color of a

star. Historically stars are classified by their color and characteristics in their spectra

into different types: O, B, A, F, G, K, and M type stars. O and B type stars, sometimes

also called OB stars, have the highest effective temperature and are the most massive

stars.

The radius of a star can also be inferred from the HRD as the luminosity and the

effective temperature of a black body are linked via the Stefan-Boltzmann law

L = 4πσR2T 4
eff (2.5)

As this thesis focuses on very massive stars in binary systems this section only cov-

ers the evolutionary phases for single stars with masses above 10 M� in some detail.

Furthermore, as only stars with low metallicity will be discussed in this work the evo-

lutionary tracks for stars of different mass at LMC metallicity are shown in Figure 2.1.

A star goes through many different phases during its evolution. After the collapse of

the molecular cloud and the formation of the star, it is able to start hydrogen burning,

given that its core is dense and hot enough. The star is now located on the zero-age

main-sequence (ZAMS) which is labeled as point 1 in Figure 2.1. A star spends about

90% of its lifetime with core hydrogen burning and can be found on the main sequence

where it fuses hydrogen to helium. However, as the amount of hydrogen that can be

burned is finite, core hydrogen burning will come to an end leaving a helium core in

the center of the star. This is associated to point 2, the terminal age main sequence

(TAMS). This is followed by a short contraction phase, which causes a rise in core

temperature until the star can start shell hydrogen burning on top of the helium core,

8
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Figure 2.1: Stellar evolutionary tracks of a 30 M� and 90 M� star with overshooting and mass-

loss at LMC metallicity as solid lines. The models, which are calculated in the later analysis,

are shown until carbon depletion. The squares mark the most characteristic evolutionary phases

of the stars.

labeled as point 3. Shell hydrogen burning feeds the helium core with more nuclear

supplies and raises the core temperature. Additionally, the stellar surface cools as the

envelope expands. If a central temperature of about 108 K is reached the helium core

can be ignited, see point 4. After core helium burning more advanced burning stages,

like carbon burning labeled as point 5, take place until the iron core gets unstable and

collapses, leading to a supernova explosion.

Even though the evolutionary phases of the core are the same for massive stars, their

evolutionary tracks differ a lot as it can be seen by comparing both tracks in Figure 2.1.

One might argue that this is caused by the different mixing processes which are more

or less efficient in each star. Although these effects might contribute, there is a much

stronger effect coming from stellar winds. Particles near the surface of the star can be

accelerated and be gravitationally unbound so that the star loses mass. This is called

a stellar wind. Depending on the mechanism that drives the wind this can be very

efficient and a star can lose several solar masses already at the main-sequence. In

order to understand the influence of stellar winds on the evolutionary phases, a brief

summary of the most important wind schemes will be given in the next section.

Stellar Winds and mass-loss

All stars have winds which become important during the different evolutionary phases

9
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of their life. Massive stars can have such strong winds that will remove several solar

masses of the envelope even when they are still core hydrogen burning.

Hot and luminous stars like O and B stars can drive their wind by radiation. In this case,

the radiation gets absorbed by outflowing atoms which are accelerated. In combination

with the effect of Doppler broadening of the spectral lines this forms an efficient way to

drive the wind of a star. However, as mainly the heavy elements absorb these photons,

this effect is metallicity dependent. In this work the wind recipe for O and B type stars

from Vink et al. (2001) is used.

In the temperature range of 27500K ≤ Teff ≤ 50000K one uses the equation

log
Ṁ

M� yr−1
= −6.697+2.194log

L

105 L�
−1.313log

M

30 M�
−1.226log

�∞/�esc

2.0

+0.933log
Teff

40000K
−10.92

�

log
Teff

40000K

�2

+0.85log
Z

Z�
(2.6)

which contains the luminosity L, the mass M, the effective temperature Teff , the ter-

minal wind velocity �∞ and the escape velocity �esc of the star, as well as the initial

metallicity Z.

For the temperature range that spans over 12500K ≤ Teff22500K the mass-loss rate is

given by

log
Ṁ

M� yr−1
= −6.688+2.210log

L

105 L�
−1.339log

M

30 M�
−1.601log

�∞/�esc

2.0

+1.07log
Teff

40000K
+0.85log

Z

Z�
(2.7)

with the same meaning of the symbols as in the equation before.

For the next evolutionary phase, the red super gaint (RSG) phase, the winds are driven

by a combination of two effects, stellar pulsations and radiation pressure on dust par-

ticles in the outermost regions of the star. For the RSG winds the prescription of

Nieuwenhuijzen & de Jager (1990) is used in case it is larger than the mass-loss rate

from Vink et al. (2001)

log
Ṁ

M� yr−1
= −14.02+1.24log

L

L�
+0.16log

M

M�
−1.61log

Teff

40000K

+0.81log
R

R�
+0.85log

Z

Z�
(2.8)

Again the symbols have the same meaning as above, but additionally for the RSG the

mass-loss rate depends on the radius R of the star.

If a star can lose all or most of its hydrogen-rich envelope, for example in a RSG phase

or due to binary interaction, only its helium core will be left. Helium burning takes

10
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place at higher temperatures and removing the hydrogen-rich envelope gives the pos-

sibility to look at the bare helium core. Therefore, it is possible to see an evolution

towards hotter temperatures as it can be seen for the 90 M� star in Figure 2.1. Massive

helium stars with optically thick winds are called Wolf-Rayet stars. In optically thick

winds all short wavelengths will be absorbed by the wind material and their recom-

bination leads to an emission feature in the observed spectrum, corresponding to the

elements present in this wind. A cascading process sets in as photons can be absorbed

and re-emitted several times, leading to high mass-loss rates. However, there are large

uncertainties in these estimations as it is unclear how strong the winds are clumped. In

this thesis, two different mass-loss recipes are used for the Wolf-Rayet mass-loss rates

which are compared in the later analysis.

The first recipe that is used are the mass-loss rates by Hamann (1995)

log
Ṁ

M� yr−1
= −11.95+1.5log

L

L�
−2.85Xs+0.85log

Z

Z�
+ log

1

D
(2.9)

In this equation Xs is the hydrogen mass fraction at the surface of the star and D as the

clumping factor. L is the luminosity of the star and Z the initial metallicity.

The second mass-loss recipe that is used in this work is from Yoon (2017) where the

mass-loss rates are assigned according to the Wolf-Rayet phases, which will be ex-

plained in the next section. For the hydrogen-free WN phase in which the helium

surface mass fraction is Ys = 1− Z the authors use the mass-loss rate from Hamann

et al. (2006)

log
Ṁ

M� yr−1
= −11.32+1.18log

L

L�
+0.60log

Z

Z�
+0.5log

10

D
(2.10)

For the later WC phase in which the helium surface composition is Ys < 0.9 the follow-

ing formula of Tramper et al. (2016) is used

log
Ṁ

M� yr−1
= −9.20.32+0.85log

L

L�
+0.44logYs+0.25log

Z

Z�
+0.5log

10

D
(2.11)

In both equations the symbols have the same meaning as in the equations above. As

these two equations are only valid in a specific range, an interpolation in the transition

phase has to be performed.

For the hydrogen-rich WN phase this work uses the mass-loss rates of Nugis & Lamers

(2000)

log
Ṁ

M� yr−1
= −11.0+1.29log

L

L�
+1.5logYs+0.5log

Z

Z�
+0.5log

10

D
(2.12)

Before moving on to the next section it is important to keep in mind that the mass-

loss rates of massive stars are not fully understood yet and therefore there are high

uncertainties, which will also be discussed in the later analysis.
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2.1.4 Wolf Rayet Stars

As already mentioned above Wolf-Rayet stars (WR) are helium stars that have stripped

off most or all of their hydrogen-rich envelope and have optically thick winds with

emission features. Therefore, it is possible to measure their carbon, nitrogen, and

oxygen (CNO) abundances and to divide them into different categories as the CNO

abundance change during their evolution. One, therefore, distinguishes between WN,

with the subclasses WNL and WNE, WC, and WO stars.

WNL stars show emission features of nitrogen and have some hydrogen left on their

surface. Moreover, their helium and nitrogen abundances are increased which can be

explained by the CNO cycle. WNE stars show the same feature as WNL stars but they

lack hydrogen.

During helium burning most of the nitrogen is consumed and therefore the next stage

is a WC star, with enhanced helium, carbon, and oxygen on its surface but no nitrogen.

WO stars have even stronger oxygen emission lines corresponding to the depletion of

helium and the products of carbon burning.

2.2 Binary Stars

As the last section consisted of a detailed explanation of the single stellar evolution it

is now important to understand the physical properties of binary systems, which will

be used in the later analysis. A binary system in astrophysics consists of a doublet of

stars which usually have an unequal mass ratio. Moreover, the evolution of these two

stars may differ from the single star scenario as they can interact with each other during

their lifetime.

2.2.1 Roche Lobe

In a binary system, two stars orbit each other as they are attracted gravitationally by

each other. In order to study how this influences the evolution of a star one needs

to understand how the total potential influences the structure of the stars in terms of

stability. To derive the total potential one might assume that both stars are point masses

and that only the gravitational as well as the centrifugal potential contribute to the total

potential of the system (Kopal 1955). Following these assumptions the total potential

of the binary system can be expressed as

Φ = −GM1

r1
− GM2

r2
− ω

2r2

2
(2.13)

where G is the gravitational constant, M1 and M2 are the masses of each binary compo-

nent, r1 and r2 are the distances to the center of mass, ω is the orbital angular velocity

12
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and r is the distance to the rotational axis of the system. According to the afore-

mentioned assumptions, the orbital angular velocity can be described by the Keplerian

angular velocity ω =
�

GM/a3, where M = M1 +M2 is the total mass and a is the

separation of the system.

A close system is defined as a system bound tight enough to interact through mass

transfer. The most important mechanism for this is Roche lobe overflow (Paxton et al.

2015). In these systems, it can be assumed that the orbit gets circular due to tidal in-

teraction and synchronized co-rotation of the stars. Following this assumption, it is

possible to define equipotential surfaces in a co-moving frame. In Figure 2.2 an il-

lustration of these surfaces is given which showcase crossing points, the Lagrangian

points. The first Lagrangian point L1 lies at the intersection of the innermost equipo-

tential surface between the two stars. This surface around each star marks the so-called

Roche lobe, which is pear-shaped. This process is mostly modeled in 1D so that the

limiting Roche lobe radius RRL is defined as that of a sphere with the same volume as

the lobe (Tauris & van den Heuvel 2006). As a consequence of this, the radius can be

approximated following the prescription of Eggleton (1983) to

RRL =
0.49q2/3

0.6q2/3+ log(1+q1/3)
·a (2.14)

and depends on the mass ratio q of both stars and the orbital separation a. This approx-

imation is accurate more than 1% over the whole parameter space of 0 < q <∞.

If a star grows enough in size, its radius approaches the Roche lobe radius. The matter

that was bound to the star but now exceeds the lobe is in an unstable situation so that

mass transfer from the filling star to the companion is initiated. The mass of the first

star is transferred through the first Lagrangian point. This phenomenon is called Roche

lobe overflow (RLOF). In a binary system one can distinguish between three types of

systems detached, semi-detached, and over-contact as the illustration in Figure 2.3

shows. If none of the stars fill their Roche lobe, the system is called detached. If one

star overflows its Roche lobe and transfers mass to the companion, the system is semi-

detached and if both stars overflow their Roche lobes, the system is called over-contact

binary (Marchant 2016).

2.2.2 Case A, B and C

In the beginning, stars in a binary system evolve in the same way as single stars do.

However, at some point, the more massive star will fill its Roche lobe, either because

its radius grows or because the orbital separation shrinks sufficiently for mass transfer

to start. Therefore, the evolution of each stellar component as well as the evolution

of the binary system depends on the structural evolution of the donor star. As soon as

the donor overfills its Roche lobe the stellar structure of both stars changes. During
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M1
M2L1

L2L3

L4

L5

×

y

x0

0

Figure 2.2: Sketch of the equipotential surfaces as a cross-section in the equatorial plane is

shown as a contour plot. M1 and M2 mark the different binary components with their respective

mass, × denotes the center of mass and the characteristic Lagrangian points are labeled as L1,

L2, L3, L4 and L5. The principles the sketch draws upon are the same as in Tauris & van den

Heuvel (2006).

Φ

x

L1

L2L3

Detached Φ

x

L1

L2L3

Semi-detached Φ

x

L1

L2L3

Over-contact

Figure 2.3: Sketch of the Roche potential Φ as a function of position through the axis x. The

extends of both binary components in the potential Φ are depicted in red. Shown are the

three distinct phases of detachment, semi-detachment and over-contact. L1, L2 and L3 indicate

the Lagranigan points which are contained in this plane, for comparison see Figure 2.2. The

principles the sketch draws upon are the same as in Marchant (2016).
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the mass transfer phase the binary parameters as the binary separation change as well

which will be shown later on.

Kippenhahn & Weigert (1967) were the first to do a detailed analysis of interacting

binaries and their evolution and made a case comparison resulting in the so-called case

A and B scenarios. Later on, these scenarios have been extended by case C.

- Case A: The system is close enough to allow the more massive donor star

to fill its Roche lobe. This initializes a first rapid mass transfer on the ther-

mal timescale, the so-called fast case A, resulting in a semi-detached phase. If

the mass ratio inverts, and the system is still semi-detached mass is transferred

from the now less massive donor to the more massive companion on a nuclear

timescale, the so-called slow case A.

- Case B: After hydrogen depletion in the core, the core contracts, and the enve-

lope expands strongly until the helium core gets ignited. During this expansion

phase, it is likely that the donor star fills its Roche lobe which is followed by a

rapid phase of mass transfer. Moreover, this expansion phase is also expected to

happen in many case A systems which are then called a case AB.

- Case C: After helium depletion in the core, the star may start to expand again,

for example in an AGB phase, while helium is burned in the shells. If the donor

star fills its Roche lobe during this phase it is called case C mass transfer.

While case A mass transfer is most likely to happen for systems with a small initial pe-

riod, case B and C mass transfer can happen for larger initial periods of up to ten years.

It is important to mention that during a mass transfer phase most of the hydrogen-rich

envelope will be stripped of the donor star, which has a major impact on the evolution

of the star compared to the single star scenario. At a later point in this thesis, this

behavior will be discussed in more detail in regard to the grids used for the analysis.

2.2.3 Tidal Forces

Tidal locking is a phenomenon appearing in binary systems that have a short orbital pe-

riod and preferably stars with convective envelopes. If a star rotates, tides form which

then raises bulges that interact with convective motions to dissipate energy leading to

a synchronization of the orbital and rotational periods of stars. During this process the

orbit gets circularized. For stars with radiative envelopes or large orbital separations,

this process is less efficient. The MESA stellar evolution code (Paxton et al. 2015) used

in this thesis calculates the timescale of synchronization as an extension of the formula

from Hut (1981)

1

τsync
=

3

q2

MR2

I

k

T

R6

a6
(2.15)
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in which q is the mass ratio, MR2/I is the radius of gyration, k/T the viscous dissi-

pation time, R the radius of the star, and a the orbital separation. This formula has to

be calculated for each stellar component separately. The fact that the separation has a

dependence to the power of six underlines the statement that systems with higher or-

bital periods must not be tidally locked. However, if mass transfer happens, the orbital

separation shrinks and the stars may get locked and the orbit circularized.

2.2.4 Accretion and Stellar Spin

Due to the fact that both stars rotate, the transferred material also carries a specific an-

gular momentum. As a consequence, the angular momentum is added to the accretor’s

momentum leading to a spin-up of the star. The material can be transferred via two

methods: Either via ballistic or Keplerian disk mass transfer which have different effi-

ciencies for the angular momentum transport. To distinguish which process is taking

place the minimum distance approach of the accretion stream as described in Paxton

et al. (2015) is used. It can be written as the following formula

Rmin = 0.425a
�

q2+q2
2

�1/4
with 0.0667 ≤ q2 ≤ 15 (2.16)

This minimum distance Rmin, depending on the orbital separation a and mass ratio

q2 = M2/M1, is compared to the radius of the accretor, R2. If the radius is larger than

the minimum distance R2 > Rmin, the accretion is treated as ballistic and if the radius

is smaller R2 < Rmin, mass transfer happens through a Keplerian disk.

As angular momentum is transferred during RLOF the accretor spins up very fast and

reaches critical rotation. This accretion induced spin-up may lead to rapid rotating

massive stars and has a major influence on its evolution. Moreover, the spin-up leads

to a stop of the accretion on the companion unless it is able to lose angular momentum.

Using this assumption the accretion rate and the amount of accreted material is rather

low. Another effect is that compared to the conservative case, in which all infalling

matter is accreted, a lot of material is lost from the system leading to a high system

mass-loss rate and a widening of the orbit.

2.2.5 Orbital Angular Momentum Equations

In binary evolutionary codes it is possible to either set the initial rotational velocity

by hand or to synchronize the rotational velocity with the orbital angular momentum

which is given by (Paxton et al. 2015)

Jorb = M1M2

�

Ga

M1+M2
(2.17)
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Just as important as the initial rotation of a star is the evolution of the orbital angu-

lar momentum, which is dependent on the orbital separation. As the orbital angular

momentum changes with time, this implies that the Roche lobe radius, which directly

depends on the orbital separation, changes. Moreover, this means that the change in

orbital angular momentum has a direct impact on the possibility of mass transfer to

take place. The change of orbital angular momentum following (Paxton et al. 2015)

can be expressed as

J̇orb = J̇gr+ J̇mb+ J̇ls+ J̇ml (2.18)

It can be seen as an addition of different effects that will be explained in the following

sections.

Gravitational Wave Radiation

When Einstein published his theorem of General Relativity, he also proposed that due

to the fact that nothing can move faster than with the speed of light, changes in the

gravitational field have a finite velocity and that these changes must be radiated away

via gravitational waves. This effect is contained in the first term of Equation 2.18 and

is shown in the following equation

J̇gr =
32G7/2

5c5

M1M2

√
M1+M2

a7/2
(2.19)

in which M1 and M2 are the masses of each binary component, a is the binary sepa-

ration, G represents the gravitational constant and c is the speed of light (Landau &

Lifshitz 1971). The effect of gravitational wave radiation gets dominant in very close

binaries as it depends on the separation with a power of −3.5, which is why wide orbits

have almost no orbital angular momentum decay through this channel.

Magnetic Braking

As stars consist of charged particles it is possible that they develop a magnetic field.

If these fields are able to couple with the stellar wind, this leads to a spin-down of

the stars rotation (Skumanich 1972). The effect of magnetic braking gets strongest for

low mass stars with masses of about 1.5 M� and below, as their outflows happen due

to coronal winds while having subphotospheric convection zones (Pantolmos & Matt

2017). The effect of magnetic fields on rapid rotating stars is still rather unknown.

