

# **Exploring Winds of Massive Stars**

#### **Massive Stars and Stellar Winds**

$$M_* > 8M_{\odot}$$

Live Fast, Die Young (~ few Myr)

- $T_{
  m eff} > 10\,000~{
  m K} 
  ightarrow {
  m high}$  surface brightness
- Light: momentum (+ energy)

  → force to the scattering

  atoms
- Light force > gravitational force → STELLAR WIND
- Radiative driving is by line scattering
- Moving media: Doppler: line width  $\Delta 
  u \propto v$
- Feedback: radiative driving force depends on acceleration

#### The evolution of (very) massive stars



Evolution  $\leftarrow$  stellar wind (!)

- O and B type stars
- Luminous Blue Variables
- Wolf-Rayet (WR) stars

According to dominant spectral lines

WN (nitrogen) →

WC (carbon)  $\rightarrow$ 

WO (oxygen) →



#### Spectra of O-type stars (signatures of mass-loss)

• Hα in emission

- P Cygni profiles of UV resonance lines
- Thermal radio emission
- Superionization



IUE spectrum (black)O-supergiant ζ PuppisModel with X-rays (red)

Lamers & Cassinelli (1999)

"Introduction to STELLAR WINDS"

- Outflow of matter with speed  $v \sim {
  m few} \times 10^3$  km/s or  $\sim 1\%$  c
- Loss of mass  $\dot{M}\sim 10^{-5..-7}\,M_{\odot}/{
  m yr}\approx~50\,000$  billion tonn per sec.

#### Line profile variability

Theory of radiatively driven winds  $\Rightarrow v(r) \simeq v_{\infty} (1 - R_*/r)^{\beta}$ ,  $\beta$ =0.5..0.8 Continuity equation  $\Rightarrow \rho(r) = \dot{M}/4\pi r^2 v(r)$ 

Smooth monotonic accelerating radial outflow

Observations: IUE MEGA Campaign (Massa et al. 1995)

 $\zeta$  Puppis Si IV resonance doublett: single observation minus mean template



Two types of *periodic* variations:

- Discrete Absorption Components
   DACs
   P(ζ Pup) = 5.21 days Rotation (?)
   Observed in ALL O stars
- Modulations

   Lack of absorption (?)
   P(ζ Pup) = 19.2 hours
   no integer fraction of P (DAC)
   Obsevred sometimes

# **Rotationally-recurrent Line Profile Variations (LPV)**



Structures with enhanced optical depth Time-independent co-rotating pattern Corotating Interaction Regions (CIRs) (Mullan 1984, Cranmer & Owocki 1996, Hamann, Brown & Feldmeier 2001)

- Surface structures (spots?)
- Azimuthal variation of wind velocity
- Collision of fast / slow winds
- Spiral pattern in Corotating frame

#### Model of rotationally-recurrent line profile variations (Brown et al. 2004)

- No specific dynamical assumptions
- Kinematical approach: any  $v(r) + \dot{M}(\theta, \phi) \rightarrow \text{LPV}$
- Inverse problem (Craig & Brown 1986)
- Information content of data and verification of the models

#### Inference of density stream properties from DACs

#### Brown et al. (2004):

- Optical depth  $\tau(w,\varphi)$ , where  $w=\frac{\Delta\lambda}{\lambda}\frac{c}{v_{co}}$  and  $\varphi$  stellar rotation angle
- Bivariate relationship:  $\tau(w,\varphi) \longleftrightarrow v(r), \ \Omega(r), \ \rho(r,\varphi)$ v(r) radial velocity,  $\Omega(r)$  transverse rotation rate,  $\rho(r,\varphi)$  density of the wide stream
- Inversion  $\rightarrow$  complete information on all three distribution functions
- Data: different effects superimposed
- Check of hydrodynamic CIR models: Krticka, Barrett, Brown & Owocki (2004)



from Brown, Barrett, Oskinova, Owocki, Hamann, de Jong, Kaper, Henrichs (2004)

#### Wolf-Rayet (WR) stars: their unique spectral appearance

Discovery report: 1867, letter to the *Academie Francaise* by C. Wolf & G. Rayet: "3 stars with bright emission lines in Cygnus"

Spectrum of a Wolf-Rayet Star dominated by emission lines  $\dot{M}(\mathrm{WR}) \approx \mathrm{few} \times \dot{M}(\mathrm{O})$ 

For comparison: Spectrum of a main-sequence star with similar effective temperature



#### How are the strong Wolf-Rayet winds driven?

- CAK theory works fine (?) for OB stars
- ... but principally fails for WR stars:  $L/c < \dot{M}v_{\infty}$

WR mass loss exceeds the single-scattering limit



- ! full radiative transfer + hydro! (Graefner & Hamann 2004)
- ! Fitting the emission line spectra  $\rightarrow L, \dot{M}, v_{\infty}$
- New sources of opacity are needed to increase driving force.
- -> Empirically derived  $\dot{M}$  shall be reduced

# **Empirical mass-loss estimates**

- Fitting emission recombination lines, i.e. Hα
- Two-body processes,  $EM = \int \rho^2 dV$
- Assume all matter is clumped → smaller mass-loss rate from line fit



model fits with different density conrast





#### What data tell about the nature of WR-wind

Brown, Richardson, Cassinelli, Ignace (1997)

#### new technique

- "Spherical de-projection" of the emission line:
- Observed line flux as function the line-of-sight velocity
- Derived line flux as function of radial velocity
- Basis optically thin emission line profile =
- $\Sigma$  profiles from infinitesimally thin concentric wind shells.
- Brown et al. (1997): inverse problem → velocity law

Further improved by Ignace, Brown, Richardson, Cassinelli (1998) and Ignace, Brown, Milne, Cassinelli (1998)

# applyed to analyse spectra of 9 WR-stars

by Lepine & Moffat (1999).

