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01 Massive Stars and Stellar Winds
M∗ > 8M�

Live Fast, Die Young (~ few Myr)

Teff > 10 000  K →  high
surface brightness

Light: momentum (+ energy)
→  force to the scattering

atoms

Light force > gravitational
force →  STELLAR WIND

Radiative driving is by line
scattering

Moving media: Doppler: line
width ∆ν ∝ v

Feedback: radiative driving
force depends on acceleration
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The evolution of (very) massive stars
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Evolution ←  stellar wind (!)

O and B type stars

Luminous Blue Variables

Wolf-Rayet (WR) stars

According to dominant spectral lines

WN (nitrogen) →

WC (carbon) →

WO (oxygen) →
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The cosmic role of massive stars

Massive stars provide

- ionizing radiation

- kinetic energy (stellar winds, SN)

- chemical yields

Star formation in stellar clusters is

- triggered

- regulated

- terminated

by massive stars

 NGC 602 in the SMC (HST)
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To understand visible Universe

 we shall quantify the action of massive stars

Image: HST &  JCB
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Spectra of O-type stars (signatures of mass-loss)

Hα in emission                  P Cygni profiles of UV resonance lines

Thermal radio emission     Superionization
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IUE spectrum (black)

O-supergiant ζ Puppis

Model with X-rays (red)

⇓ Lamers &  Cassinelli (1999)

"Introduction to STELLAR WINDS"

Outflow of matter with speed v ∼ few × 103  km/s or ∼ 1%c

Loss of mass Ṁ ∼ 10−5..−7 M�/yr ≈  50 000 billion tonn per sec.
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Line profile variability

Theory of radiatively driven winds ⇒  v(r) ' v
∞

(1 − R
∗
/r)β ,   β=0.5..0.8

Continuity equation ⇒ ρ(r) = Ṁ/4πr2v(r)
Smooth monotonic accelerating radial outflow

Observations: IUE MEGA Campaign (Massa et al. 1995)
ζ Puppis Si IV resonance doublett: single observation  minus mean template
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Two types of periodic  variations:

Discrete Absorption Components
DACs
P(ζ Pup) = 5.21 days - Rotation (?)
Observed in ALL  O stars

Modulations
Lack of absorption (?)
P(ζ Pup) = 19.2 hours
no integer fraction of P (DAC)
Obsevred sometimes
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Rotationally-recurrent Line Profile Variations (LPV)

to observer

φcor

Structures with enhanced optical depth
Time-independent co-rotating  pattern
Corotating Interaction Regions (CIRs)
(Mullan 1984, Cranmer &  Owocki 1996,
Hamann, Brown &  Feldmeier  2001)

Surface structures (spots?)
Azimuthal variation of wind velocity
Collision of fast / slow winds
Spiral pattern in Corotating frame

 Model of rotationally-recurrent line profile variations (Brown et al. 2004)

No specific dynamical assumptions
Kinematical approach: any v(r) + Ṁ(θ, φ)→  LPV
Inverse problem (Craig &  Brown 1986)
Information content of data and verificaiton of the models
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Inference of density stream properties from DACs

Brown et al. (2004):
Optical depth τ(w, ϕ), where w = ∆λ

λ

c
v∞

 and ϕ  stellar rotation angle

Bivariate relationship:  τ(w, ϕ)←→ v(r), Ω(r), ρ(r, ϕ)
v(r)  radial velocity, Ω(r)  transverse rotation rate, ρ(r, ϕ)  density of the wide stream

Inversion →   complete information on all three distribution functions

Data: different effects superimposed

Check of hydrodynamic CIR models:  Krticka, Barrett, Brown &  Owocki (2004)

 from Brown, Barrett, Oskinova, Owocki, Hamann, de Jong, Kaper, Henrichs (2004)
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Wolf-Rayet (WR) stars: their unique spectral appearance

Discovery report: 1867,
letter to the  Academie Francaise
by C. Wolf &  G. Rayet:
‘‘3 stars with bright emission lines
in Cygnus’’

Spectrum of a Wolf-Rayet Star
dominated by emission lines

Ṁ(WR) ≈ few × Ṁ(O)

For comparison: Spectrum
of a main-sequence star with
similar effective temperature

10 Lac (O9 V)
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How are the strong Wolf-Rayet winds driven ?

CAK theory works fine (?) for OB stars

... but principally fails for WR stars: L/c < Ṁv
∞

WR mass loss exceeds the single-scattering limit

! full  radiative transfer + hydro !

(Graefner &  Hamann 2004)

! Fitting the emission line

spectra → L, Ṁ, v∞

-> New sources of opacity are

needed to increase driving

force.

-> Empirically derived Ṁ  shall

be reduced
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Empirical mass-loss estimates

Fitting emission recombination lines, i.e. Hα

Two-body processes, EM =
∫
ρ

2dV

Assume  all matter is clumped →  smaller mass-loss rate  from line fit
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13What data tell about the nature of WR-wind

Brown, Richardson, Cassinelli, Ignace (1997)

new technique
  "Spherical de-projection" of the emission line:

  Observed -  line flux as function the line-of-sight velocity

  Derived -     line flux as function of radial velocity

  Basis -  optically thin emission line profile =

  Σ profiles from infinitesimally thin concentric wind shells.