However, assuming that the system is tidally synchronized, meaning that the rotation

of a star is synchronized with the orbital angular momentum, implies the following:

If a star that is tidally locked with the orbit slows down due to magnetic braking,

the change in the angular momentum of the star will correspond to a change in the

orbital angular momentum of the binary. Therefore, the expression of Rappaport et al.
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(1983), who assumed that the system is tidally synchronized, can be used to describe

the change of the orbital angular momentum in response to the magnetic braking of a

stellar component

J̇mb = −6.82×1034 M1

M�

�

R1

R�

�γ �
1d

Porb

�3

[dyncm] (2.20)

In this equation M1 is the mass and R1 the radius of the primary star, Porb is the orbital

period of the system and γ the radius exponent. The exponent can be approximated to

γ = 4 (Verbunt & Zwaan 1981). For the secondary star the change in orbital angular

momentum can be derived following the same recipe as above.

Angular Momentum Exchange (Spin Orbit Coupling)

Stars expand or contract during their evolutionary phases. These changes in radius also

have a direct impact on the rotation of a star. Due to tidal interaction or mass transfer,

the change in the angular momentum of a star can be pumped directly into the orbital

angular momentum of the system. The effect of this angular momentum exchange is

most efficient in tight systems as the tidal torque is strongest here. This effect may lead

to an orbit widening during mass transfer, if the stars are tidally locked and may lead

to a stable mass transfer phase (Tauris & van den Heuvel 2006). The change in orbital

angular momentum due to spin-orbit coupling following the implementation of Paxton

et al. (2015) can be written as

J̇ls = −
1

δt

�

δS 1+
Ṁ1,w

Ṁ1

S 1,lost+δS 2+S 2,lost

�

(2.21)

and depends on the spin angular momentum of each stellar component δS 1 and δS 2,

as well as the amounts of lost spin angular momentum, S 1,lost and S 2,lost for a given

time step δt in which mass is lost from the system Ṁ1. For the more massive donor

star also mass-loss due to stellar winds Ṁ1,w is taken into account which is neglected

for the secondary in this case. Additionally, the mass that is lost due to mass transfer

is ignored in this simplification.

Mass loss

The angular momentum changes of a single star are mainly caused by stellar winds

that carry most of the momentum and spin down the star. This also affects the binary

evolution, following the description of Soberman et al. (1997) and Paxton et al. (2015),

the change in the orbital angular momentum, due to mass-loss from a wind originating

from a stellar component or a circumbinary toroid with radius Rt = γ
2a, is given by
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J̇ml =
√

Ga
(Ṁ1,w+αṀRLOF)M 2

2
+ (Ṁ2,w+βṀRLOF)M 2

1
+δγṀRLOF (M1+M2)2

(M1+M2)3/2

(2.22)

with dependence on the mass of each binary component M1 and M2 as well as on the

mass lost due to winds Ṁ1,w and Ṁ2,w. Moreover, the equation depends on the orbital

separation of the binary system a, the mass transfer rate from Roche lobe overflow

ṀRLOF and the fractions α, β and δ lost from a direct fast wind, the mass ejected

from the vicinity of the accretor and from the surrounding toroid, respectively. The

efficiency of mass transfer is therefore given as

f = 1−α−β−δ (2.23)

According to this definition, the mass-loss rates of both stars can be written as (Marchant

2016)

Ṁ1 = Ṁ1,w+ ṀRLOF and Ṁ2 = Ṁ2,w− f ṀRLOF (2.24)

As already mentioned before, mass-loss rates from stellar winds for massive stars with

masses above about 10 M� are already important during the main sequence. As the

mass-loss rates are large during most of the time of a massive star the change of orbital

angular momentum is dominated by this term.

Binary Separation and Orbital Angular Momentum

As the orbital angular momentum equation (see Equation 2.17) also depends on the

binary separation, one can rewrite this formula to display the change of binary sep-

aration. A simple logarithmic differentiation, in which the eccentricity is neglected

(� = 0), is given by Tauris & van den Heuvel (2006)

ȧ

a
= 2

J̇orb

Jorb
−2

Ṁ1

M1
−2

Ṁ2

M2
+

Ṁ1+ Ṁ2

M1+M2
(2.25)

The change of binary separation divided by the binary separation depends on the

change of orbital angular momentum J̇orb, the orbital angular momentum Jorb, the

mass lost from the primary and secondary Ṁ1 and Ṁ2, their masses M1 and M2. The

evolution of the binary separation during mass transfer will be discussed in the next

section.
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2.2.6 Mass Transfer

When a donor star expands and fills its Roche lobe mass transfer sets in as it has been

discussed above. However, if mass is removed from the surface of the star, it is per-

turbed and wants to return to equilibrium. First, the star responds on one of the shortest

timescales and restores hydrostatic equilibrium. Afterwards, thermal equilibrium will

be restored. Moreover, if mass is transferred between the two stars or lost from the

system, changes in the binary separation and also in the Roche lobe radius occur. As

long as the Roche lobe of the donor star is able to enclose the star itself, mass can be

transferred in a stable way (Soberman et al. 1997). Therefore, the stability of mass

transfer and response of the Roche lobe radius to mass transfer will be discussed in the

following sections.

Stability

Stable mass transfer is only possible while the donor star is enclosed by its Roche lobe

it is useful to investigate the change of the radius of the star and the change of the Roche

lobe radius. As the change in radius is defined over the mass-radius relationship, R ∝
Mζ , it is useful to have a closer look at the corresponding exponents for the response of

the Roche lobe ζRL and the growing donor star ζdonor. When rewriting the power-law

the exponents can be expressed as

ζRL =
∂ lnRRL

∂ ln M1
and ζdonor =

∂ lnR1

∂ ln M1
(2.26)

with R1 and M1 the radius and mass of the donor star and RRL as the Roche lobe radius

(Soberman et al. 1997). At the onset of mass transfer, the radius of the donor star is

equivalent to the Roche lobe radius, R1 = RRL, therefore, it is required for stable mass

transfer that the following criterion must be fulfilled

ζRL ≤ ζdonor (2.27)

The exponent ζdonor describing the response of the donor stars radius must have a value

between the adiabatic and thermal exponent of the star as it tries to maintain equilib-

rium (Tauris & van den Heuvel 2006).

Radiative and Convective Envelopes

The decision which of both exponents, the adiabatic or thermal, can be used as an ap-

proximation for the mass-radius exponent of the donor star ζdonor strongly depends on

the equations of state. Therefore, whether or not mass transfer is stable also depends

on the energy transport mechanism in the outer regions of the donor’s envelope. For

the envelope of a star, there are two main mechanisms: Energy transport by radiation
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or by convection. For simplicity, one can assume that the mass losing star is an isen-

tropic polytrope. For this model, the pressure term does not depend on temperature T

and therefore, the mechanical structure of the star can be calculated. Following this

assumption, the pressure P is a function of density ρ and is given by

P(ρ) = Kργad = Kρ1+1/n (2.28)

and depends only on the adiabatic exponent γad which can be expressed using the

polytropic model index n ranging from 1.5 - 3. The adiabatic mass-radius exponent ζad

can then be formulated as (Soberman et al. 1997)

ζad =
n−1

n−3
(2.29)

For a fully convective star, which is a quite good approximation for a red giant star,

the adiabatic exponent is γad = 5/3 and the polytropic model index is n = 1.5. As a

consequence, the adiabatic mass-radius exponent ζad = −1/3 is rather small and the

star expands rather quickly, which implies that the Roche lobe radius has to expand

quickly to have stable mass transfer (Soberman et al. 1997). If the Roche lobe radius

cannot expand fast enough, a common envelope will form.

Contrary, for a fully radiative star the polytropic model index is n = 3 and the adiabatic

exponent is γad = 4/3. If now on the surface of the star mass is reduced by mass

transfer, the underlying material is brought out of pressure equilibrium and expands

without filling the region from which the material has been removed. During this

phase, the adiabatic exponent is slightly smaller γad < 4/3 which leads to a contraction

on the dynamical timescale and to a positive adiabatic mass-radius exponent ζad > 0

(Soberman et al. 1997).

Of course, no real star is fully convective or radiative throughout its entire stellar struc-

ture. However, the assumption made above should give the reader a feeling about the

stability of mass transfer. It is important to keep in mind that mass transfer is likely to

be stable for radiative envelopes while mass transfer can, but must not be unstable for

convective envelopes.

Response of the Binary Separation to Mass Transfer

In this section, the influence of mass transfer on the binary separation will be discussed.

For simplicity, all effects on the change of angular momentum like spin-orbit coupling

are neglected. Following Tauris & van den Heuvel (2006) and Soberman et al. (1997)

only orbital angular momentum exchange due to mass-loss will be taken into account.

Therefore, all other terms of Equation 2.18 will be set to zero (J̇gr = J̇mb = J̇ls = 0).
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Furthermore, effects from a direct fast wind and the circumbinary toroid are also ne-

glected. This implies that in systems with orbital periods larger than a few days the

mass transfer coefficients also vanish, α = δ = 0. Therefore, Equation 2.22 can be

simplified to

J̇orb

Jorb
=
βq2

1+q

Ṁ2

M2
(2.30)

Following this, it is possible by using Equation 2.24 and the partial derivatives ∂ lna = ȧ/a

and ∂ lnq = q̇/q to reformulate Equation 2.25 to

− ∂ lna

∂ lnq
= 2+

q

q+1
+

3βq−5q

q(1−β)+1
(2.31)

For a more detailed derivation consider Tauris & van den Heuvel (2006) and Soberman

et al. (1997). This analytical solution describes the change of binary separation and its

dependence on the mass ratio q as well as on the fraction of ejected mass from the

accretor β. Keep in mind that the mass ratio and the fraction of ejected mass from the

accretor change during mass transfer. The behavior of the change in binary separation

is shown in Figure 2.4 for different values of β. It seems to be a general rule that while

the donor star is more massive than the accretor (q > 1) the binary separation shrinks,

while for donor stars that are less massive than the accretor (q < 1) the separation

widens.

β = 0

β = 1

−∂ lna

∂ lnq
q0.1 10.05 0.5 5

−2

−1

0

1

2

Figure 2.4: Plot of the change in binary separation −∂ lna/∂ lnq as a function of mass ratio q.

The different curves correspond to different values of β starting from β = 0 to β = 1 in steps of

∆β = 0.2. If −∂ lna/∂ lnq is positive the orbit widens, if it is negative the orbit shrinks.
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As a matter of fact, the mass ratio is not constant during mass transfer. Therefore, as

mostly mass is transferred from the more massive star to the less massive one the mass

transfer phase leads to an orbital shrinking. However, at some point, the mass ratio

changes and the donor star will be less massive implying that in the end phase of mass

transfer it is possible to have an orbital widening. Note, that this is not a necessary step

to happen, as the initial mass ratio can be very extreme so that it may not get inverted

during the mass transfer phase.

2.2.7 Limitations on Mass Transfer Rates and Accretion

Stellar evolution codes, like MESA, solve the fundamental differential equations of

state to calculate the evolution of the stars and of the binary system. However, the

code cannot decide whether or not the mass transfer or the amount of accreted mass is

physically reasonable. In the previous section, some limitations like the spin-up of the

accretor were already mentioned. Anyhow, there are some more physical phenomena

which also have to be taken into account.

Eddington Accretion Limit

The first limitation is the accretion rate near the Eddington limit. This limit is mostly

important for compact companions. However, it can also be applied to a normal star.

It is based on the principle that matter which falls onto the companion during mass

transfer gets heated and releases large amounts of the gained gravitational energy as

X-Ray radiation (Quast et al. 2019). The Eddington accretion rate is defined as the

mass that can be accreted until the Eddington luminosity is reached

Ṁedd =
4πcR2

κ
(2.32)

and depends on the radius R2 and the surface opacity κ of the accreting star. For

most systems, the envelope and therefore the transferred material mostly consists of

hydrogen. Therefore, the electron scattering opacity is a good approximation for κ. In

this case, the Eddington accretion limit only depends on the radius of the secondary.

This implies that more compact objects only accrete small fractions of the infalling

material and the rest is converted into high energy radiation, X-rays, while for more

extended objects almost all material can be accreted according to this limit.

Moreover, as this limit also regulates the efficiency of mass transfer and it is useful to

redefine the quantity of efficiency as the following (Paxton et al. 2015)

f =min(1−α−β−δ, |Ṁedd/ṀRLOF| ) (2.33)
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Limitations on Mass Transfer Rates

As soon as the accretor spins up during mass transfer it cannot accrete any longer.

This implies that the transferred material from the donor star needs to be lost from the

system somehow. Therefore, a physically reasonable limit is needed. One reasonable

approach is to assume that all material will be accelerated from a Keplerian disc at the

surface of the accretor via a radiation driven wind. Following the approach of Marchant

(2016) who ignored the gravitational attraction of the donor star the limitations can be

expressed as

log
Ṁ

M� yr−1
= −7.19+ log

L1+L2

L�
− log

M2

M�
+ log

R2

R�
(2.34)

and depends on the luminosities of both binary components, L1 and L2, the mass of the

accretor M2, and its radius R2. However, this is a rather strict limit. A less restrictive

limit could include that the material will be accelerated at the edge of the accretion disc

in a way that instead of R2 the Roche lobe radius RRL can be used in Equation 2.34.

If the mass transfer rate is higher than this limit, it is assumed that the instreaming

material can neither be accreted nor ejected and results in a common envelope phase

(Marchant 2016).

2.3 Common Envelope Evolution (CEE)

In the previous section, the stability of mass transfer has been discussed. However,

the possibility of an unstable mass transfer needs to be taken into account as well. An

unstable mass transfer can occur either due to the rapid expansion of the donor star

which expands faster than the Roche lobe or due to accretion on the secondary with

a mass transfer rate above the aforementioned limits. The result of an unstable mass

transfer is a common envelope phase. During this phase, a spiral-in process takes place

where the orbital energy is deposited in the envelope which may lead to a successful

ejection. Otherwise, the two stars will not survive the common envelope phase and

result in a merger (Ivanova et al. 2013).

Common envelope evolution is a complex three-dimensional problem and requires ac-

curate models to predict the exact outcome of such a system. One dimensional codes,

like MESA, are not able to calculate the outcomes yet. Nonetheless, there is a classic

way to estimate the fate of a common envelope system. For this, one has to compare

the binding energy of the envelope and the orbital energy that can be released due to the

spiral-in process. By assuming that all orbital energy will be deposited in the envelope

it is possible to get a first impression of whether or not such a system can survive.
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2.3.1 Orbital Energy

The maximum orbital energy that can be released during the spiral-in process, is given

by the energy difference of the system in the initial state, at the formation of the com-

mon envelope, to the final state, in which the larger star just fills its Roche lobe. There-

fore, the orbital energy that can be used to unbind the envelope is given by (Webbink

1984)

Eorb = Einit−Efinal = −
GM1M2

2ainit
+

GM1,coreM2

2afinal
(2.35)

In this formula, M1 and M2 are the masses of the primary and secondary, respectively.

M1,core is the mass of the remaining core of the primary as it loses its envelope, ainit

is the binary separation at the onset of the common envelope phase, and afinal is the

separation after a successful envelope ejection during which the larger star fills its

Roche lobe. In most of the systems, the separation at the onset of the common envelope

is large so that the first term of Equation 2.35 is negligibly small and the orbital energy

can be approximated to

Eorb ≈
GM1,coreM2

2afinal
(2.36)

However, there is still the question of how to determine the final separation of the

system. In the common envelope phase, it is a good approach to assume that for a

successful ejection the whole hydrogen-rich envelope has to be removed and that the

remnants are a helium star and the main-sequence companion. As a matter of fact, the

main-sequence star is in almost all cases larger than the helium star and for a successful

common envelope evolution, it must be smaller or equal to its Roche lobe so that

RRL = R2. Using this approach one can use the equation of the Roche lobe radius,

Equation 2.14, to calculate the smallest binary separation possible

afinal =
0.6q2/3+ log(1+q1/3)

0.49q2/3
·R2 with q =

M2

M1,core
(2.37)

Furthermore, it is assumed that the secondary has a density which is higher by some

orders of magnitude so that interactions which take place between the secondary and

the common envelope can be neglected. Mixing processes that might happen due to

the spiral-in process are also not taken into account. However, as this is a simplifica-

tion for a complex three-dimensional problem it serves as an estimate to obtain a first

impression of the amount of orbital energy that can be released during the spiral-in

process.
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2.3.2 Binding Energy

The binding energy of the envelope of a star can be classically understood as the energy

required to overcome the gravitational potential that binds the envelope and can be

written as (Ivanova et al. 2013)

Ebind,g = −
� Msurf

Mcore

Gm(r)

r
dm (2.38)

with Msurf and Mcore as the mass coordinate at the surface and the core respectively

and m(r) is the mass coordinate at the radius r of the star. If the orbital energy that

can be released is greater than the binding energy, the system is expected to survive

the common envelope. However, this is the upper limit of the binding energy and there

may be more processes that contribute to this term and reduce the binding energy. One

example of an additional term that reduces the binding energy is the internal energy of

a star. As the internal energy is counteracting the gravitational energy this leads to an

additional term in the estimation of the total binding energy. This additional term can

be formulated according to Han et al. (1995) as

Ebind,u = −
� Msurf

Mcore

Gm(r)

r
dm+αth

� Msurf

Mcore

U(m)dm (2.39)

and depends on the fraction αth of the internal energy that can be used to expel the

common envelope is rather unknown. There are two extrema, where the internal energy

does not contribute to the binding energy αth = 0 or where all of the internal energy

αth = 1 can be used to unbind the envelope. The internal energy U of a star includes

the basic thermal energy of a perfect gas and the energy of radiation in the star (Tauris

& van den Heuvel 2006)

U(m) =
3�T (m)

2µ(m)
+

aT (m)4

3ρ(m)
(2.40)

with dependence on the temperature T , the mean molecular weight µ, and the density

ρ at the given mass coordinate m. The used constants are the ideal gas constant� and

the radiation density constant a. Other processes that may reduce the binding energy

are ignored in this thesis as their trustworthiness is rather vague.

2.3.3 Fate of the Remnants

As discussed above, a common envelope phase can only end with a successful ejection

of the envelope if the orbital energy is large enough. Otherwise, the system will result

26



Daniel Pauli 2 THEORETICAL BACKGROUND

as a merger. This kind of remnant is hard to observe as it looks like a single star, but

its internal structure differs a lot. However, the outcomes of a successful ejection are

observed more easily.

A small illustration of the basic evolution of a system with a successful common enve-

lope ejection is provided in Figure 2.5. The first outcome after the common envelope

phase is a tight binary system with a helium star and a main-sequence companion. If

the helium star is massive enough, it may be observed as a Wolf-Rayet star. As this

becomes important in the later analysis, one should keep in mind that besides stellar

mass-loss rates and mass transfer, common envelope evolution may also be an impor-

tant channel to produce Wolf-Rayet stars.

