The accretion environment of Supergiant Fast X-ray Transients probed with XMM-Newton

E. Bozzo, F. Bernardini, C. Ferrigno, M. Falanga, P. Romano, L. Oskinova

Supergiant fast X-ray transients (SFXTs) are characterized by a remarkable variability in the X-ray domain, widely ascribed to the accretion from a clumpy stellar wind. In this paper we performed a systematic and homogeneous analysis of sufficiently bright X-ray flares from the SFXTs observed with XMM-Newton to probe spectral variations on timescales as short as a few hundred of seconds. Our ultimate goal is to investigate if SFXT flares and outbursts are triggered by the presence of clumps and eventually reveal whether strongly or mildly dense clumps are required. For all sources, we employ a technique developed by our group, making use of an adaptive rebinned hardness ratio to optimally select the time intervals for the spectral extraction. A total of twelve observations performed in the direction of five SFXTs are reported. We show that both strongly and mildly dense clumps can trigger these events. In the former case, the local absorption column density may increase by a factor of >>3, while in the latter case, the increase is only by a factor of 2-3 (or lower). Overall, there seems to be no obvious correlation between the dynamic ranges in the X-ray fluxes and absorption column densities in SFXTs, with an indication that lower densities are recorded at the highest fluxes. This can be explained by the presence of accretion inhibition mechanism(s). We propose a classification of the flares/outbursts from these sources to drive future observational investigations. We suggest that the difference between the classes of flares/outbursts is related to the fact that the mechanism(s) inhibiting accretion can be overcome more easily in some sources compared to others. We also investigate the possibility that different stellar wind structures, rather than clumps, could provide the means to temporarily overcome the inhibition of accretion in SFXTs.

Open pdf (bozzo-oskinova-2017-SFXT.pdf, 0.9MB)

Back to publication list