  Brown et al. (1997): inverse problem →  velocity law
Further improved  by Ignace, Brown, Richardson, Cassinelli (1998)

and Ignace, Brown, Milne, Cassinelli (1998)

applyed to analyse spectra of 9 WR-stars
by Lepine &  Moffat (1999).

WR winds made up of

  a large number

  randomly distributed

  radially propagating

BLOBS
(DWEEs)

(clumps)
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14Clumping Terminology
  Density within each clump is higher than

average by factor D.

  All processes (e.g. scattering) which scale with

density are affected.

  Optically thin Clumps τclump � 1  : Photons do

not "notice" these clumps  Used by ALL-1

published models

  Optically thick Clumps τclump � 1  : photons are

absorbed in the clump  Brown et al. (2004)

Ṁ ∝ 1√
D

Optically thin clumps (  Yes!)

Optically thick clumps ( ? ...wait!)
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Optically thick clumps - not the solution

to the WR wind momentum problem?

Brown, Cassinelli, Li, Kholtygin, Ignace (2004):

Optically thick clumping reduces multiple scattering and momentum delivery.

! Smooth wind →  large

scattering optical depth τ 

enhanced momentum delivery

→ τL/c  

! Clumped wind →  atomic

absorbers (ions) are

effectively "hidden" →

optical depth is reduced

! "Effective" optical depth is

largely determined by wind

geometry
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WR 124

Some WR stars surrounded by lost mass  ‘‘WR Ring Nebula’’

What is wrong with our picture of massive-star wind ?

Sensitive ingredients:

Mass loss rate Ṁ  

estimates

The effects of rotation

The role of magnetic

fields
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 A Magnetically Torqued Disk Model for Be Stars
Cassinelli, Brown, Maheswaran, Miller, Telfer (2002) and
Brown, Telfer, Li, Hanuschik, Cassinelli, Kholtygin (2004)

Key ingredients: Magnetic field + Ṁ  + rotation

Magnetic field exerts force 

matter flows along the flow tubes

and is channeled into  equatorial disk

supported against infall by centrifugal forces

In: Stellar parameters + S0  - fraction of critical velocity

Theory: Threshold surface field, B0  to torque a Keplerian disk

Disks are most common around B2 V stars! Positive.

Requiered field strength 30-300 Gs. Plausible.

Emission measures, IR exsess, polarisation. Positive.

Image: PPARC



21Compact binaries as probes of stellar wind

 Massive star binaries
 Bound after SN →  HMXB
 ∼  85% of HMXB: Be-star + NS
 Rest:  OB/WR + NS/BH
 Powered by stellar wind accretion

Microquasar SS433: WR star + BH (?)

Brown et al. (1988), Brown et al. (1991),
Brown &  Fletcher (1992), Brown et al. (1995)

Transient "bullets": Hα, no X-ray
 ! Jet heating: collision with WR wind

 ! Radiative instability:

jet on a threshold

 ! Narrow parameter space:

rarity of microquasars!

Image: NASA
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Life and death in the inner solar system

Brown & Hughes (1977)
LARGE fireball in the atmosphere ⇒
particle acceleration →  MeV neutrinos →14 N(n, p)14C→14 C
Brown &  Hughes mechanism: carbon dating of  cometary impacts

 ! Triggered by passage thru Orion spiral arm (Napier &  Clube 1979)
 ! Tunguska - has interstellar origin (Clube &  Napier 1984)
 ! Next shower expected 2000-2040 (Rampino &  Stothers 1984)

Image: Wikipedia



Happy Birthday!
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Line-driven stellar winds

(Castor, Abbott &  Klein 1975)

Stellar wind transparent in continuum, opaque in many lines

Absorption from ~ radial direction; re-emission isotropic

Acceleration  velocity  Doppler shift of the line

Photons from a whole frequency band ∆ν  are swept up

In one  line intercepted momentum per time: Lν0 ∆ν/c = L v
∞
/c2

  ∆ν = ν0 v∞ / c

Lν0

ν0

L ≈ Lν0 ν0

Frequency ν 
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Wind momentum per time: Ṁ v
∞

Mass loss driven by one  line:

Ṁ =
L
c2

= mass loss by nuclear burning

! L = dE
dt =

d
dt (Mc2)
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Adopted v(r)
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Consistent v(r)

A hydrodynamically consistent

Wolf-Rayet wind model

Gräfener &  Hamann (2005)

Equation of motion:

v
dv
dr
+

GM
∗

r2
= arad −

1
ρ

dp
dr

Optically thin clumping

Adopt mass-loss rate, velocity law

 Eq. of motion not satisfied

iterate for Ṁ, v(r)
 consistent solution

Solution relays on models with

Large number of iron lines

+ CLUMPING

= higher opacity and smaller Ṁ



Observer
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Spectrum formation with optically thick clumps
Oskinova, Hamann &  Feldmeier (submitted)

Clumps may be optically thick (at lines!)

Statistical treatment of porosity effect

Surface of constant radial velocity (CRVS)
becomes fragmented

 Lines become weaker Ṁ under estimated !

micro

macro
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