Depending on the mass of the helium star, its fate will be a white dwarf, a neutron

star, or a black hole. Usually, before the helium star will become one of these compact

objects it will explode as a supernova (SN). However, it is still unknown how strong

a kick introduced by a supernova is and if a system will get disrupted or not. Under

the assumption that the system will survive the supernova, the binary system consists

now out of a compact object and a main-sequence companion which is hard to observe

as the compact object is very faint. Anyhow, if the main sequence companion starts

to expand, it may overflow the Roche lobe and initiate a phase of mass transfer. If

the mass transfer can be stable, it may be possible to observe this system as an X-

ray binary. If the mass transfer is unstable, another common envelope phase may be

initiated leading to another helium star or a merger.
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ZAMS
Both stars start

central H-burning

RLOF

Primary fills its

Roche lobe

�→ mass transfer

CEE

unstable mass transfer
�→ common envelope

�→ spiral-in process

helium star
(WR?)

common envelope ejection

�→ close binary system

with a helium star

supernova explosion

�→ close binary system

with a compact companion
SN

Figure 2.5: Sketch of the evolution of a binary system with a common envelope phase. At first,

both stars evolve independently. After core hydrogen depletion of the primary, it will fill its

Roche lobe, and mass transfer starts. If the mass transfer is unstable it comes to the formation of

a common envelope followed by a spiral-in process. If the envelope can be ejected the resulting

orbital separation is reduced to the order of some days or less. The remnants of the common

envelope evolution are a helium star and a main-sequence star. Depending on the helium stars

mass, this channel may produce Wolf-Rayet stars. However, the Wolf-Rayet phase is short

compared to hydrogen burning and the primary explodes in the end as a supernova before the

secondary can fill its Roche lobe. This will lead to a binary system with a compact companion.

When the secondary fills its Roche lobe mass can be transferred which may be seen as an X-ray

binary.
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3 Evolutionary Properties of Massive Binary Models

The aim of this thesis is to study the properties of very massive binary systems at low

metallicity. Before starting the first analysis of these binary systems a brief overview

of previously calculated model grids of detailed binary-evolution calculations (simply

called binary grids from here on) with SMC and LMC metallicity is given in Sec-

tion 3.1. Section 3.2 covers the preparations that are made in order to extend the

existing binary grid of Marchant (2016) to initial primary masses of about 70 M�. In

addition, this section also shows the results of the newly computed grid and compares

the corresponding phase diagram with the SMC grid. A more detailed analysis of the

influence of inflation on mass transfer and the reliability of the upper limit on mass

transfer is given in Section 3.3.

3.1 Previous Works

Large binary grids covering different initial primary masses, mass ratios, and orbital

periods provide an ideal theoretical base to test how well the predicted models com-

pare to large samples of observed stars. In the recent work of Wang et al. (2020) a

dense model grid with SMC metallicity is used to explain the extensions of the main-

sequence turn off region of young star clusters. Marchant (2016) calculated a dense

model grid at LMC metallicity to study the surface abundances in massive interacting

binary systems. Since they are used in the later analysis to study the effect of metal-

licity on the evolution of massive binary systems, in the following sections both grids

will be introduced.

3.1.1 The LMC binary grid

Marchant (2016) was the first who used the Modules for Experiments in Stellar As-

trophysics (MESA) (Paxton et al. 2013, 2015, 2018) code to calculate a large grid

of binary models. The resulting grid covers initial primary masses in the range of

M1,i � 10M� – 40M�, in steps of ∆ log(M1,i/M�) = 0.05. Furthermore, the grid spans

over the wide range of P i � 1.4d – 3000d for initial orbital period in small steps of

∆ log(P i/d) = 0.025. Regarding the initial mass ratios a range of q i = 0.025 – 0.975

in steps of ∆q i = 0.025 is covered. It is assumed that the binary models are tidally

synchronized at the ZAMS to avoid the need of an extra parameter for the initial rota-

tion. It is worth mentioning that this is not a good assumption for the wider systems.

However, rotation is not that important that it matters much. The binary models are

calculated with the MESA code version 8845 and include the physics of mass-loss,

rotation, inflation, and binary interaction.

To model the stellar wind mass-loss the models follow the prescription of Brott et al.

(2011). The mass-loss rates of Vink et al. (2001) are used for hydrogen-rich main-

sequence stars . For lower temperatures below the bi-stability jump, a jump in temper-

29



3.1 Previous Works Daniel Pauli

ature where the mass-loss rates suddenly drop (see Vink et al. (2001)), the maximum

value of Vink et al. (2001) or Nieuwenhuijzen & de Jager (1990) is used. The Wolf-

Rayet mass-loss rates of Hamann et al. (1995) are used for stars with a surface hydro-

gen abundance below 0.4. In the transition phase where a star has a surface hydrogen

abundance between 0.4 and 0.7, the wind mass-loss rate is interpolated between the

recipes of Vink et al. (2001) and Hamann et al. (1995).

Rotational mixing, which gets more important for massive stars, is modeled as a dif-

fusive process including the effects of dynamical and secular shear instabilities, the

Goldreich-Schubert-Fricke instability, and Eddington-Sweet circulations (Heger et al.

2000). In addition to the angular momentum transport by rotation, the transport via

magnetic fields from the Tayler-Spruit dynamo (Spruit 2002) is included.

Convection is modeled according to the Ledoux criterion and the mixing length theory

(Böhm-Vitense 1958) with a mixing length parameter of α = l/HP = 1.5. For hydrogen

burning cores a steep overshooting is used so that the convective core is extended by

0.335HP (Brott et al. 2011) where HP is the pressure scale height at the boundary of

the convective core. Thermohaline mixing is included with an efficiency parameter of

αth = 1 (Kippenhahn et al. 1980). Semiconvection is treated as an inefficient mixing

process with a parameter of αsc = 0.01 (Langer et al. 1983).

Binary interactions are modeled as described in Section 2.2. Mass transfer is modeled

by using the ’contact’ scheme from MESA. This is an implicit method in which the

mass transfer rate is adjusted so that the radius of the donor star stays inside the Roche

lobe. Moreover, it enables models to have a contact phase where mass is exchanged

efficiently, leading to a mass ratio close to q = 1 (Marchant et al. 2016).

Figure 3.1 shows the final states of the binary models with an initial primary mass of

M1, i = 10 M� in form of a phase diagram. The phase diagrams for the remaining initial

primary masses can be found in Appendix A. In contrast to Marchant (2016) where the

phase diagrams were published first this plot includes an additional label. The different

labels and their corresponding implications for the evolutionary stage of the binary are

listed below:

- Both dep. C:

Both stars are calculated until carbon depletion in their core. Due to convergence

problems stellar models with helium core masses above MHe > 14 M� are calcu-

lated to core helium depletion instead. When the primary depleted carbon the

companion is modeled as a single star, ignoring the possibility of the formation

of a binary with compact object due to the uncertainties of a supernova kick.

- L2 overflow:

During a contact phase both stars overfill their Roche lobe and mass is overflow-

ing the second Lagrangian point L2. The system is suspected to merge.
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Figure 3.1: Phase diagram of binary models with fixed initial donor mass of M1,i = 10 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.

31



3.1 Previous Works Daniel Pauli

- Post MS + Inv. MT:

Inverse mass transfer from the secondary to a post main-sequence primary. These

systems are suspected to have an unstable mass transfer and to merge, leading to

the formation of a post main-sequence star.

- Lower Ṁ limit:

The limit of Equation 2.34 has been reached. Note that the models reaching this

condition continue the calculation. This label has to be understood as a warning

that radiation may not be able to drive a wind to expel the transferred material

from the system.

- Upper Ṁ limit:

The less restrictive limit of Equation 2.34 is reached. The transferred material

can neither be expelled nor accreted anymore. Therefore, the formation of a

common envelope is suspected.

- MT with q i < 0.25:

It is assumed that a mass transfer phase for systems with extreme mass ratios

below q i < 0.25 are will fill the Roche lobe of the secondary quickly leading to

a common envelope phase and a potential merger.

- max MT limit:

This is the additional label mentioned above. Binary systems that trigger this

condition have a mass transfer rate that exceeds 0.1 M� yr−1. These systems are

suggested to form a common envelope.

- convergence error:

The calculation has stopped due to numerical issues and did not converge. This

likely happens in the late phases of the evolution or late stages of mass transfer.

- Had contact:

Both stars had a contact phase. Note that this does not imply that this system

results in a merger.

- Not-int. boundary:

Systems above this line are not interacting during their entire life. They evolve

as single stars.

- Case A/B boundary:

Boundary line between systems undergoing Case A and Case B mass transfer.

To get a better understanding of the implications of the phase diagram the most char-

acteristic regions of Figure 3.1 will be described in more detail.

Binary systems with initial orbital periods beneath the ’Case A/B’ boundary already

have a mass transfer phase during their time on the main-sequence. One can see that

most of the systems with very tight orbits and mass ratios close to q i→ 1 have a con-
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tact phase. During this phase much mass is transferred, leading to a mass ratio close

to q = 1 after the mass transfer phase. Therefore, it is possible for most systems that

either the secondary fills its Roche lobe and inverse mass transfer sets in, or mass is

overflowing through the second Lagrangian point during the contact phase. Both sce-

narios are suspected to result in a merger. For systems with initially more extreme mass

ratios q i→ 0, the secondary is not luminous enough so that infalling material cannot

be transferred to infinity by a radiation driven wind. These systems are also suspected

to form a common envelope and to merge. Only a certain fraction of the binary sys-

tems with wide enough orbits and large enough mass ratios can have a successful mass

transfer phase where both stars can be modeled until carbon depletion. It is worth

mentioning that the accretion efficiency is large for case A systems and decreases with

increasing initial orbital period whereas the mass transfer rate grows with increasing

initial orbital period.

Binary systems that have a mass transfer phase while they evolve off the main-sequence

are located between the ’Case A/B’ boundary and the ’not-interacting’ boundary. These

systems are too wide to have a contact phase and only binary models with initial mass

ratios of q i � 1 are expected to have an inverse mass transfer phase. Models with ex-

treme mass ratios q i→ 0 are still unable to drive a wind that transfers the infalling

material to infinity as they reach the upper limit on mass transfer. For binary systems

with large initial orbital periods, the mass transfer rate gets too high so that the upper

limit on mass transfer is reached too. Therefore, only a certain fraction of binary sys-

tems is suspected to be able to evolve both stars until carbon depletion. For the systems

with the widest orbits, the maximum value for mass transfer is triggered. These sys-

tems are expected to be evolved into a red supergiant phase and have large convective

envelopes. The stability of mass transfer of these systems is briefly discussed in the

later analysis.

Binary systems with an initial orbital period larger than the ’not-interacting’ boundary

evolve as single stars. As the stars are tidally synchronized their initial rotation is rather

small and they can be considered as non-rotating single stars.

3.1.2 The SMC binary grid

C. Wang has also calculated a dense grid of detailed binary evolutionary models with

SMC metallicity which is not published yet. As in the later analysis, the binary models

are used to study the common envelope evolution a short overview over the grid will

be given. The binary grid covers the initial primary mass range of M1, i � 7M� – 89M�
in steps of ∆ log(M1, i/M�) = 0.05. The range of initial orbital periods spans over

P i � 1d – 3000d in steps of ∆ log(P i/d) = 0.025. The initial mass ratios are only calcu-

lated in the range of q i = 0.30 – 0.95 as systems with smaller mass ratios are expected

to merge anyways. The bin width is ∆q i = 0.05.

The binary models include the same physics of mass-loss, rotation, inflation, and bi-
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nary interaction as the LMC binary grid from Marchant (2016). The models are also

calculated with the MESA version 8845. However, to be able to reproduce the WO bi-

nary AB8 it was argued by Wang et al. (2019) that a more efficient semiconvection with

a parameter of αsc = 1.0 is needed. Even though the grid has been used in the afore-

mentioned paper, the corresponding phase diagrams are not published yet. As in the

later analysis, the effect of metallicity will be discussed and the phase diagrams should

be compared to the LMC grid the corresponding phase diagrams are created. The bi-

nary models with initial primary mass M1, i = 10 M� are shown in Figure 3.2 and for

binary systems with initial primary mass M1, i = 60.3 M� is shown in Figure 3.3. The

phase diagrams with the remaining initial primary masses are listed in Appendix B.

By comparing the phase diagrams for initial primary mass of M1, i = 10 M� of the SMC

and LMC in Figure 3.2 and 3.1, respectively, one can see that for these binary models

the final states of their binary evolution does not differ. This should not be surprising as

the effect of semiconvection is strongest for the late evolutionary phases of a star where

it is unlikely to have a mass transfer rate. In addition to that, no effect of metallicity on

the evolution can be seen, which is not surprising as these effects are strongest for the

most massive stars.

The phase diagram for systems with initial primary mass of M1, i = 60.3 M� is shown

in Figure 3.3. However, a comparison of the two phase diagrams is not possible yet as

the LMC grid does not cover this high masses. The grid needs to be extended to study

the effect of metallicity in some more detail which leads directly to the next section.

3.2 Extending the LMC grid

As already mentioned, in order to study the effects of metallicity the aforementioned

LMC grid needs to be extended to higher initial primary masses. The extension of a

binary model grid is not an easy task. Therefore, several preparations need to be made

to be sure that the calculated models can avoid numerical issues and lead to the desired

output.

3.2.1 Preparations

Most of the used physics, like the mass-loss rates, rotation, inflation, and binary in-

teraction, are fixed. However, following the argumentation of Wang et al. (2019) one

might consider using a higher semiconvection efficiency in order to produce WC stars.

Furthermore, increasing the initial primary mass also implies that the secondary masses

increase. In the LMC grid some of the most massive stars are only calculated until

core helium depletion and to avoid convergence errors. Therefore, one might need to

consider applying the same criterion for the secondaries if they exceed a certain core

mass limit. For the above-mentioned grids, both authors used the MESA version 8845.

However, by now newer versions are available that have improved resolutions during

the mass transfer phases and might be a better choice.
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Figure 3.2: Phase diagram of binary models with fixed initial donor mass of M1,i = 10 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure 3.3: Phase diagram of binary models with fixed initial donor mass of M1,i = 60.3 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Semiconvetion

Semiconvective mixing is not expected to have a major influence on the stellar structure

during core hydrogen burning and gets more important in the late evolutionary phases

of a star. Therefore, changing the efficiency of semiconvection should not lead to

large discrepancies with the aforementioned LMC grid. As the mass-loss rates for

massive stars get weaker with decreasing metallicity, higher initial masses are needed

to produce single WR stars. Massive binary systems are suspected to contribute to the

WR population which will be discussed in more detail in the later analysis. However,

it is important to study the influence of the semiconvection efficiency on the predicted

WR populations.
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Figure 3.4: Upper left: Evolutionary tracks of primary of a binary system with initial masses

M1, i = 60 M� and M1, i = 42 M� and initial period of 10d for semiconvection efficiency param-

eters of αsc = 0.01 and αsc = 1.00. The circle denotes the point at which the surface hydrogen

mass fraction drops below XH ≤ 0.3, which is associated to the WNL phase. The triangle marks

the point at which the hydrogen-rich envelope is completely stripped of (XH = 0.0), which is

associated to the WNE phase. The square represents the beginning of the WC phase as carbon

gets visible on the surface with XC ≥ 0.01. Upper right: Mass transfer rates of the two systems.

Lower left and right: Kippenhahn-diagrams covering the core helium burning phase for the

primary with different αsc values. The solid line is the surface of the star, the dashed line is the

helium core mass, and the dotted line is the carbon core mass.

For the SMC grid Wang et al. (2019) concluded that a semiconvection parameter of

αsc = 0.01 cannot explain the observed WO binary AB8. To see if a more efficient

semiconvection parameter is needed for the LMC systems, two binary systems with
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3.2 Extending the LMC grid Daniel Pauli

different parameters of αsc = 0.01 and αsc = 1.00 are calculated and compared in Fig-

ure 3.4. In the upper left panel, a HRD of both systems is provided. The transitions

into the different WR phases WNL, WNE, and WC are labeled by circles, triangles,

and squares, respectively. One can see that only the model with the higher semiconvec-

tion efficiency is able to produce a WC star. This can be explained by comparing the

two Kippenhahn diagrams in the lower panels of Figure 3.4. Here it becomes evident

that the longer core helium burning time, caused by the more efficient semiconvective

mixing, allows the star to remove more mass from the stellar surface so that carbon

gets visible. By having a look at the upper right panel where the mass transfer rate

of both systems is shown, one can see that it is modeled in a similar way so that the

discrepancies to the aforementioned LMC grid are minimized. Therefore, it is decided

to stick to the larger efficiency parameter of αsc = 1.00.

MLT++

For the LMC grid, the primaries with helium core masses above MHe > 14 M� are mod-

eled with MLT++. During the late evolutionary stages when the stars have large con-

vective regions it is possible that the sound speed in these regions will be approached

which decreases the time steps and leads to convergence errors. To deal with this

problem Paxton et al. (2013) developed a treatment of convection that reduces the su-

peradiabaticity in radiation-dominated convective regions, known as MLT++. This

leads to an more efficient energy transport so that the MESA code can evolve the star

until helium depletion.

The secondaries in the LMC grid never got massive enough to exceed this limit and

therefore no such criterion was ever applied. However, as the aim is to extend the grid

to higher masses, the secondary masses increase as well, implying that these stars also

might struggle during helium burning and cause convergence errors. To analyse these

kind of issues two binary models with initial primary mass M1, i = 60 M�, initial mass

ratio q i = 0.7 and initial period of 10d are calculated. For one system MLT++ is turned

on after helium is ignited in the core and the other one is modeled without MLT++.

The corresponding evolutionary tracks in the HRD can be seen in Figure 3.5 where the

most important evolutionary phases are labeled by numbers.

One can see that as soon as the helium core is ignited (point 4) the evolutionary tracks

differ. This can be explained by the more efficient energy transport of MLT++ that

changes the stellar structure so that the radius gets smaller and the star appears hotter

compared to the model without MLT++. Furthermore, one can see that the model with

MLT++ can be calculated until carbon depletion whereas the model without MLT++

cannot even be calculated until helium depletion. Therefore, it is decided that for the

secondaries MLT++ is turned on, if the helium core mass is larger than MHe > 14 M�.

The secondaries will be calculated until carbon depletion.
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Figure 3.5: Shown are two evolutionary tracks of secondaries where one star is modeled with

MLT++ after core helium ignition (red) and one without (blue). The binary system has an

initial primary mass of M1, i = 60 M�, initial mass ratio q i = 0.7 and initial period of 10d. The

semiconvection efficiency parameter is fixed to αsc = 1. The numbers 1, 2, 3, 4, 5 correspond to

the ZAMS, TAMS, H-shell burning, helium core burning and carbon core burning, respectively.
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Numerical Issues During Mass Transfer

While modeling binary systems with initially very massive primaries it became evident

that the MESA version 8845, which has been used to calculate the SMC and LMC

grid, has some problems if the time steps get to small during the mass transfer phase.