WR winds made up of

- a large number
- randomly distributed
- radially propagating

#### **BLOBS**

(DWEEs) (clumps)



#### **Clumping Terminology**



 $\dot{M} \propto \frac{1}{\sqrt{D}}$ 

Optically thin clumps (Yes!)
Optically thick clumps (?...wait!)

- Density within each clump is higher than average by factor D.
- All processes (e.g. scattering) which scale with density are affected.
- Optically thin Clumps  $au_{\rm clump} \ll 1$ : Photons do not "notice" these clumps Used by ALL-1 published models
- Optically thick Clumps  $au_{\rm clump}\gg 1$ : photons are absorbed in the clump **Brown et al. (2004)**



# Optically thick clumps - not the solution

#### to the WR wind momentum problem?

Brown, Cassinelli, Li, Kholtygin, Ignace (2004):

Optically thick clumping reduces multiple scattering and momentum delivery.



- ! Smooth wind  $\rightarrow$  large scattering optical depth  $\tau \rightarrow$  enhanced momentum delivery  $\rightarrow \tau L/c$
- ! Clumped wind → atomic absorbers (ions) are effectively "hidden" → optical depth is reduced
- ! "Effective" optical depth is largely determined by wind geometry

## What is wrong with our picture of massive-star wind?

# Sensitive ingredients:

- Mass loss rate M
   estimates
- The effects of rotation
- The role of magnetic fields



Some WR stars surrounded by lost mass → "WR Ring Nebula"

#### A Magnetically Torqued Disk Model for Be Stars

Cassinelli, Brown, Maheswaran, Miller, Telfer (2002) and Brown, Telfer, Li, Hanuschik, Cassinelli, Kholtygin (2004)

# Key ingredients: Magnetic field + $\dot{M}$ + rotation

- Magnetic field exerts force
- matter flows along the flow tubes
- and is channeled into equatorial disk
- supported against infall by centrifugal forces

In: Stellar parameters + S<sub>0</sub> - fraction of critical velocity

Theory: Threshold surface field, B<sub>0</sub> to torque a Keplerian disk

- Disks are most common around B2 V stars! Positive.
- Requiered field strength 30-300 Gs. Plausible.
- Emission measures, IR exsess, polarisation. Positive.

Image: PPARC

# Compact binaries as probes of stellar wind

- Massive star binaries
- Bound after SN → HMXB
- $\sim$  85% of HMXB: Be-star + NS
- Rest: OB/WR + NS/BH
- Powered by stellar wind accretion

#### Microquasar SS433: WR star + BH (?)

Brown et al. (1988), Brown et al. (1991), Brown & Fletcher (1992), Brown et al. (1995)

- Transient "bullets":  $H\alpha$ , no X-ray
- ! Jet heating: collision with WR wind
- ! Radiative instability:
  - jet on a threshold
- ! Narrow parameter space:
  - rarity of microquasars!

**Vikipedia** 

#### Life and death in the inner solar system

#### Brown & Hughes (1977)

- LARGE fireball in the atmosphere ⇒
- particle acceleration  $\rightarrow$  MeV neutrinos  $\rightarrow^{14} N(n,p)^{14}C \rightarrow^{14} C$
- Brown & Hughes mechanism: carbon dating of cometary impacts

- ! Triggered by passage thru Orion spiral arm (Napier & Clube 1979)
- 1 Tunguska has interstellar origin (Clube & Napier 1984)
- L Next shower expected 2000-2040 (Rampino & Stothers 1984)



#### Line-driven stellar winds

(Castor, Abbott & Klein 1975)

- Stellar wind transparent in continuum, opaque in many lines
- Absorption from ~ radial direction; re-emission isotropic
- Acceleration → velocity → Doppler shift of the line
- Photons from a whole frequency band  $\Delta \nu$  are swept up

In *one* line intercepted momentum per time:  $L_{\nu_0} \Delta \nu/c = L v_{\infty}/c^2$ 



Wind momentum per time:  $\dot{M}$   $v_{\infty}$  Mass loss driven by *one* line:

Core

$$\dot{M} = \frac{L}{c^2}$$

= mass loss by nuclear burning !  $L = \frac{dE}{dt} = \frac{d}{dt}(Mc^2)$ 





# A hydrodynamically consistent Wolf-Rayet wind model

Gräfener & Hamann (2005)

Equation of motion:

$$v\frac{\mathrm{d}v}{\mathrm{d}r} + \frac{GM_*}{r^2} = a_{\mathrm{rad}} - \frac{1}{\rho} \frac{\mathrm{d}p}{\mathrm{d}r}$$

Optically thin clumping

Adopt mass-loss rate, velocity law

- $\rightarrow$  Eq. of motion not satisfied iterate for  $\dot{M}, v(r)$
- → consistent solution

Solution relays on models with

Large number of iron lines

+ CLUMPING

= higher opacity and smaller  $\dot{M}$ 

# **Spectrum formation with optically thick clumps**

Oskinova, Hamann & Feldmeier (submitted)



- Statistical treatment of porosity effect
- Surface of constant radial velocity (CRVS) becomes fragmented

Lines become weaker  $\rightarrow \dot{M}$  under estimated!