In this case, the calculation is stopped. In order to avoid these problems, the newer

version 10398 is used as it allows accretion on smaller time steps. An additional reason

to use this version is that it fixes a bug that occurred during the contact phase. In

the old version, the contact phase was initiated but both stellar components evolved

independently.

Even though the newer version allows to have smaller time steps during a mass transfer

phase which enables the calculation of almost all systems, new problems arise with

this version. For some systems with initially extreme mass ratios q i→ 0 the time step

during the accretion gets very small leading to some kind of oscillation in the models

while they are modeled on a dynamical timescale. This leads to numerical issues where

the mass transfer rate is turned off and on again and subsequently shoots up, triggering

a limit on the mass transfer rate. In order to avoid these issues the models that showed

this behavior are modeled with the old MESA version 8845.

In Figure 3.6 one system that showed this odd behavior is depicted. The binary system

has a initial primary mass M1, i = 60.3 M�, initial mass ratio q i = 0.25 and initial orbital

separation log(P i/d) = 1.900 and is calculated with both versions. On the left side of

Figure 3.6 one can see the mass transfer rate and the mass-loss rates of the primary and

the secondary. By having a look at the mass accretion of the secondary, one can see

that it seems to struggle as some kind of oscillations can be seen. During this phase the

time steps get very small, the accretion rate on the secondary oscillates and the mass

transfer rate is turned off and on again, followed by a drastic increase which leads to

non-physical results. For the older version 8845, the time steps never get that small

and the oscillations can be avoided.

In order to check if the MESA version 8845 leads to the same results as the newer

version 10398 the most important binary parameters are shown in Figure 3.6. By

comparing the slopes of both versions of the mass transfer rate as well as of the mass

ratio one can see that the efficiency of mass transfer and the accretion on the secondary

modeled in a similar way. Furthermore, one can see that the secondary accretes the

same amount of mass and that the mass ratio is for both systems the same. In the lower

panels, the orbital separation and period are shown. One can see that the final results

seem to be in good agreement. There are some small differences, for example, the mass

transfer phase sets in earlier and the accretion is treated in a slightly different way.

Nevertheless, as it has no impact on the final binary parameters it can be concluded

that the older MESA version 8845 can be used for the systems that show this kind of

behavior. All other systems are calculated with the newer version 10398.
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Figure 3.6: Comparison of the binary parameters for the MESA versions 8845 and 10398.

The MESA version 8845 is shown as a black dashed line, while version 10398 is shown as a

colored solid line. The plot includes the mass transfer rate, the mass-loss rates of each stellar

component, the mass ratio as well as the individual masses of the stars and the orbital separation

and period.
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3.2.2 The Extended LMC Grid

With the aforementioned changes, it is possible to extend the LMC grid. In summary,

the changes are as follows: The binary models are calculated with the MESA version

10398. If a model starts to oscillate during mass transfer the older version 8845 is

used. To produce WC stars the semiconvection efficiency parameter is set to αsc = 1.

For helium burning stars with core masses above MHe > 14 M�, MLT++ is turned on

to avoid convergence errors. The binary models include the same physics of mass-loss,

rotation, inflation, and binary interaction as the LMC grid.

The extended grid covers an initial primary mass range M1, i � 45M� – 71M� in steps

of ∆ log(M1,i/M�) = 0.05. To save computation time, the initial mass ratios cover a

range from q i = 0.25 – 0.95 in steps of ∆q i = 0.05. The initial orbital periods span over

the range of P i � 1.4d – 10000d in steps of ∆ log(P i/d) = 0.05. The upper boundary

for the orbital period is chosen in order to include all interacting binary systems.

The phase diagram for binary systems with initial primary mass M1, i = 60.3 M� is

shown in Figure 3.7. The remaining phase diagrams can be found in Appendix C.

Comparing this phase diagram with the equivalent of the SMC, shown in Figure 3.3,

several differences can be observed. The first thing that should be mentioned is the

higher ’Case A/B’ boundary. The effect of inflation is metallicity dependent and is

present in the LMC models, while the SMC models are still uninflated. Therefore,

more binary models with LMC metallicity are expected to fill their Roche lobe while

they are on the main-sequence, leading to an up-shift of the ’Case A/B’ boundary. An-

other metallicity dependent property is the mass-loss rate. For the LMC models, the

mass-loss rates are higher which means that more mass is lost before the mass transfer

begins. This leads to an orbit widening which might help the system to have a sta-

ble mass transfer phase. Moreover, more mass is lost from the stars during the mass

transfer phase leading to shorter mass transfer phases and therefore potentially more

systems that can avoid the upper limit on mass transfer. One can conclude that metal-

licity driven effects, like inflation and mass-loss have a strong impact on the evolution

of massive binary systems.

3.3 Physical Properties of Massive Binary Models

As mentioned in the section above, the influence of metallicity leads to inflated binary

models that need to be studied in more detail. Massive stars have fast rotating cores that

need to share their angular momentum with the envelope to avoid an angular momen-

tum crisis (Langer 2012). In Section 3.3.1 it will be discussed if the inflated envelope

is still coupled with the core during a mass transfer phase and if the mass transfer rates

can remove the inflated envelopes of the primaries. From the phase diagrams of the

binary grids, it can be seen that almost independently from the initial primary mass
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Figure 3.7: Phase diagram of binary models with fixed initial donor mass of M1,i = 60.3 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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most binary systems with initial orbital periods above P i � 1000d trigger the maxi-

mum mass transfer limit. This seems to be connected with their evolutionary stage

and is discussed in some detail in Section 3.3.2. Moreover, by inspecting the phase

diagrams of the least and most massive primaries one can see that only a small fraction

of the low massive systems can be evolved to carbon depletion whereas for the most

massive systems a large fraction can reach this phase. Therefore, the reliability of the

upper limit on mass transfer is questioned in Section 3.3.3.

3.3.1 Inflation in Massive Binary Models

Sanyal et al. (2015) discussed the effect of envelope inflation for very massive main-

sequence stars at LMC metallicity. As this effect is metallicity driven it gets less impor-

tant for lower metallicity environments like the SMC. The calculated LMC grid covers

initial primary masses of more than 60 M� and therefore the primaries are suspected

to have inflated envelopes. These stars get inflated already during the main-sequence

implying that mass transfer sets in earlier as in models without inflation.

In the work of Petrovic et al. (2006) it was discussed that large mass-loss rates of stars

are capable of removing the inflated envelopes if they exceed the critical value of

Ṁinfl = 4πr2
coreρmin

�

G M

rcore
(3.1)

where M is the star mass, ρmin is the lowest density and rcore the uninflated radius

inside the star. The uninflated radius can be defined as the point where the gas pressure

divided by the total pressure gets smaller than β ≤ 0.15 for the first time (Sanyal et al.

2015). As the mass transfer rates are several magnitudes larger than the mass-loss rates

of the stars it might be interesting to see if the inflated envelope can be removed during

a mass transfer phase.

In Figure 3.8 the evolutionary history of a binary system with an inflated primary star

is shown. In the upper left panel, the mass transfer and mass-loss rates of the system

are shown as well as the critical values for mass-loss rates for each stellar component.

One can see that indeed during the mass transfer phase the critical value is exceeded.

In the lower left panel, the strength of the inflation of each star is shown. As expected

only the more massive primary shows strong effects of inflation. During the fast case A

mass transfer phase the critical value for which the inflated envelope would be removed

is exceeded for a short time by the mass transfer rate. However, the time is not long

enough and only a small reduction of inflation can be seen in the lower left panel. For

the later case AB mass transfer the critical value is exceeded by almost an order of

magnitude during the whole mass transfer phase. One can see in the lower left panel

that indeed the inflated envelope of the star is removed during this phase.

As the transport of angular momentum is important within a star to avoid an angular

momentum crisis, it is of major importance to understand if the inflated envelope still
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Figure 3.8: Effects of mass transfer rates on the inflation of a binary system with initial primary

mass of M1, i = 60 M�, initial mass ratio q i = 0.7 and initial orbital period of P i = 100d. Upper

left: Mass transfer and mass-loss rates of the primary and secondary. The mass transfer rate is

shown as a solid red line, the mass-loss rates of the donor and accretor are shown as blue and

green solid lines, respectively. Additionally, the critical value for which the inflated envelope of

a star would be removed is shown as dotted blue and green lines for the primary and secondary,

respectively. Lower left: Inflation of the primary and the secondary as a function of time.

Upper right: Snapshot of the density profile. The dashed vertical line marks the transition of

the uninflated stellar core (pink) and the inflated envelope (blue). Lower right: Snapshot of the

angular momentum throughout the stellar structure during a mass transfer phase.
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can carry the angular momentum of the fast rotating core to the surface or if the enve-

lope and the core are decoupled. To see if the inflated envelope is still able to carry the

angular momentum a snapshot of the stellar structure during the slow case A phase is

shown on the right side of Figure 3.8. The lower right panel contains information on

the angular momentum throughout the star. One can see that the inflated convective en-

velope carries the angular momentum of the core to the stellar surface. As this system

already has gone through an expansion phase, in which the core contracts and spins

up and the envelope expands and slows down, the inflated envelope is still coupled

to the core and is able to transport the angular momentum. In the upper right panel,

one can see the density profile of the inflated star. At the end of the inflated region,

a small bump can be identified which is associated with the density inversion that is

characteristic for an inflated region.

It is important to mention that the criterion that defines the border of the stellar core

and the inflated envelope (β ≤ 0.15) is chosen rather arbitrary and therefore needs to be

handled with care. However, the argument that the inflated envelope is coupled to the

stellar core still holds, even if the threshold is varied. It also holds true, that the inflated

envelope can be removed during a mass transfer phase.

Concerning the stability of mass transfer it is worth mentioning that the inflated en-

velope is not expected to lead to unstable mass transfer as the inflated region contains

less than < 1% of the total mass. Therefore the mass-radius exponent is not expected

to be smaller than the Roche lobes mass-radius exponent.

3.3.2 Mass Transfer During the RSG Phase

In an initially wide binary system with initial periods above P i � 1000d the primary

can evolve to a RSG phase before initiating a mass transfer phase. In this evolutionary

phase, the star is extended to several thousand solar radii and has a convective envelope.

The RSG is core helium burning and has a hydrogen burning shell. Woods et al. (2011)

analyzed the stability of mass transfer in binary systems with a red giant (RG) donor

star by using expressions for the mass-radius exponent for condensed polytropes, and

the approximation from Soberman et al. (1997) for the Roche lobe mass-radius expo-

nent. They come to the conclusion that only inefficient mass transfer can be stable for

RG stars. However, Woods et al. (2011) also note that the used approximation is a

more restrictive criterion than is typically used in the literature. To study the behavior

of the binary models with a RSG donor star of the LMC grid, the mass-radius exponent

of the primary ζ1 and of the Roche lobe ζRL are calculated for each time step by using

ζ1 =
d logR1

d log M1
and ζRL =

d logRRL,1

d log M1
(3.2)

where M1 is the primary mass, R1 is the primary radius and RRL,1 is the Roche lobe

of the primary. As an implicit method is used to model the mass transfer one would

expect that during a mass transfer phase ζ1 � ζRL.
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Figure 3.9: Binary system with initial primary mass of 60.3 M�, initial mass ratio of q = 0.7

and initial orbital period of log(P i/d) = 3.400 at LMC metallicity. Upper left: Mass transfer

and mass-loss rates of the system. Upper middle left: Kippenhahn diagram of the primary

with the mass coordinate on the y-axis. The convective regions are marked by dashed light

blue hatches, semiconvective regions are marked in dark blue, thermohaline mixing is marked

by green regions, and overshooting by dotted gray hatches. Lower middle left: Kippenhahn

diagram of the primary with the radius coordinate on the y-axis. The labels have the same

meaning as before. The dashed black line is the Roche lobe radius. Lower left: Mass radius

exponent of the primary (ζ1) in red and the Roche lobe (ζRL) in black. Right panels: Zoomed

versions of the left panels.
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In figure Figure 3.9 a binary system with initial primary mass of 60.3 M�, initial mass

ratio of q= 0.7 and initial orbital period of log(P i/d) = 3.400 of the LMC grid is shown.

In the upper left panel, the mass transfer and mass-loss rates are shown. One can see

that the systems have a stable case A mass transfer and stops as soon as the next mass

transfer phase is initiated. In the upper middle panel, the Kippenhahn diagram of the

primary with the mass coordinate is shown. One can see that during the first mass

transfer phase the star is still core hydrogen burning. In the zoomed-in plot on the right

side, one can see that the star is core helium burning during the second mass transfer

phase.

In the lower middle panel, one can see the same Kippenhahn diagram with the radius

coordinate on the y-axis. The primary already expands on the main-sequence which

initiates the first mass transfer phase. The dashed black line marks the Roche lobe

radius and it can be seen that the mass transfer rate is adjusted in such a way that the

star is held underneath the Roche lobe radius. This phase is followed by a contraction

phase until core helium depletion. As a result, the star expands on the dynamical

timescale. During this expansion phase, the second mass transfer phase is initiated. By

inspecting the lower middle right panel, one can see that for the last time step the star

expands above the Roche lobe radius.

In the lower left panel, the mass-radius exponents are shown for each time step. The

mass-radius exponent of the primary ζ1 is shown as a solid red line and the Roche

lobes mass-radius exponent ζRL is shown as a solid black line. In order to know if ζ1 is

larger or smaller than ζRL the area between the two lines is shaded in pink. One can see

that during the first mass transfer phase ζ1 ≈ ζRL as expected. In the lower right panel,

one can see the zoomed-in version for the second mass transfer phase. One should

mention that during this phase the model already struggles as for the last time-step the

model got into convergence errors and re-tries with a different approach that initiated

the mass transfer phase. This can be seen, as the curves have two data points for one

time-step. Anyhow, one can see that for the last time step the mass-radius exponent

of the primary is smaller than the Roche lobes mass-radius exponent ζ1 < ζRL which

implies an unstable mass transfer phase leading to a common envelope formation.

One should note that it is not fully understood yet if the problems during this phase are

really caused by the faster expanding star or if the problems are of numerical nature.

Nevertheless, for the later analysis, it is assumed that these stars have an unstable mass

transfer phase leading to the formation of a common envelope.

3.3.3 Reliability of the Upper Limit on Mass Transfer

For the binary models with the initially least massive primaries, one can see that a

large fraction of the systems triggers the upper limit on mass transfer. This implies that

about 90% of all systems are expected to go through a common envelope evolution.

Therefore, one might need to reconsider the reliability of this limit. If this limit is ex-
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ceeded, it is assumed that both stars are unable to drive a wind that moves the infalling

material to infinity. The upper limit on mass transfer is given by Equation 2.34 and

depends on the luminosities of both stars. During a mass transfer phase, the primary

star is perturbed and drops out of equilibrium, leading to a drop in luminosity. This

causes a drop in the upper limit on mass transfer during the mass transfer phase.
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Figure 3.10: Mass transfer rates and HRD of a binary system with initial primary mass of

M1, i = 10 M�, initial mass ratio of q i = 0.6 and initial orbital period of P i = 10d with different

criteria for the upper limit on mass transfer. Upper left: The upper mass transfer limit is treaded

as in Equation 2.34. The system terminates as soon as the limit is reached. Lower left: Less

strict limit that assumes that the mass can be transferred to infinity after the mass transfer phase

when the luminosity of both stars is bright enough. Right: HRD of both systems. As the

luminosity drops during the mass transfer phase for the classical case the upper limit on mass

transfer is reached.

In Figure 3.10 two binary systems with initial primary mass of M1, i = 10 M�, initial

mass ratio of q i = 0.6 and initial orbital period of P i = 10d, that have different criteria

for the upper limit on mass transfer, are shown. The classical upper limit, given by

Equation 2.34, and the corresponding mass transfer rates are shown in the upper left

panel. Indeed, during the mass transfer phase, a drop in the classical limit can be

observed. On the right panel, the evolutionary tracks of the primaries in the HRD are

shown. One can see that for the system that is calculated with the classical limit the

luminosity drops.

For the second system, a less strict limit is introduced. The luminosity of the system

drops during the mass transfer phase but recovers after the fast mass transfer phase.
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This is why, it is assumed that the system transports the infalling material only to a

finite distance during the mass transfer phase and as soon as the luminosity rises again,

the material will be transferred to infinity. Instead of using the current luminosity, the

luminosity in Equation 2.34 is fixed to the value of both stars had at the onset of mass

transfer. Therefore, no sharp drop of the upper limit is expected to happen during the

mass transfer phase. The mass transfer phase for the system with the less strict limit

is shown in the lower left panel of Figure 3.10. Evidently, the system is able to avoid

the limit and also the formation of a common envelope. The evolutionary track of

the primary is shown in the right panel, validating that after the mass transfer phase

the model is even brighter than before, leading to an even higher upper limit of mass

transfer.

To test how this new limit changes the fraction of binary systems that avoid the upper

limit on mass transfer and therefore the formation of a common envelope, 15 binary

models are calculated using the new limit. The initial primary mass for all binary sys-

tems is M1, i = 10 M�. The initial mass ratios cover a range from q i = 0.4 – 0.8 in steps

of ∆q i = 0.1. The initial orbital periods cover a range from log(P i/d) = 1.000 – 2.000

in steps of ∆ log(P i/d) = 0.500.

In order to see how the fraction of models that can avoid the upper limit changes the

models are plotted over the phase diagram of the LMC grid. The result can be seen

in Figure 3.11 where each model is marked by a circle. If a system exceeds the less

strict limit on mass transfer, it is crossed out. The boundary for which all systems are

expected to exceed the upper limit is marked by a dashed black line. There are still

many systems left that form a common envelope. However, the number of systems

that can be evolved to carbon depletion of both stars, following this less strict limit,

is doubled. Anyhow, this limit is based on very rough assumptions that are not tested

yet. Therefore, is recommended to stick to the more reliable upper limit on the mass

transfer rates given by Equation 2.34. Nevertheless, one should keep in mind that

in case a larger fraction of binary models that can avoid the formation of a common

envelope is needed, this less strict limit can be used.
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Figure 3.11: Phase diagram of binary models with fixed initial donor mass of M1,i = 10 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calculated

at LMC metallicity. The different phases are indicated in the legend and a more detailed de-

scription can be found in Section 3.1.1. The circles mark the systems that are calculated with

the less strict upper limit for the mass transfer rate and the crossed-out circles are binary sys-

tems that trigger this limit. The dashed black line marks the bounds of the new binary models

that could be calculated until carbon depletion if this limit would be used.
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4 Common Envelope Evolution for Post Main-Sequence

Stars with Main-Sequence Companions

In the previous section, it has already been mentioned that some binary models are ex-

pected to go through a common envelope evolution. Many systems with two hydrogen

burning stars are suspected to merge. However, there are several binary systems with a

post main-sequence donor star that form a common envelope. These systems might be

able to eject the common envelope and form a binary consisting of a helium star and a

main-sequence companion. Therefore, these systems should be studied in more detail.

In Section 4.1 the change of the binding and orbital energies during a mass transfer

phase is discussed. Furthermore, it is determined how the fraction of binary systems

that can eject the common envelope depends on the current energies in the system. In

Section 4.2 the influence of metallicity on the common envelope evolution is discussed

by comparing the predictions from the SMC and LMC grids. The resulting binary

parameters of systems, that are able to eject the common envelope, are presented in

Section 4.3. In Section 4.4 a brief summary of the results is provided.

4.1 Changes of the Binding and Orbital Energy Ratio During Mass

Transfer

Section 3.1 and 3.2 show the phase diagrams of the binary models with the initially

least massive primary stars. Most of these binary models exceed a limit on mass trans-

fer and are suspected to enter a common envelope phase. If both stellar components are

main-sequence stars, they are expected to merge. However, if the primary has evolved

off the main-sequence, it is possible that during the spiral-in process the hydrogen-

rich common envelope is stripped off. The resulting binary is expected to consist of a

helium star and a main-sequence companion in a tight orbit.

In the classical approach, the binding energy and the orbital energy of the system are

calculated according to Equation 2.36 and 2.39. For the primary’s core mass M1,core

the helium core mass is used which is defined by the boundary where the hydrogen

mass fraction drops below 1%. Wellstein (2001) discussed that for close binary sys-

tems a large fraction of mass is transferred before the systems enter a common envelope

phase whereas for wide binary systems the formation of the common envelope coin-

cides with the onset of mass transfer as the primary has evolved to a RSG phase (see

Section 3.3.2). The binary models of Wellstein (2001) are modeled with conservative

mass transfer. This is contrary to the models used in this thesis, which only accrete a

small fraction of the infalling material. However, the mass that is transferred from the

primary which cannot be accreted by the secondary is lost from the system. Therefore,

the binding energy is expected to be lowered during a mass transfer phase. This im-

plies that it might be possible that systems that are predicted to merge by the classical
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WITH MAIN-SEQUENCE COMPANIONS

approach might have a successful envelope ejection when taking into account a prior

mass transfer phase.

In the lower panel of Figure 4.1 the evolution of the ratio of the binding energy to

the orbital energy is shown for a binary model of the extended LMC grid. The initial

primary mass is M1, i = 63.1 M� and the initial mass ratio and orbital period are q i = 0.7

and log(P i/d) = 2.7, respectively. The binding energies are calculated with and without

the contribution of internal energies and are labeled Ebind,u and Ebind,g, respectively.

The energy evolution is shown right before the onset of case AB mass transfer. In the

upper panel, the evolutionary track of the primary in the HRD is shown. It can be seen

that the track has a loop-like feature. This can be explained by the contraction after

case A mass transfer followed by an expansion when hydrogen is depleted in the core.

This expansion leads to the case AB mass transfer. The mass-loss and mass transfer

rates can be found in the middle panel. By inspecting the middle and lower panel, one

can see that before mass transfer sets in the ratio of binding energy to orbital energy

increases rapidly and reaches a maximum at the onset of mass transfer. During the

mass transfer phase the ratio decreases by a factor of 2. This confirms the expectation

from above.

In order to study whether this has an effect on the fraction of binary systems that are

able to eject their common envelope or not, the previous grids will be used. For this

purpose, the SMC models are used because they contain information about the binding

energies of the envelope at each time step. Here, the binary models with initial primary

mass M1, i = 10 M� are used, because a large fraction of these models is expected to

enter a common envelope phase. As the impact of metallicity is small for these models

the results can also be applied for the LMC grid.

To study the evolution of the binding and orbital energies of the system, the energies

are plotted as a function of the initial orbital period. The result can be seen in the upper

panels of Figure 4.2. The initial mass ratios cover the range of q i = 0.3 – 0.9 in steps

of ∆q i = 0.1 and are indicated by their shade of color. Binary systems with initial mass

ratios q i = 0.3 have the highest transparency while systems with mass ratios q i = 0.9

have the highest opacity. Only the binary models that enter the common envelope

phase with a post main-sequence donor star are shown which explains the lack of case

A systems.

By comparing the binding energies of the envelope at the beginning of the mass trans-

fer in the upper left panel with the binding energies at the formation of the common

envelope in the upper right panel, it can be seen that the binding energies in the later

case are fanned out and do not lie on a straight line. However, this fanning out can only

be observed for binary systems with initial orbital periods below log(P i/d) � 2.5. The

scatter of the binding energies originates from the lower value of the upper limit on

mass transfer which depends on the luminosity and mass of the secondary and there-

fore implicitly on the mass ratio. The boundary at log(P i/d) ≈ 2.5 can be explained as
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Figure 4.1: Binary model with initial primary mass M1, i = 63.1 M�. The initial mass ratio is

q i = 0.7 and the initial orbital period is log(P i/d) = 2.7 (P i ≈ 500d). Upper panel: Evolution-

ary track of the primary in the HRD as solid black line. Lines of equal stellar radius are plotted

as dashed gray lines. Middle panel: Mass transfer and mass-loss rates during the case AB mass

transfer. Lower panel: Binding energies divided by the available orbital energy of the system.

Binding energies without a contribution of the internal energy (αth = 0) is shown as solid blue

line. Binding energies taking into account all internal energies (αth = 1) is shown as solid green

line.
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Figure 4.2: Binding and orbital energies of binary models with initial primary mass

M1, i = 10 M�. On the left side, the energies are calculated at the onset of mass transfer and

on the right side at the moment when the mass transfer rate exceeds one of the limitations. In

the upper panels, the binding energies with and without the contribution of the internal energy

as well as the available orbital energy are shown in green, blue, and red, respectively. In the

lower panel, the logarithm of the ratio of the binding energy to the orbital energy of each sys-

tem is shown. The initial mass ratios are indicated by their shade of color. The model with the

most extreme initial mass ratio q i→ 0 is the faintest and the model with a mass ratio close to

q i→ 1 is the most colorful one. The hatched line marks the ’Case A/B’ boundary.
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the transition between binary systems that have a mass transfer phase before the for-

mation of the common envelope and binary systems that enter the common envelope

as soon as mass transfer is initiated.

One can see that the reduction of the binding energy for binary systems with initial

mass ratio q i→ 1 is the strongest. However, as mass is removed from the binary sys-

tem, this also leads to a reduction of the orbital energy which is strongest for the binary

systems with extreme initial mass ratio q i→ 0. In order to make a more reliable state-

ment on how strong the effect on the reduction of the energies is, one needs to take

into account the ratio of the binding energy to the orbital energy. The logarithm of this

ratio is shown in the lower panels of Figure 4.2. One can see that the ratio is reduced

by up to a factor of 3 for binary systems with an initial mass ratio q i→ 1. Anyhow,

the binary systems with initial mass ratio q i→ 0 show the opposite behavior. The ratio

increases for the most extreme cases by a factor of 1.5.

Even though for some systems the ratio of binding energy to orbital energy is reduced

by a factor of 3, none of these systems is able to eject the common envelope. The

only systems that are able to expel the common envelope are the binary systems with

initial orbital periods above log(P i/d) � 3.0. Nevertheless, as most of the ratios of

binding energies to orbital energies are reduced, this ratio will be calculated in the

further analysis at the formation of the common envelope and not at the onset of mass

transfer.

4.2 The Influence of Metallicity on the CEE

In Section 3.3 the influence of metallicity on inflation and mass-loss rates has already

been mentioned. Furthermore, it has been pointed out that the effects of metallicity

are most dominant at the highest initial masses. It was realized that fewer systems

enter the common envelope phase. However, it is not clear if there is an effect on the

common envelope evolution for different metallicities. Since this thesis presents binary

model grids at SMC and LMC metallicity it gives an ideal basis to test if there are any

predicted differences on the common envelope evolution.

Before having a look at higher initial primary masses, the energies of the binary sys-

tems with initial primary mass M1, i = 10 M� will be compared to see if the predictions

of both grids are as similar as expected. The corresponding plots for the SMC models

can be found on the left side of Figure 4.3, the LMC models are on the right side.

Comparing both sides, they look very similar on first glance. Both show the fanned

out binding energies, the reduction in orbital and binding energies are rather similar,

as well as the boundary at initial periods of log(P i/d) ≈ 2.5. However, by having a

closer look at the systems with an initial mass ratio above log(P i/d) � 3.0 one can

see that for the LMC models a smaller fraction is able to eject the common envelope.

This can be explained by the different choice of the efficiency factor of semiconvective

mixing which is αsc = 1.00 for the SMC models and αsc = 0.01 for the LMC models.
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Semiconvective mixing gets important for post main-sequence stars and has a major

impact on the structure of these stars including the extent of the convective regions in

the envelope (Mowlavi & Forestini 1994).

The extended LMC grid uses a semiconvection parameter of αsc = 1.00 and is consis-

tent with the SMC grid. Therefore, no discrepancies can be caused by this effect for the

most massive primary stars. The impact of metallicity on the common envelope evolu-

tion will be discussed for the binary models with initial primary mass M1, i = 63.1 M�.

The corresponding plots can be found in Figure 4.4. For the SMC models, the case

A binary systems with initial orbital periods smaller than log(P i/d) � 1.5 are left out,

because they trigger the upper limit on mass transfer by their winds, as they evolve

towards a WR phase. This seems to be a numerical issue, that does not occur in the

LMC grid.

One can see that for the SMC grid only case B systems enter a common envelope phase

with a post main-sequence primary and a main-sequence companion. As expected, for

the LMC models one can see that there are less common envelope systems. There are

several models that enter the common envelope phase during case AB mass transfer.

One can see that the binding energies are rather similar for both metallicities. However,

the orbital energies for the LMC models are a bit smaller for the case AB systems which

might be caused by the prior case A mass transfer.

Contrary to the initially less massive binaries non of these binary models can suc-

cessfully eject the common envelope. However, the ratio of binding energy, including

the internal energy, to the orbital energy is smaller than a factor of 3 for most sys-

tems. Taking into account that these are only approximations this is not a large value.

Even though the results would imply that no binary system at the largest initial pri-

mary masses can eject the common envelope, there are many explanations that can

lead to a successful ejection that are not taken into account here. For example, during

a RSG phase, there might be eruptions that additionally remove parts of the envelope.

These eruptions are only barely understood and it is unclear if they can occur during

a common envelope phase. Another example is, that it is assumed that the radius of

the common envelope is given by the radius of the primary at the formation of the

star. However, the primary is forced to stay underneath the Roche lobe during the mass

transfer phase. Therefore, it could be possible that the common envelope is much more

extended and has a different binding energy. These are only two examples that show

how large the uncertainties of the results are. Anyway, as not many binary systems

consisting of a helium star and a main-sequence companion are observed the results

are not bad at all. Nevertheless, it should be kept in mind that there are several effects

that are not included in our analysis.
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Figure 4.3: Binding and orbital energies of binary models with initial primary mass

M1, i = 10 M�. On the left side the energies of the SMC binary models and on the right side,

the energies of the LMC binary models are shown. In the upper panels, the binding energies

with and without the contribution of the internal energy as well as the available orbital energy

are shown in green, blue, and red, respectively. In the lower panel, the logarithm of the ratio

of the binding energy to the orbital energy of each system is shown. The initial mass ratios are

indicated by their shade of color. The model with the most extreme initial mass ratio q i→ 0

is the faintest and the model with a mass ratio close to q i→ 1 is the most colorful one. The

hatched line marks the ’Case A/B’ boundary.
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CASE A

CASE A

CASE A

CASE A

Figure 4.4: Binding and orbital energies of binary models with initial primary mass

M1, i = 60.3 M�. On the left side the energies of the SMC binary models and on the right side,

the energies of the LMC binary models are shown. In the upper panels, the binding energies

with and without the contribution of the internal energy as well as the available orbital energy

are shown in green, blue, and red, respectively. In the lower panel, the logarithm of the ratio

of the binding energy to the orbital energy of each system is shown. The initial mass ratios are

indicated by their shade of color. The model with the most extreme initial mass ratio q i→ 0

is the faintest and the model with a mass ratio close to q i→ 1 is the most colorful one. The

hatched line marks the ’Case A/B’ boundary.
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4.3 Post Common Envelope Parameter

Even though only a small fraction of the common envelope systems is expected to have

a successful ejection, it still is interesting in which parameter range the mass ratios

and orbital periods are after the ejection. The final binary parameters are calculated

according to Equation 2.37 for the binary models that have an orbital energy that is

larger than the binding energy with respect to the internal energy Eorb > Ebind,u.
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Figure 4.5: Post common envelope parameters for binary models with initial primary mass

M1, i = 10 M�. Left: Histogram of the distribution of the resulting mass ratios. Right: His-

togram of the resulting orbital period distribution.

The resulting binary parameters for the models with initial primary mass M1, i = 10 M�
are presented in Figure 4.5. On the left side, one can see the final mass ratios which

seem to be distributed uniformly for mass ratios above q � 1. This implies, under

the assumption that the helium core has almost the same mass for all models, that a

successful ejection for these systems is independent of the initial mass ratio. The final

orbital periods are, as expected, in the order of a few days P = 1.5d – 10d. Using a

different selection criterion, for example taking into account the binding energy without

any contribution of the internal energy Ebind,g would lead to closer orbits as more

orbital energy needs to be deposited in the envelope in order to eject it.

4.4 Summary

In this section, it was established that for binary systems with intermediate orbital

periods the ratio of the binding energy to the orbital energy can be reduced by up to a

factor of 3 due to a prior mass transfer phase. It is therefore important to estimate this

ratio at the formation of the common envelope and not at the onset of mass transfer.

However, the effect is too small to lead to a successful envelope ejection for the studied

systems. A successful ejection is most likely during the RSG phase of a primary where

the binding energy of the envelope is smallest. Anyhow, for the initially most massive
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primary stars, no successful ejections are predicted using this method. Nevertheless,

there are large uncertainties in the process of a common envelope evolution that might

not be taken into account and would lead to a successful ejection. The final mass ratios

are expected to be distributed uniformly and the orbital periods are expected to be in

the order of a few days.
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5 Population synthesis of WR stars in the LMC

Due to their high mass-loss rates during their entire life, massive single stars are able

to strip off their hydrogen-rich envelope leading to the formation of a WR star. mass-

loss is weaker for low metallicity environments and plays a crucial role in the stripping

process. Therefore, the minimum initial mass that is needed by a single star to form a

WR wind increases with decreasing metallicity. Observations show that there are WR

stars that cannot be explained by a single star channel (Shenar et al. 2020). In order

to explain these WR stars, it is assumed that most of them have formed due to binary

interaction that removes the hydrogen-rich envelope. In this thesis, a large grid of very

massive binary systems, including single star models, is calculated. Therefore, these

binary models in combination with single star models can be used for a population

synthesis to see if the observed WR population of the LMC can be reproduced.

Section 5.1 gives a brief overview of the observed WR stars, separated by their indi-

vidual subclasses, that are used in the later analysis. In Section 5.2 it will be tested if

the binary models are able to explain the observed luminosity range of the WC stars

by comparing the evolutionary tracks and the evolutionary stages of the stellar models

to the observed WR stars. It will be seen that the binary models of the previously cal-

culated binary grid are not able to explain the observed WC stars. With the objective

to determine if a stellar model appears as a WR star or not, a criterion based on the

optical thickness of the stellar wind will be introduced in Section 5.3. In Section 5.4 a

new grid of binary models that uses a different mass-loss recipe for the WR stars is pre-

sented. A discussion of the matches and discrepancies between the synthesized models

and the observations is given in Section 5.5. Section 5.6 provides a short summary of

the results of the performed stellar population synthesis.

5.1 Observations

As already mentioned, classical Wolf-Rayet stars are core helium burning stars that

have lost their hydrogen-rich envelope. Furthermore, these stars have very strong opti-

cally thick winds which make it impossible to directly observe their surface. Neverthe-

less, it is possible to obtain the properties of the star from stellar atmospheric models.

From these models one can determine the luminosity L, the "stellar radius" R�, and

"stellar temperature" T�, which are associated with the radius and the temperature of

the star at a given optical depth inside the wind. The following section presents the

results of recent works that studied WN and WC stars in the LMC.

5.1.1 The WN sample

Hainich et al. (2014) performed an analysis of the known 108 WN type stars in the

LMC. The sample contains 17 confirmed binaries and 22 WR stars which are suspected

to be in a binary system. The sample of the WN type stars is suspected to be nearly
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complete. Hainich et al. (2014) analyzed the WN spectra with the help of the Potsdam

Wolf-Rayet (PoWR) atmospheric models and determined their stellar properties. The

results of the most important parameters from that paper which are used during the later

analysis are listed in Table 1. The uncertainties of the parameters are not discussed

in Hainich et al. (2014), however from the results of the galactic WN stars which

are studied by Hamann et al. (2019) one can estimate the typical uncertainties to be

∆ log(L/L�) = 0.2 for the luminosities and ∆ log(T�/kK) = 0.05 for the temperatures.

The uncertainties in the temperature that is available in the literature correspond to the

spacing of the atmospheric models that are used for the analysis. As the uncertainty of

the temperature is rather small it should be handled with care.

A HRD with all observed WN stars is shown in Figure 5.1. One can see that the

hydrogen-free WN stars are all located at higher temperatures while hydrogen-rich

stars have cooler stellar temperatures. Another feature that can be seen is that the

WN stars only populate the bright part of the HRD. No WR star is observed with a

luminosity below log(L/L�) ≤ 5.25. This threshold is understood as a transition from

optically thin to optically thick winds which makes the WR stars visible in the optical

range. One can see that the most luminous stars are in binary systems whereas the less

luminous stars are either apparently single or in a binary system. Furthermore, one can

see that the faintest star is an apparently single star.

5.1.2 The WC sample

In addition to the WN stars the LMC contains 24 known WC type stars. Only a small

fraction of them have been analyzed with the PoWR code by Gräfener et al. (2013)

and Ramachandran et al. (2018). However, the absolute visual magnitudes of all 24

WC stars are obtained by Bartzakos et al. (2001a). With the aim of calculating the

absolute visual magnitudes of the observed stars a bolometric correction of Mbol = 4.5

(Smith et al. 1994) is applied. The results are listed in Table 2. The uncertainties in

the estimates of the luminosities are about ∆ log(L/L�) = 0.3, which is similar to the

uncertainties from stellar atmospheric models (Sander et al. 2012). Reference values

from Gräfener et al. (2013) and Ramachandran et al. (2018) are listed in addition to the

calculated luminosities in Table 2. One can see that the discrepancy for the single stars

is rather small and within the given uncertainties, although the obtained luminosity

for BAT99 53 differs by ∆ log(L/L�) = 0.5. As only information about the luminosity

of the WC stars is available, the positions in the HRD in Figure 5.1 are indicated by

arrows. Evidently, the most luminous WC stars are in binary systems. This could

cause a systematic error because the spectrum might be diluted by the companion.

Anyhow, the WC stars cover almost the same luminosity range as the WN stars. The

faintest observed WC star has a luminosity of log(L/L�) = 5.4. This threshold can

be explained by the fact the least massive stars that can produce WN stars neither

have strong enough winds to strip their helium envelope nor efficient enough mixing to

have a carbon mass fraction at the surface that could be observed via the characteristic
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Figure 5.1: Luminosity of the observed WN and WC stars plotted against the stellar tem-

perature. Circles denote apparently single stars and diamonds WR stars in binary systems.

Hydrogen-free WN stars are marked in green, hydrogen-rich WN stars are colored by their

surface hydrogen abundance in orange and red for XH ≤ 0.3 and XH > 0.3, respectively. Since

only the luminosities of the WC stars are available, their corresponding positions in the HRD

are marked with arrows at the given luminosity.
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emission lines of WC stars (Langer 2012). For the upper luminosity limit, one might

argue that the most massive stars have such massive envelopes that they are unable to

fully strip them and therefore never appear as hydrogen-free WN or WC star (Langer

2012).

5.2 Problems with the Previous Grid

With the objective to get a first impression of how the previously calculated binary

models compare to the observations, the stellar evolutionary tracks of the primaries for

systems with initial mass ratio q i = 0.7 and an initial orbital period of P i = 100d are

shown in Figure 5.2. The stellar evolutionary tracks are color-coded according to their

surface hydrogen and carbon mass fraction in order to distinguish the different WR

phases. The WN phases are divided into three groups: Stars with a surface hydrogen

mass fraction in the range of 0.3 < XH ≤ 0.7 are colored red, stars with a surface hy-

drogen mass fraction of 0.0 < XH ≤ 0.3 are colored orange, and stars without hydrogen

on the surface XH = 0.0 are colored green. If in addition to that a star has a surface

carbon mass fraction of XC ≥ 0.01, it is associated to a WC phase and is colored in

blue. In the background, the observed WR stars are plotted. One can see that only the

model with initial primary mass M1, i = 70.8 M� can produce a WC star. The rest of the

models cannot explain the less luminous WC stars. This is indeed a problem and the

grid cannot be used to reproduce the observed WR stars.

The origin of this problem most likely lies in the large uncertainties of the Wolf-Rayet

winds which are the main mechanism of the envelope stripping process. For the Wolf-

Rayet mass-loss rates many different recipes that assume different clumping factors

inside the wind or differentiate between the individual WR phases are available in the

literature. In the work of Yoon (2017) the most popular mass-loss recipes for WN

and WC stars are combined to get a more sustainable mass-loss recipe. Moreover, the

influence of the clumping factor is discussed and it is recommended to use a clumping

factor of D = 4 to reproduce the observations of the galactic WN and WC stars.

As the mass-loss recipe that is used for the previous grid is mostly thought to be valid

for WN stars and uses a clumping factor of D = 10, it should be no surprise that the

models do not fit the observations. In order to check whether the mass-loss recipe of

Yoon (2017) with a clumping factor of D = 4 can produce the observed WR stars in

the LMC, binary models with an initial mass ratio of q i = 0.7 and an initial orbital

period of P i = 100d are calculated. The result can be seen in Figure 5.3 with the same

color-code as above.

One can see now that the observed luminosity range of the WC stars can be explained

by the new models. Only the least massive model does not evolve into a WC star. Even

though these exemplary models are not able to produce the faintest WC star, this is not

worrisome as the mass transfer efficiency depends on the initial orbital period as well as

on the mass ratio. Therefore, binary systems with more efficient mass transfer phases
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Figure 5.2: Luminosity plotted versus the effective temperature of the binary models. Stellar

evolutionary tracks of the binary models are color-coded in green, orange, red and blue to mark

the different WR phases. In the background are the observed WN and WC stars with the same

labeling as in Figure 5.1. It is assumed that the stellar temperature can be used as the effective

temperature of the WR star.
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Figure 5.3: Luminosity plottet versus the effective temperature of the binary models. Stellar

evolutionary tracks calculated with the mass-loss rates for WR stars according to Yoon (2017).

The color-scheme is the same as in Figure 5.2. In the background are the observed WN and

WC stars with the same labeling as in Figure 5.1. It is assumed that the stellar temperature can

be used as the effective temperature of the WR star.
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are likely to produce the fainter WC stars. This leads to the conclusion that the WR

mass-loss rates in the previous grid are underestimated and in order to reproduce the

observed WR stars one needs to calculate a new grid. However, to save computation

time and to decide whether a model will be observed as a WR star or not one needs a

criterion that determines the lowest initial mass that is needed to produce a WR star.

5.3 Optical Depth of WR Winds

For a Wolf-Rayet star to be observable as such it needs an optically thick wind that can

produce the strong emission lines that are characteristic for these stars. In this section,

the optical thickness of the winds, which can be described theoretically, is used as

a criterion that determines if a star would be visible as a WR star or not. Shenar

et al. (2020) discussed that the luminosity of the faintest observable WR star is inverse

proportional to metallicity. They find that the faintest WR stars of the SMC, LMC, and

Milkyway (MW) have a luminosity of log(L/L�) = 5.6, 5.25 and 4.9, respectively.

To describe the wind of a WR star is assumed that the wind velocities can be expressed

as a β-type wind velocity law

�(r) = �∞
�

1− R

r

�β

(5.1)

where �∞ is the terminal wind velocity and β is the exponent of the wind velocity law.

R is the radius of the star and r is the radius coordinate. In the works by Gräfener et al.

(2017) and Vink et al. (2001) the authors, who analysed WC and OB stars, respectively,

use a value of β = 1. Therefore, in the further analysis, it is assumed that the wind

velocity laws of all WR stars can be described by this exponent.

Following this assumption on the wind velocities the optical depth of the wind can be

calculated according to Langer (1989)

τ(r) =
−κṀ

4πR(�∞− �0)
ln

�

1− R

r

�

1− �0
�∞

��

(5.2)

The optical thickness depends on the opacity κ of the wind, the mass-loss rate Ṁ, the

radius of the star R, the radius coordinate r, the terminal wind velocity �∞ and the

expansion velocity at the stellar surface �0. The opacity of the Wolf-Rayet winds can

be approximated by the electron scattering opacity κes = 0.20(1+ XH)cm2 g−1. The

expansion velocity at the surface of a star is typically �0 = 20kms−1 Langer (1989). To

get the terminal wind velocity for hydrogen-free WN stars one can use its correlation

with the escape velocity which is given by �∞ = 1.3�esc (Gräfener et al. 2017). The

mass-loss rates are calculated according to Equation 2.10 and with the aim of getting

the radius of a hydrogen-free WN star the mass-luminosity and the mass-radius relation

from Langer (1989) can be used
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log
MWNE

M�
= −0.158206−0.053868log

LWNE

L�
+0.055467

�

LWNE

L�

�2

, (5.3)

log
RWNE

R�
= −0.651411+0.639656log

MWNE

M�
−0.023537

�

MWNE

M�

�2

. (5.4)

By combining the above-mentioned equations one can get a theoretical estimate of the

optical thicknesses of hydrogen-free WN stars as a function of luminosity and metal-

licity. The least luminous WR stars of the SMC, LMC and MW are used to see how

this theoretical model compares to observations. Figure 5.4 shows the theoretical opti-

cal depths of the stellar winds of hydrogen-free WN stars in the plane of the luminosity

and metallicity.
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Figure 5.4: Plot of the theoretical optical depth of stellar winds of helium stars as a function

of luminosity and metallicity. The metallicity is on the x-axis and the luminosity on the y-

axis. The theoretical optical depths of helium stars are shown as colors in the background. The

lowest observed hydrogen-free WN star luminosities from Shenar et al. (2020) with 5.6, 5.25,

and 4.9 in the SMC, LMC, and MW, respectively are shown as star-shaped symbols. Lines of

equal optical thickness of hydrogen-free WN stars are shown for values of τ = 1.0, 1.5 and 2.0

as solid, dashed and dotted lines, respectively.

This simple theoretical model indicates that the threshold optical depth that determines

weather a star appears as a WR star is τ = 1.5. This value will be used as a criterion

in the later synthesis to determine if a stellar model would be observable as WR star

or not. As a new binary grid needs to be calculated in order to reproduce the observed

WC luminosity range, this criterion will be used to determine the lowest initial primary

mass that is needed for a model to be observable as a WR star.
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For the purpose of using this criterion for the calculated binary models, some prepa-

rations need to be done. The correlation between the terminal wind velocity and the

escape velocity is not constant during the evolution of a star. Therefore, one needs

to differentiate between the different evolutionary phases and has to adjust the value

of the correlation between the terminal wind velocity and the escape velocity. For

OB stars with effective temperatures in the range of 12500K ≤ Teff ≤ 22500K Vink

et al. (2001) found that the correlation can be expressed as �∞ = 1.3�esc. Regarding

hydrogen-rich WN stars, no such correlation has been derived yet. In this work, it is

assumed that for these stars the correlation of �∞ = 1.3�esc that is valid OB type stars

and hydrogen-free WN stars holds true for the hydrogen-rich WN stars. For WC stars

Gräfener et al. (2013) found a steeper correlation of �∞ = 1.6�esc. Using these corre-

lations and the output from the models it is now possible to calculate a phase diagram

that shows which systems will be visible as WR stars.

Figure 5.5: Optical depth and phase diagram of binary models with initial primary masses

ranging from log(M1,i/M�) = 1.450 – 1.950. All systems have an initial mass ratio of qi = 0.5

and an initial orbital period of P i = 10d. Left: On the y-axis is the fraction of the core helium

burning time of the primary. On the x-axis is the initial primary mass. The optical depth of the

primaries during the different evolutionary stages is shown as contour plot. Highlighted by solid

lines are the optical depths up to a value of τ = 3.5. Right: Phase diagram of the primary stars

with the same axis as in the left panel. The evolutionary stages are separated into hydrogen-rich

and hydrogen-free WN stars as well as WC stars in orange, green and blue respectively. The

different evolutionary stages are estimated by the surface abundance. Hydrogen-rich WN stars

have a surface hydrogen abundance of 0 < XH ≤ 0.3, hydrogen-free WN stars have XH = 0 and

WC stars have XC ≥ 0.01.

An exemplary plot of the optical depth of binary models can be found on the left

side of Figure 5.5. One can see that stellar models with initial primary masses below

M1, i � 28M� (log(M1,i/M�) ≥ 1.450) have an optical depth below τ < 1.5 and there-

fore are not observable as Wolf-Rayet stars. On the right side of Figure 5.5 a phase

diagram of the models is shown indicating the evolutionary stage of each model by
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only taking into account the surface abundances of the stellar model. It can be seen

that all primaries of the binary models are able to produce helium stars as they lose

their hydrogen-rich envelope. If the calculated optical depth of a primary is larger than

τ ≥ 1.5 it is assumed that the stellar model has an optically thick wind which is asso-

ciated to a WR phase. Primary stars with initial masses larger than M1, i � 35.5M� are

considered to go through a WC phase during the late stages of core helium burning.

It gets evident that for larger initial primary masses the Wolf-Rayet stars will be ob-

served for most of their core helium burning time as WC star. One can see that there is

a minimum at around M1, i ≈ 70.8M� after which the fraction of time during which the

primary will be seen as WC stars reduces again. This can be explained by the larger

hydrogen envelopes and the shorter core helium burning times of more massive stars

which make it harder for a WN star to evolve into a WC star.
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Figure 5.6: Optical depth and phase diagram of single star models with initial primary masses

ranging from log(M1,i/M�) = 1.450 – 1.950. Left: On the y-axis is the fraction of the core

helium burning time of each stellar model. On the x-axis is the initial star mass. The optical

depth of the stellar models during the different evolutionary stages is shown as a contour plot.

Highlighted by a solid line is the optical depth of τ = 1.5. Right: Phase diagram of the stel-

lar models with the same axis as in the left panel. The evolutionary stages are separated into

RSG, hydrogen-rich, and hydrogen-free WN stars as well as WC stars in red, orange, green,

and blue respectively. The different evolutionary stages are estimated by the surface abundance

and effective temperature. In order to be labeled as a Wolf-Rayet star a stellar model requires

an effective temperature above Teff > 10000K. Hydrogen-rich WN stars need to have a surface

hydrogen abundance between 0 < XH ≤ 0.3, hydrogen-free WN stars a surface hydrogen abun-

dance of XH = 0 and WC stars surface carbon abundance above XC ≥ 0.01. If a stellar model

does not fulfill any of the aforementioned criteria it is labeled as RSG.

For comparison, a plot of the theoretical optical depth of the stellar winds of single

star models is shown on the left of Figure 5.6. It can be seen that only the single star

models with initial mass above M1, i � 56.2M� go trough a Wolf-Rayet phase. Stellar

models with initial mass below M1, i � 56.2M� are expected to have an optically thin
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wind. On the right side of Figure 5.6 the evolutionary phases of the models are shown.

It gets evident that all single star models that have an optically thin wind are in an RSG

phase. Similar to the binary models one can see that the lightest Wolf-Rayet stars that

are formed will only be visible as hydrogen-rich and hydrogen-free WN stars. Stellar

models with initial masses above M, i � 60.3M� go trough a WC phase while they are

core helium burning. As it is the case for the binary models the fraction of the core

helium burning time during which a stellar model is visible as WC star increases with

increasing initial star mass.

5.4 The New Grid of Binary Models

Following the discussions above, a new grid for the LMC needs to be calculated in

order to produce a synthetic WR population. The grid is calculated with the same input

physics as mentioned in Section 3.2 with the mass-loss recipe from Yoon (2017) for the

WR phase. The grid covers initial primary masses in the range of M1, i � 28M� – 89M�
in steps of ∆ log(M1,i/M�) = 0.05. The upper limit has been chosen according to the

large amount of convergence errors, which occur at these high masses. The initial mass

ratio range is the same as for the previous grid and covers the range of qi = 0.25 – 0.95

in steps of ∆qi = 0.05. The initial orbital periods are calculated in the range from

P i = 1.4d – 10000d in steps of ∆ log(P i/d) = 0.050. For comparison with the previous

grid the phase diagram for initial primary mass M1, i = 60.3 M� is shown in Figure 5.7.

The rest of the phase diagrams can be found in Appendix D.

Comparing the phase diagram of the old grid in Figure 3.7 with the new grid in Fig-

ure 5.7 one can see that the final states of the binary systems seem to be rather similar.

This should not be surprising, as the Wolf-Rayet mass-loss rates only set in in the very

late phases of the stellar evolution when no mass transfer phase is expected. However,

in the late evolutionary phases when the primary develops a strong WR wind it will

lose more mass than its counterpart of the old grid. This implies that the final mass

ratios for the binary systems with a WR star are expected to differ between the two

grids. Moreover, as mass is lost from the binary system this also leads to an orbital

widening. This can be seen in the later analysis in which the WC stars are predicted

to have wider orbits than the hydrogen-rich WN stars. The discussion for the common

envelope evolution in Section 4 still holds, because the common envelope phase is ini-

tiated during a mass transfer phase during which the Wolf-Rayet mass-loss rates are

not used.

Additionally to the binary models, the grid also contains single star models, because

binary systems with an initial orbital period above log(P i/d) � 3.5 are not interacting

and therefore modeled as single stars. As the stars are initially tidally synchronized, at

this high initial orbital period the stars are almost non-rotating. One can see that some

of the non-interacting binary models are labeled as convergence errors. Regarding the

single star models the non-interacting binary models with initial mass ratio q i = 0.5 and
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Figure 5.7: The initial mass ratio q i is plotted versus the initial orbital period P i. All models

are calculated at LMC metallicity. The different phases are indicated in the legend and a more

detailed description can be found in Section 3.1.1. The models are calculated with the Wolf-

Rayet mass-loss rates from Yoon (2017).
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initial orbital period log(P i/d) = 4.0 are used. In regards to the models that are labeled

with convergence errors, new models are calculated until core helium depletion in the

primary, because only the primaries are relevant for the used single star models.
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Figure 5.8: Stellar evolutionary tracks of the single star models. The color scheme is the

same as in Figure 5.3. Single stars need an initial mass above Mi ≥ 56.2 M� to strip off their

hydrogen-rich envelope and to evolve to a WR star.

The evolutionary tracks of the single star models are shown in Figure 5.8. One can

see that the single star models are also able to produce WR stars if their initial mass

is above Mi � 56.2 M�. This leads to the conclusion that below a certain mass and

therefore a certain luminosity only binary systems can produce the observed WR stars.

After the threshold is reached all stars are able to strip off their hydrogen-rich envelope

and the single star channel is expected to mainly contribute to the WR population.

Every single star model with a mass above Mi � 56.2 M� can form a WR star whereas
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in regards to the binary models the formation of a WR star needs a prior stable mass

transfer phase, which implies that only a certain fraction of the binary systems actually

form WR stars. This is also discussed by Shenar et al. (2020) who argued that binary

models need to have an initial primary mass of M1, i = 24 M� to be visible as WR stars

and that, depending on the stellar model, the initial mass of a single star must be in

the range of Mi = 28 – 75 M�. The models used in this thesis require an initial primary

mass above M1, i = 28 M� to produce a WR star, while a mass Mi � 56.2 M� is needed

for a single star model.

5.5 Stellar Population Synthesis

The newly calculated grids of detailed binary evolutionary models are used for a stel-

lar population synthesis with the aim to understand the importance of the different

formation channels of WR stars in low metallicity environments like the LMC. The

stellar temperatures, which are assumed to correspond to the effective temperatures of

the WR stars, are not available for all observed stars, so only the luminosity of the

WR stars will be extracted from the models and compared to the observations. Sana

et al. (2013) analyzed the O-star population of the Tarantula Nebula in the LMC in-

cluding the effect of binary systems. O-type stars are young massive main-sequence

stars with initial masses of about M i � 30 M� (Weidner & Vink 2010). As the least

massive primary stars of the used binary models have an initial mass of M1, i = 28 M�,

the obtained probability distributions of Sana et al. (2013) will be used for the pop-

ulation synthesis. The initial mass function (IMF) of Salpeter (1955) is used for the

single stars as well as for the initial primary mass of the binary systems. The IMF can

be expressed as f (M/M�) ∝ (M/M�)−α with an exponent of α = 2.3. Regarding the

binary systems it is assumed that the intrinsic orbital period distribution is given by

f (log(P/d)) ∝ log(P/d)π with an exponent of π = −0.45±0.30 and the intrinsic mass

ratio distribution is given by f (q) ∝ qκ with an exponent of κ = −1.0±0.4. Sana et al.

(2013) determined the intrinsic binary fraction to be fbin = 0.51±0.04, but for sim-

plicity the intrinsic binary fraction in this analysis is assumed to be fbin = 0.5. With

the purpose of small statistical fluctuations 7500 binary models with initial primary

mass, initial orbital period, and initial mass ratio according to the aforementioned dis-

tributions are chosen from the grid. Furthermore, 7500 single star models with initial

primary masses according to the IMF are drawn from the set of single star models

as well. It is assumed that the LMC has a constant star formation rate. To include a

constant star formation in our synthesis for the last 107 years, every 50000 years the

luminosity of each drawn binary and single star model is added to the synthetic WR

population if the star is core helium burning and has an optical depth above τ ≥ 1.5.

5.5.1 The First Synthesis

For the observed WR stars, not all temperatures are measured yet. However, as for

all WR stars the luminosities are given, it is possible to compare the observed and
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predicted luminosity range that is obtained from the population synthesis. As the grid

only covers stellar models up to an initial mass of Mi = 89.1 M�, an upper limit for the

luminosities that can be compared with the observations is used. Therefore, only WR

stars in the range of log(L/L�) = 5.05 – 6.35 are taken into account for the analysis.

All WR stars with luminosities above log(L/L�) > 6.35 are discarded.

In order to compare the predictions with the observations, the Wolf-Rayet stars are

divided into three subclasses, hydrogen-free WN, hydrogen-rich WN, and WC stars.

The observed subsets contain 38 hydrogen-free WN, 48 hydrogen-rich WN, and 19

WC stars in the given luminosity interval. To minimize the statistical fluctuations,

more stars are synthesized than are observed. To be consistent with the observed data,

the number of synthesized hydrogen-free WN stars is normalized to match the number

of observed hydrogen-free WN stars.The normalization factor obtained in this way is

then applied to the other subclasses in order to check if the synthesized models can

reproduce the number of observed WR subtypes.

Applying this normalization on the synthesized population leads to a star formation

rate of SFR ≈ 0.4M� yr−1. Harris & Zaritsky (2009) estimated the star formation rate

of the LMC to be rather constant at around SFR ≈ 0.2M� yr−1 within the last few Gyrs

with temporary variations of a factor of 2. They found that the star formation rate

increases within the last 5×107 Myr to SFR ≈ 0.4M� yr−1. The lifetime of a Wolf-

Rayet star is expected to be in the order of several Myrs and therefore the required star

formation rate of the synthetic population is in good agreement with the observed one.
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Figure 5.9: Comparison of the luminosity distribution of observed hydrogen-rich WN (orange),

hydrogen-free WN (green), and WC (blue) populations for a given luminosity interval with sin-

gle and binary star models with dotted and dashed hatches, respectively. The total distribution

of the synthetic population is marked by a bold black line and the observed one is marked by a

bold line in the corresponding color.

The result can be found in Figure 5.9, a histogram of the luminosity distributions of

the observed and predicted WR subclasses. The shape of the luminosity distribution
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of the hydrogen-free WN stars seems to comply with the observed distribution. This

is also true for the subset of WC stars on the right side of Figure 5.9. The second peak

of the observed WC luminosity distribution is located at lower luminosities compared

to the predicted WR distribution. However, one has to keep in mind that the uncer-

tainties in the estimated luminosities are large. The predicted number of WC stars is

19.25 matches with the number of 19 observed WC stars. Only the hydrogen-rich WN

stars in the middle plane are underpopulated. The models only predict 29.30 of 48

observed stars and also the peaks cannot be explained by the models. To understand

this discrepancy for the hydrogen-rich WN stars the origin of these stars needs to be

discussed.

Comparing the predicted luminosity distributions of WR stars in single or binary sys-

tems, one can see in Figure 5.9 that the synthetic WR population is dominated by the

binary channel for luminosities below log(L/L�) � 6.0. As soon as the single stars

have strong enough winds to strip off their hydrogen-rich envelopes the WR popula-

tion gets dominated by the single stars. This can be seen for luminosities higher than

log(L/L�) � 6.0. Naively one would expect that the number of single WR stars in

this luminosity region is approximately the same as the number of WR stars in binary

systems. However, this cannot be seen in Figure 5.9. This can be explained by the

probability that a binary model evolves into a WR star compared to the probability that

a single star evolves into a WR star. The binary models need a prior stable mass trans-

fer in order to produce a WR star, implying that only a certain fraction of the binary

models actually evolve into a WR star. Regarding the single star models, each model

that has a high enough initial mass can go trough a WR phase, which explains the large

contribution of the single stars at the higher luminosities.

5.5.2 The Evolutionary State of Hydrogen-Rich WN Stars

According to the classical WR stars, all of the WR stars that are synthesized from the

binary and single star models are core helium burning stars including the hydrogen-

rich WN stars. Martins et al. (2013) performed a spectroscopic analysis of H-rich WN

stars in the LMC and the Galaxy and concluded that some of the stars must still be core

hydrogen burning. de Koter et al. (1997) observed 4 luminous hydrogen-rich WN stars

in the LMC and come to the conclusion that these stars must still be core hydrogen

burning and have WR-like spectra. They explained this by very strong mass-loss rates

that lead to the formation of an optically thick wind.

Therefore, the assumption that all WR stars are core helium burning is wrong. To

determine if core hydrogen burning hydrogen-rich WN stars can be explained by the

stellar models, the optical depths throughout the entire stellar evolution are calculated.

Therefore, more correlations between the terminal wind velocity and the escape ve-

locity are needed. In order to describe these correlations the obtained values of Vink

et al. (2001) for the given temperature regimes are used. For a temperature range of

27500K ≤ Teff ≤ 50000K Vink et al. (2001) found that the correlation of �∞ = 2.6�esc
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can be used. For lower temperatures in the range of 12500K ≤ Teff ≤ 22500K the

wind gets less powerful and the correlation can be expressed as �∞ = 1.3�esc. For the

lowest temperatures of RSG Teff ≤ 10000K they obtained even less intense winds with

�∞ = 0.7�esc.
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Figure 5.10: HRD with the temperature on the x-axis and luminosity on the y-axis. Stellar

evolutionary tracks of the single star models are colored by their optical depth. Stellar models

that have an optical depth below τ < 1.5 are shown as gray lines. Stellar models with an optical

depth above τ ≥ 1.5 are colored in cyan, light blue, and blue. In the background the are the

observed WN and WC stars with the same labeling as in Figure 5.1.

However, even with these correlations none of the single star models, shown in Fig-

ure 5.10, develops an optically thick wind during the core hydrogen burning. This

could have two reasons: First, the used correlations between the terminal wind veloc-

ity to the escape velocity are wrong. Second, the mass-loss rate of the O and B type
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stars are underestimated. As the optical depth is proportional to the mass-loss rate this

seems to be the more relevant point. Bestenlehner (2020) analyzed very massive stars

and also found that in order to explain the transition from an O star wind spectrum to a

WR-like spectrum, stronger mass-loss rates are required.

5.5.3 The second Synthesis

In the section above, it was discussed that the hydrogen-rich WN stars may have two

different evolutionary states and that the modeled grid can only explain core helium

burning WN stars. Therefore, in the following analysis, the subsample of hydrogen-

rich WN stars is divided into two more subgroups: Hydrogen-rich WN stars with a

surface hydrogen abundance of XH ≤ 0.3 that are suspected to be core helium burn-

ing and super hydrogen-rich WN stars with a surface abundance of XH > 0.3 that are

expected to be core hydrogen burning. Using the surface hydrogen abundance is not

a very reliable criterion to divide the core hydrogen and core helium burning stars,

however, it is a simple approximation and will be used in the further analysis. For the

used binary models the detection criterion for a WR star has been modified so that a

WR star must have a surface hydrogen abundance of XH ≤ 0.3 to be consistent with the

definition above.
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Figure 5.11: Comparison of the luminosity distribution of observed hydrogen-rich WN (or-

ange), super hydrogen-rich WN (red), hydrogen-free WN (green), and WC (blue) populations

for a given luminosity interval with single and binary star models with dotted and dashed

hatches, respectively. The total distribution of the synthetic population is marked by a bold

black line and the observed one is marked by a bold line in the corresponding color. Note, that

for the comparison of the hydrogen-rich WN stars the super hydrogen-rich WN stars are not

taken into account.

The resulting histograms of the luminosity distributions are shown in Figure 5.11. It

is possible to see that the predicted hydrogen-rich WN stars are now in much better

agreement with the observed hydrogen-rich WN stars (in orange). From the observed
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WN population, one would expect 27 hydrogen-rich WN stars and 21 super hydrogen-

rich WN stars. The predictions would expect 29.14 hydrogen-rich WN stars which is

in much better agreement than before.

5.5.4 Comparing Observed and Predicted Binary Parameters

Even though the predicted distribution of the WR populations matches the observed

distribution, the models would predict a binary fraction of WR stars of about ≈ 80%.

The observed WR stars only show a binary fraction of ≈ 40% which means that every

second binary would be undetected. Furthermore, our models only predict single WR

stars at the luminosities above log(L/L�) � 6 which is contrary to the observations, at

least regarding the WC stars of which the most luminous stars are in a binary. There

are several explanations that might be able to verify this appearance. They will be

discussed at the end of this section. Before that, the predictions of the used models on

mass ratios and orbital periods will be compared with the few that are available from

observations.

Hydrogen-rich WN binaries

The hydrogen-rich WN sample is shown in Figure 5.12 in which the mass ratios can

be seen in the upper left panel and the orbital periods in the upper right panel. It is

important to note that only WR stars in binary systems with a surface hydrogen mass

fractions in the range of 0.0 < XH ≤ 0.3 are included. The binary parameters are listed

in Table 1.

Most of the observed binaries have very tight orbits. This is in good agreement with

the expectation because the companion in tight systems should be easier to observe,

as for example the spectrum is Doppler-shifted or darkened by an eclipsing star in the

line of sight. Therefore, one can expect this sample to be more complete for tighter

orbits. The observed systems with wide orbits show strong X-ray emission, which is

associated with a binary companion. Therefore, the models seem to match the obser-

vations very well. However, there are two observed hydrogen-rich stars in very tight

orbits that cannot be explained by the binary models. These systems are either core-

hydrogen burning and therefore could have a tight orbit, or they might be remnants of

a common envelope phase with a very small fraction of hydrogen still left on the stellar

surface. Alternatively, they could be systems with an undetected compact object. An-

other possibility might be given by wind particles that gravitationally torque the binary

system and extract angular momentum leading to the formation of tight orbits (Brook-

shaw & Tavani 1993). However, for such a scenario to be possible, the terminal wind

velocity must be in the same order of magnitude as the binary orbital velocity. For

our systems the binary orbital velocity is typically in the order of 200kms−1 whereas

the terminal wind velocity is much larger up to �∞ = 2000kms−1. Therefore, such a

scenario seems unlikely.
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Figure 5.12: Upper left: The observed mass ratios of hydrogen-rich WN binaries, with surface

hydrogen mass fractions in the range of 0.0< XH ≤ 0.3, are shown in orange and the predictions

from the stellar synthesis are marked by dotted hatches. Upper right: Observed orbital periods

of hydrogen-rich WN binaries in orange and the predictions as dotted hatched bins. Lower

panel: Plot of the mass ratios versus the orbital period. The observed binaries are shown as

orange dots if mass ratio and orbital period are known. If only the orbital period is known, it

is marked by an arrow. The predicted distribution is shown as a gray-scaled histogram in the

background.
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For the observed and predicted mass ratios, both distributions show a rather flat behav-

ior and seem not to be in a disagreement at all. Here, one might assume that the systems

with the most massive companion stars might be detected because the companions can

be visible in the spectrum while less massive companions might be outshined by the

WR star. The observed WR binary systems with mass ratios smaller than q ≤ 1.0 are

all detected X-ray binaries. By having a look at the lower left panel of Figure 5.12, one

can see the correlations of the mass ratios and the orbital periods. This shows that most

of the systems with small orbital periods cover a large range of mass ratios. However,

compared to the predicted correlations this seems to be in quite good agreement as one

would expect a bias towards smaller periods over a large range of mass ratios.

Hydrogen-free WN binaries

The mass ratios and orbital periods for the hydrogen-free WN stars are shown in Fig-

ure 5.13. Even though fewer systems are observed one can see the same structure as

for the hydrogen-rich WN stars. In comparison, the binary models predict wider orbits

that are caused by strong mass-loss rates. Also, the expected mass ratios are shifted to

higher values as the WR star loses mass whereas the companion is expected to have

almost the same mass as in the hydrogen-rich WN phase. One can see again that there

are tight systems that cannot be explained by the binary models. This time the mass ra-

tio of these systems is unknown, however, a common envelope evolution or a compact

companion seem to be likely channels that produce the observed star.

WC binaries

For the WC binaries in the LMC only in three cases the orbital periods are determined

which are included in Table 2. The predictions from the stellar synthesis can be found

in Figure 5.14. The strong mass-loss rates are expected to widen the orbit of these

systems, even more, implying that no binary with orbital periods below P < 10d is

expected. However, there are two observed WC binaries in very tight orbits. WR

binaries with orbits in the order of a few days are present for all WR phases and cannot

be explained by the binary models. Most of these systems consist of a WR star and

an OB companion. Even though it was argued in Section 4 that a common envelope

evolution for a post main-sequence star with a main-sequence companion seems to be

unlikely to end with a successful common envelope ejection, such a scenario cannot

be ruled out. It seems like these systems are possible remnants of a common envelope

evolution. In Section 4 it was mentioned that a successful ejection is most likely for

systems with initially large orbital periods as the primary can evolve to a RSG phase.

The RSG phase of stars is very unknown and it is possible that there are pulsations and

eruptions that additionally lead to a partial ejection of the envelope and help the system

to successfully eject the common envelope and forming a close binary system.
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Figure 5.13: Upper left: The observed mass ratios of hydrogen-free WN binaries are shown in

green and the predictions from the stellar synthesis are marked by dashed hatches. Upper right:

Observed orbital periods of hydrogen-free WN binaries in green and the predictions as dashed

hatched bins. There is a discrepancy for the tightest observed orbits that cannot be explained

by the models. Lower panel: Plot of the mass ratios versus the orbital period. The observed

binaries are shown as green dots if mass ratio and orbital period are known. If only the orbital

period is known, it is marked by an arrow. The predicted distribution is shown as a gray-scaled

histogram in the background.
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Figure 5.14: Upper left: The predicted mass ratios of the WC binaries from the stellar synthesis

are marked by cross hatches. Upper right: Observed orbital periods of WC binaries in blue and

the predictions as crossed hatched bins. There is a discrepancy for the tightest observed orbits

that cannot be explained by the models. Lower panel: Plot of the mass ratios versus the orbital

period. The orbital period is marked by an arrow. The predicted distribution is shown as a

gray-scaled histogram in the background.
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5.5.5 Conflict Between Observations and Predictions

As already mentioned in the previous section the synthesized models, at least for the

WC population, would predict that the most luminous stars should be observed as sin-

gle stars and the less luminous stars are in binary systems. However, the observations

show the opposite. Shenar et al. (2020) also realized this problem and discussed some

possibilities which will be listed below:

1. Binary evolution in disguise: Some apparent single WR stars still might be

products of binary systems even though they are detected as single stars. This

scenario was discussed by Schootemeijer & Langer (2018) for the WR stars of

the SMC. Moreover, it is possible that the evolution of binary systems leads to

the formation of single WR stars, for example, they could be merger products,

binaries with a compact object that is X-ray quiet, or products of a three-body

interaction that kicked out the companion.

2. Undetected binaries: As most of the WR stars are observed in the optical range

it might be possible that the WR star gets outshined by its brighter companion.

3. All WR stars can be formed by single stars: As it has been seen several times

in this chapter the uncertainties in the mass-loss rates are very high and the RSG

phase is not very well understood so that it might be that all WR stars can be

formed via the single star channel. This would also correspond to the lack of

observed luminous RSG.

These are many possible scenarios that can explain the faint apparently single WR

stars. However, studying them is beyond the scope of this thesis. The used binary and

singe star models are able to explain the observed luminosity range of the WR stars in

the LMC. Even though there are some conflicts with the observed single stars which

might be explained by the aforementioned scenarios, the results of the population syn-

thesis show that one would expect a large fraction of the WR stars to be in wide orbits

with orbital periods above 30d which are not observed yet. This might correspond to

the first scenario of the binary evolution of disguise where the secondary is not de-

tected. Dsilva et al. (2020) analyzed the variations in radial velocities of the northern

galactic WC stars in order to flag binary candidates. Dsilva et al. (2020) finds that

the WC stars lack binary systems with orbital periods P � 100d, which indicates that

a large number of the WC binaries likely reside in long-period systems. This finding

underlines the predicted period distribution of the synthetic WR population.

5.6 Summary

In this section, an overview over the observed WR stars in the LMC was given. In

order to compare the calculated grid with the observed WR population, a criterion

that determines whether or not a star can be seen as a WR star based on the optical

depth of the stellar wind has been introduced. It was realized that the previously used
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WR mass-loss rates are underestimated and that one needs to use a clumping factor of

D = 4 in order to reproduce the observed WR stars. Furthermore, the wind of O and

B type stars seem to be underestimated. Also, no main-sequence star can reproduce

the observed WR-like spectra of core hydrogen burning stars. However, the binary and

single star models can reproduce the observed WR population and also the observed

orbital periods astonishingly well. Further, the mass ratios seem to fit the predictions.

There are some outliers that might have been formed by a common envelope evolution.

The synthesized models cannot explain the observed distribution of apparent single

and binary stars, which seems, at least for the WC stars, to be the opposite of the

predictions.
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6 Conclusions and Outlook

In this thesis, large grids of detailed binary evolution models at SMC and LMC metal-

licity are used and extended to higher initial primary masses up to 70.8 M�. These

binary models are calculated with the MESA code and include the physics of mass-

loss, rotation, inflation, and binary interaction. The final phases of these models are

discussed in more detail in Section 3. The two main outcomes of the models are that

either both stars can be calculated until core carbon depletion or the binary systems

enters a common envelope phase where the simulation is stopped.

For those systems that enter a common envelope phase while both stars are still core

hydrogen burning it is assumed that these systems will result in a merger. However, for

a binary system consisting of a post main-sequence star and a main-sequence compan-

ion the outcome is rather unknown and is discussed in Section 4. During the analysis

of those systems, it becomes clear that it is of major importance to calculate the bind-

ing and orbital energy at the formation of the common envelope instead of calculating

them at the onset of mass transfer, as during the mass transfer phase the ratio of binding

energy to orbital energy can reduce by a factor of 3. Even though this ratio could be re-

duced by a factor of 3, it does not lead to a much larger fraction of successful ejections

of the common envelope, as only binary systems in which the primary is evolved to a

RSG are able to eject the common envelope. For the highest initial primary masses, the

used methods would predict no successful ejections at all. However, there are many

unknowns that might contribute to the process. One might think about pulsations that

might appear in the late stages of a RSG, where it is unclear if these can also develop

during a common envelope phase.

In Section 5 new binary models are calculated with the mass-loss rates of Yoon (2017)

with the purpose of understanding the different formation channels of WR stars in low

metallicity environments. The models, including single star models calculated with

the same physics as the binary models, are used for a population synthesis. The syn-

thesized Wolf-Rayet population is compared to the observed population of Wolf-Rayet

stars in the LMC. The obtained luminosity distribution of both populations fits aston-

ishingly well. The synthesized population would predict that all Wolf-Rayet stars with

luminosities below log(L/L�) � 6.0 are in binary systems. However, about half of the

observed Wolf-Rayet stars in this luminosity range are apparently single stars. By com-

paring the predicted orbital periods and mass ratios of the synthesized population with

the observed Wolf-Rayet binaries one can see that the binary systems in tight orbits

can be partly explained by the synthesized models. Nevertheless, there are some WR

binaries that orbital periods within a few days that could not be explained by the binary

models and hint at a common envelope evolution of a post main-sequence star with a

main-sequence companion. The obtained orbital period and mass-ratio distributions of

the synthesized population can be used as predictions. These predictions hint that most

of the faint apparently single Wolf-Rayet stars can be in a binary system with a wide

87



Daniel Pauli

orbit or that these stars have a light companion that cannot be seen in the spectrum.

However, in the analysis merger products are completely excluded which might also

contribute to the Wolf-Rayet population.

It was realized during the analysis of the common envelope evolution of a post main-

sequence star with a main-sequence companion that this channel is only poorly under-

stood, as the observed WR binaries with an O star companion and an orbital period of

a few days cannot be explained. Therefore, further studies have to be made in order

to understand what we are missing, for example, can pulsations or explosions that are

present in a RSG phase help to eject the envelope. If this can be understood in more

detail, many systems like the aforementioned WR binaries can be explained as well as

high mass X-ray binaries which can form from this channel.

Furthermore, the results of the orbital period distribution of the synthesized WR pop-

ulation would predict intermediate and large orbital periods for the binary systems. It

the WR explodes as a supernova, taking into account the unknown parameters of a

supernova kick, a binary system with a large orbital period, and a compact object is

formed. If the secondary expands and mass transfer is instable this will lead to the

formation of a common envelope. It is known from the work of Kruckow et al. (2016)

that a successful ejection is possible for these systems. Therefore, this opens a forma-

tion channel of double BH merger candidates, which could be studied in more detail in

future works.

Additional to the aforementioned studies, the predicted orbital period distributions can

be used in combination with the results of Dsilva et al. (2020) to analyze apparently

single WR stars in order to detect if they could be in a binary system.

To study the reliability of the predictions one could also calculate grids of detailed

binary models at SMC and MW metallicity to see if the used physics, especially the

mass-loss rates, can explain the observed WR populations too.
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Figure A.1: Phase diagram of binary models with fixed initial donor mass of M1,i = 11.2 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure A.2: Phase diagram of binary models with fixed initial donor mass of M1,i = 12.6 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure A.3: Phase diagram of binary models with fixed initial donor mass of M1,i = 14.1 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure A.4: Phase diagram of binary models with fixed initial donor mass of M1,i = 15.8 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure A.5: Phase diagram of binary models with fixed initial donor mass of M1,i = 17.8 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure A.6: Phase diagram of binary models with fixed initial donor mass of M1,i = 20 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure A.7: Phase diagram of binary models with fixed initial donor mass of M1,i = 22.4 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure A.8: Phase diagram of binary models with fixed initial donor mass of M1,i = 25.1 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.

100



Daniel Pauli A THE LMC GRID

������������������

� � ���� ����� �

���

���

���

���

���

���

���

��
�
��

�
�
�
�

������� ���� � � ���������� � � ������

�����������

�����������

�����������������

������ ��������

���������� � ����

������������

�����������������

������ ��������

�����������

�����������������

�����������������

Figure A.9: Phase diagram of binary models with fixed initial donor mass of M1,i = 28.2 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure A.10: Phase diagram of binary models with fixed initial donor mass of M1,i = 31.6 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure A.11: Phase diagram of binary models with fixed initial donor mass of M1,i = 35.5 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure A.12: Phase diagram of binary models with fixed initial donor mass of M1,i = 39.8 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.1: Phase diagram of binary models with fixed initial donor mass of M1,i = 7.1 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.2: Phase diagram of binary models with fixed initial donor mass of M1,i = 7.9 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.3: Phase diagram of binary models with fixed initial donor mass of M1,i = 8.9 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.4: Phase diagram of binary models with fixed initial donor mass of M1,i = 11.2 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.

109



Daniel Pauli

������������������������

� � ���� ����� �

���

���

���

���

���

���

���

���

��
�
��

�
�
�
�

������� ���� � � ���������� � � ������

�����������

�����������

�����������������

����� ��������

���������� � ����

������������

�����������������

������ ��������

�����������

�����������������

�����������������

Figure B.5: Phase diagram of binary models with fixed initial donor mass of M1,i = 12.6 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.6: Phase diagram of binary models with fixed initial donor mass of M1,i = 14.6 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.7: Phase diagram of binary models with fixed initial donor mass of M1,i = 15.8 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.8: Phase diagram of binary models with fixed initial donor mass of M1,i = 17.8 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.9: Phase diagram of binary models with fixed initial donor mass of M1,i = 20 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.10: Phase diagram of binary models with fixed initial donor mass of M1,i = 22.4 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.11: Phase diagram of binary models with fixed initial donor mass of M1,i = 25.1 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.12: Phase diagram of binary models with fixed initial donor mass of M1,i = 28.2 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.13: Phase diagram of binary models with fixed initial donor mass of M1,i = 31.6 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.14: Phase diagram of binary models with fixed initial donor mass of M1,i = 35.5 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.15: Phase diagram of binary models with fixed initial donor mass of M1,i = 39.8 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.16: Phase diagram of binary models with fixed initial donor mass of M1,i = 44.7 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.

121



Daniel Pauli

������������������������

� � ���� ����� �

���

���

���

���

���

���

���

���

��
�
��

�
�
�
�

������� ���� � � ���������� � � ������

�����������

�����������

�����������������

����� ��������

���������� � ����

������������

�����������������

������ ��������

�����������

�����������������

�����������������

Figure B.17: Phase diagram of binary models with fixed initial donor mass of M1,i = 50.1 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.18: Phase diagram of binary models with fixed initial donor mass of M1,i = 56.2 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.19: Phase diagram of binary models with fixed initial donor mass of M1,i = 70.8 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.20: Phase diagram of binary models with fixed initial donor mass of M1,i = 79.4 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure B.21: Phase diagram of binary models with fixed initial donor mass of M1,i = 89.1 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at SMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure C.1: Phase diagram of binary models with fixed initial donor mass of M1,i = 44.7 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure C.2: Phase diagram of binary models with fixed initial donor mass of M1,i = 50.1 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure C.3: Phase diagram of binary models with fixed initial donor mass of M1,i = 56.2 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure C.4: Phase diagram of binary models with fixed initial donor mass of M1,i = 70.8 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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D LMC Grid for WR stars
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Figure D.1: Phase diagram of binary models with fixed initial donor mass of M1,i = 28.2 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure D.2: Phase diagram of binary models with fixed initial donor mass of M1,i = 31.6 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.

134



Daniel Pauli D LMC GRID FOR WR STARS

���������������������������

� � ���� ����� �

���

���

���

���

���

���

���

���

��
�
��

�
�
�
�

������� ���� � � ���������� � � ������

������������

�����������

�����������������

������ ��������

���������� � ����

������������

�����������������

������ ��������

�����������

�����������������

�����������������

Figure D.3: Phase diagram of binary models with fixed initial donor mass of M1,i = 35.5 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure D.4: Phase diagram of binary models with fixed initial donor mass of M1,i = 39.8 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure D.5: Phase diagram of binary models with fixed initial donor mass of M1,i = 44.7 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure D.6: Phase diagram of binary models with fixed initial donor mass of M1,i = 50.1 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure D.7: Phase diagram of binary models with fixed initial donor mass of M1,i = 56.2 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.

139



Daniel Pauli

���������������������������

� � ���� ����� �

���

���

���

���

���

���

���

���

��
�
��

�
�
�
�

������� ���� � � ���������� � � ������

������������

�����������

�����������������

����� ��������

���������� � ����

������������

�����������������

������ ��������

�����������

�����������������

�����������������

Figure D.8: Phase diagram of binary models with fixed initial donor mass of M1,i = 70.8 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Figure D.9: Phase diagram of binary models with fixed initial donor mass of M1,i = 79.4 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.

141



Daniel Pauli

���������������������������

� � ���� ����� �

���

���

���

���

���

���

���

���

��
�
��

�
�
�
�

������� ���� � � ���������� � � ������

������������

�����������

�����������������

����� ��������

���������� � ����

������������

�����������������

������ ��������

�����������

�����������������

�����������������

Figure D.10: Phase diagram of binary models with fixed initial donor mass of M1,i = 89.1 M�.

The initial mass ratio q i is plotted versus the initial orbital period P i. All models are calcu-

lated at LMC metallicity. The different phases are indicated in the legend and a more detailed

description can be found in Section 3.1.1.
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Table 1: Parameters for WN stars in the LMC.

BAT99 spectral subtype (a) T�
(a) log(L) (a) XH

(a) Binary? (a) P (b) q (b)

[kK] [ L� ] [d] [M2/MWR]

1 WN3b 89 5.30 0.0 - - -

2 WN2b(h) 141 5.37 0.0 - - -

3 WN4b 79 5.51 0.0 - - -

5 WN2b 141 5.45 0.0 - - -

6 O3f*+O 56 6.45 0.2 x 2.00 -

7 WN4b 158 5.84 0.0 - - -

12 O2If*/WN5 50 5.80 0.5 x 3.24 -

13 WN10 28 5.56 0.4 - - -

14 WN4o(+OB) 67 5.86 0.0 ? - -

15 WN4b 89 5.57 0.0 - - -

16 WN7h 50 5.80 0.3 - - -

17 WN4o 67 5.69 0.0 - - -

18 WN3(h) 71 5.63 0.2 - - -

19 WN4b+O5: 79 6.14 0.0 xc 17.99 1.79

21 WN4o(+OB) 67 6.30 0.0 ? - -

22 WN9h 32 5.75 0.4 - - -

23 WN3(h) 71 5.55 0.0 - - -

24 WN4b 100 5.54 0.0 - - -

25 WN4ha 67 5.55 0.2 - - -

26 WN4b 71 5.62 0.0 - - -

27 WN5b(+B1Ia) 71 7.30 0.2 ? - -

29 WN4b+OB 71 5.50 0.0 x 2.20 -

30 WN6h 47 5.65 0.3 - - -

31 WN4b 75 5.33 0.0 ? - -

32 WN6(h) 47 5.94 0.2 x 1.90 0.98

33 Ofpe/WN9? 28 6.50 0.2 - - -

35 WN3(h) 71 5.60 0.1 - - -

36 WN4b/WCE+OB 79 5.71 0.0 ? - -

37 WN3o 79 5.65 0.0 - - -

40 WN4(h)a 63 5.62 0.2 ?c - -

41 WN4b 100 5.60 0.0 - - -

42 WN5b(h)(+B3I) 71 8.00 0.4 ?c - -

43 WN4o+OB 67 5.85 0.0 x 2.82 -

44 WN8ha 45 5.66 0.4 - - -

(a) Values adopted from Hainich et al. (2014). (b) Values taken from Shenar et al. (2019). (c)

Showing X-ray emission (see Hainich et al. (2014)).
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Table 1 continued

BAT99 spectral subtype (a) T�
(a) log(L) (a) XH

(a) Binary? (a) P (b) q (b)

[kK] [ L� ] [d] [M2/MWR]

46 WN4o 63 5.44 0.0 - - -

47 WN3b 89 5.59 0.0 ?c - -

48 WN4b 89 5.40 0.0 - - -

49 WN4:b+O8V 71 6.34 0.6 x 31.69 2.00

50 WN5h 56 5.65 0.4 - - -

51 WN3b 89 5.30 0.0 - - -

54 WN8ha 38 5.75 0.2 - - -

55 WN11h 28 5.77 0.4 - - -

56 WN4b 71 5.56 0.0 - - -

57 WN4b 79 5.40 0.0 - - -

58 WN7h 47 5.64 0.3 - - -

59 WN4b+O8: 71 6.45 0.0 ? 2.20 -

60 WN4(h)a 63 5.78 0.2 - - -

62 WN3(h) 71 5.41 0.1 - - -

63 WN4ha: 63 5.58 0.4 - - -

64 WN4o+O9: 71 6.05 0.0 x 37.59 -

65 WN4o 67 5.75 0.0 - - -

66 WN3(h) 89 5.78 0.2 - - -

67 WN5ha 47 5.96 0.3 ?c - -

68 O3.5If*/WN7 45 6.00 0.6 - - -

71 WN4+O8: 63 5.98 0.0 x 5.21 -

72 WN4h+O3: 71 5.80 0.4 ? - -

73 WN5ha 60 5.72 0.4 - - -

74 WN3(h)a 79 5.69 0.2 - - -

75 WN4o 71 5.56 0.0 - - -

76 WN9ha 35 5.66 0.2 - - -

77 WN7ha 45 6.79 0.7 xc 3.00 1.66

78 WN6(+O8V) 71 5.70 0.2 ?c - -

79 WN7ha+OB 42 6.17 0.2 ?c - -

80 WN5h:a 45 6.40 0.2 ?c - -

81 WN5h 47 5.48 0.4 - - -

82 WN3b 100 5.53 0.0 ?c - -

86 WN3(h) 71 5.33 0.0 - - -

88 WN4b/WCE 112 5.80 0.0 - - -

89 WN7h 50 5.78 0.2 - - -

91 WN6(h) 50 5.42 0.2 - - -

92 WN3:b(+O)+B1Ia 45 6.95 0.2 xc 4.31 -

93 O3If* 45 5.90 0.6 ?c - -

94 WN4b 141 5.80 0.0 - - -

(a) Values adopted from Hainich et al. (2014). (b) Values taken from Shenar et al. (2019). (c)

Showing X-ray emission (see Hainich et al. (2014)).
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Table 1 continued

BAT99 spectral subtype (a) T�
(a) log(L) (a) XH

(a) Binary? (a) P (b) q (b)

[kK] [ L� ] [d] [M2/MWR]

95 WN7h+OB 50 6.00 0.2 x 2.11 2.20

96 WN8 42 6.35 0.2 - - -

97 O3.5If*/WN7 45 6.30 0.6 - - -

98 WN6 45 6.70 0.6 - - -

99 O2.5If*/WN6 45 5.90 0.2 xc 92.6 -

100 WN7 47 6.15 0.2 ?c - -

102 WN6 45 6.80 0.4 ?c - -

103 WN5(h)+O 47 6.25 0.4 xc 2.75 1.94

104 O2If*/WN5 63 6.06 0.4 - - -

105 O2If* 50 6.40 0.6 ?c - -

106 WN5h 56 6.51 0.4 - - -

107 O6.5Iafc+O6Iaf 35 6.31 0.4 xc 153.89 0.81

108 WN5h 56 6.87 0.4 - - -

109 WN5h 56 6.69 0.4 - - -

110 O2If* 50 6.22 0.7 - - -

111 WN9ha 45 6.25 0.7 ?c - -

112 WN5h 56 6.48 0.2 ?c 8.2 -

113 O2If*/WN5 50 6.09 0.2 xc 4.70 0.32

114 O2If*/WN5 63 6.44 0.4 ?c - -

116 WN5h:a 63 7.05 0.4 ?c 154.55 0.92

117 WN5ha 63 6.40 0.4 - - -

118 WN6h 47 6.66 0.2 xc - -

119 WN6h+? 47 6.57 0.2 xc 158.76 1.01

120 WN9h 32 5.58 0.3 - - -

122 WN5h 50 6.23 0.2 - - -

124 WN4 63 5.45 0.0 - - -

126 WN4b+O8: 71 6.44 0.0 ?c 25.5 -

128 WN3b 112 5.44 0.0 - - -

129 WN3(h)a+O5V 79 6.20 0.2 x 2.77 1.64

130 WN11h 28 5.68 0.4 - - -

131 WN4b 71 5.67 0.0 - - -

132 WN4b(h) 79 5.58 0.0 - - -

133 WN11h 28 5.69 0.4 - - -

134 WN4b 79 5.51 0.0 - - -

(a) Values adopted from Hainich et al. (2014). (b) Values taken from Shenar et al. (2019). (c)

Showing X-ray emission (see Hainich et al. (2014)).
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Table 2: Parameters for WC stars in the LMC.

BAT99 spectral subtype (a) MV
(a) log(L) log(Llit) Binary? (a) P (b)

[mag] [ L� ] [ L� ] [d]

9 WC4 -4.4 5.49 5.44 (c) - -

8 WC4 -4.2 5.41 5.42 (c) - -

10 WC4(+O9.5II:) -5.1 5.77 - x -

11 WC4 -5.5 5.93 5.70 (c) - -

20 WC4+O -4.6 5.57 - - -

28 WC6+O5-6V-III(+O) -6.5 6.33 - x 14.926

34 WC4+OB -5.8 6.05 - ? -

38 WC4(+O8I:) -7.2 6.61 - x 3.0328

39 WC4+O6V-III(+O) -6.1 6.17 - x 1.9169

52 WC4 -4.5 5.53 5.65 (c) - -

53 WC4(+OB) -5.4 5.89 5.35 (d) x -

61 WC4 -5.0 5.73 5.68 (c) - -

70 WC4(+OB) -5.3 5.85 - x -

85 WC4(+OB) -7.7 6.81 - x -

84 WC4(+OB) -5.4 5.89 - x -

87 WC4+OB -4.8 5.65 - ? -

90 WC4 -4.6 5.57 5.44 (c) - -

115 WC4(+OB) -5.7 6.01 - x -

101 WC4(+WN6+O) -7.5 6.73 - x -

121 WC4 -4.7 5.61 - - -

125 WC4(+OB) -5.6 5.97 - x -

127 WC4(+O) -6.2 6.21 - x -

(a) Values adopted from Bartzakos et al. (2001a). (b) Values taken from Bartzakos et al. (2001b).
(c)Calculated by Gräfener et al. (2013). (d) Calculated by Ramachandran et al. (2018).
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