The X-Ray Universe

Potsdam University

Dr. Lidia Oskinova

lida@astro.physik.uni-potsdam.de

Chandra X-ray, HST optical, Spitzer IR NGC602 in the SMC d=60pc

From μ QSO to QSO

μ QSO SS433:

- Strong emission from radio wave to X-ray
- Rapid strong variability in Xrays
- Radio jets where matter is accelerated to relativisitc velocities
- Fast-spinning accretion disk

Typical properties of a QSO but contains a NS or a stellar mass BH

Object	XRB	Normal galaxy	Emission Line galaxy	Seyfert galaxy	BL Lac galaxy	QSO
$L_{\rm X}\left[\frac{\rm erg}{\rm s}\right]$	$10^{34} - 10^{36}$	$10^{37} - 10^{39}$	$10^{40} - 10^{43}$	$10^{43} - 10^{45}$	$10^{44} - 10^{46}$	$10^{45} - 10^{47}$

Active Galactic Nuclei

http://chandra.harvard.edu/

Credit: X-ray: NASA/CXC/MIT/H.Marshall et al. Radio: F. Zhou, F.Owen (NRAO), J.Biretta (STScI) Opt

04 The nearest active galaxy: Centaurus A

$$L_{\rm X} = \eta \frac{GM\dot{M}}{R} \Rightarrow$$

X-ray luminosity of QSO is 10 orders of magnitude higher than XRB

Eddington luminosity $L_{\rm Edd} \approx 1.3 \times 10^{38} \frac{M}{M_{\odot}}$ erg/s. The mass of central object should be orders of magnitude higher

XRB: $M_{BH} \sim 10 M_{\odot} \rightarrow AGN$: $M_{BH} \sim 10^{6..8} M_{\odot}$

06 Observed properties of AGN

High luminosity L_{bol}=10⁴²-10⁴⁸; Size << 1pc; Variability; Emission & Absorption lines

http://www.astr.ua.edu/keel/agn/mkn421.html, see Dan Schwartz heasarc.gsfc.nasa.gov/docs/xrayschool/

07 AGN is common name for:

- Quasars (quasi-stars)
- QSOs (quasi-stellar objects)
- QSRSs (quasi-stellar radio sources)
- BL Lac objects
- Blazars (BL Lac type quasars)
- OVV (Optically Violent Variables)
- Seyfert Galaxies (which may be Type 1, Type 2, Type 1.x, Narrow line type 1)
- Narrow Emission Line galaxies
- LINER s (Low ionization nuclear emission region)
- LLAGN (Low Luminosity AGN)

AGN with 10⁸ M₀ BH

 $\begin{array}{l} R_{G} \;\; 3x10^{13} \, \text{cm} \\ \text{Accretion disk} \\ 10^{13..14} \, \text{cm} \\ \text{BLR} \;\; 10^{16..17} \, \text{cm} \\ \text{Torus} \;\; 10^{17} \, \text{cm} \;\; ?? \\ \text{NLR} \;\; 10^{18..20} \, \text{cm} \\ \text{Jets} \;\; 10^{17..24} \, \text{cm} \end{array}$

Urry & Padovani 1995 PASP 107, 803

09 X-ray observations

Time Variability

- Size of emitting region, and regions where radiation is reprocessed.
- QPOs → relativisitc effects

X-ray Spectra:

- Absorption: amount of absorbing material; velocity field (inflow/outflow); cold/warm absorbers; ionization state
- Thermal emission: from hot gas, accretion physics
- Non-thermal emission: synchrotron, Comptonisation, relativisitc effects, acceleration, magnetic fields
- Emission lines: relativistic effects

X-ray Images:

- Nucleus
- Extended emission on scale of 1 pc to 100 kpc
- Jets and radiolobes
- Correlation between different components.

10 Schematic X-ray spectrum of AGN

From W.N.Brandt "X-raying Active Galaxies" AAS'04

11 A Structure for Quasars

Direct and reprocessed component of AGN spectra

www.isdc.unige.ch/~ricci/Website/AGN_in_the_X-ray_band.html

12 Examples of obsevred AGN X-ray spectra

http://www.astro.psu.edu/users/niel/papers/ From W.N.Brandt "X-raying Active Galaxies" AAS'04

Inner Shell Processes

X-ray fluorescence An electron can be removed from inner Kshell (how many electornes are there?)

The vacancy is filled by a L-shell electron K α -line. If the vacancy is filled by M-shell electron K β -line.

Iron is abundnat element with relatively large cross-section for K-shell ionization: Kα line at 6.4 keV is commonly observed from astrophysical objects

See Grotrian diagrmans in Kallman+ 04, ApJSS 155, 675

• The speed of matter within the jets is large fraction of c. SR's effects must be taken into accout: relativistic beaming, relativistic Doppler effect, superluminal motion

• The inner parts of the discs are close to the BH. GR effects must be taken into account: gravitational red-shift.

• The emitted radiation interacts with the discs and the surrounding matter

Wikipedia

relativistic lines from accretion disks around black holes

16

17 Time average (ASCA) observations of AGN MGC6-30-15

Relativistic iron K X-ray reverberation in NGC 4151

Lag between hard (13keV) direct continuum and the soft excess (0.51keV) Lag profile resembling a relativistically broadened iron line Red wing of the line: reflection off the inner accretion disc

Accreting Black Holes

Oppenheimer & Snyder (1939): formation of a black hole.

- http://svs.gsfc.nasa.gov/10545
- A BH is specified by M (scale) and spin a=J/c M (geometry), where J is angular momentum. Or a^{*}=a/R_G.
 Schwarzschild BH: a^{*}=0; Kerr BH:a^{*}=1.

- Event horizon of a Schwarzschild BH $R_s = 2R_g = 30 \text{km} (\text{M}/10M_{\odot})$, the ISCO lies at $R_{ISCO} = 6R_G$, and the maximum orbital frequency is $v_{ISCO} = 220 \text{Hz}(\text{M}/10\text{M})^{-1}$. For Kerr BH (a* = 1), the $R_s = R_{ISCO}$ and $v_{ISCO} = 1615 \text{Hz}(\text{M}/10\text{M})^{-1}$.
- Radiating gas orbiting a compact object is the steady-state, thin accretion disk model (Shakura & Sunyaev 1973) $\rightarrow T(R) \propto R^{-3/4}$. Luminosity of an annulus $L_X \propto R dR \sigma_{\rm sb} T^4 \propto R^{-2}$. X-rays are the best window to the horizon of a BH.

20 Cosmic X-ray background and AGN

Black holes in centra of galaxies $M=10^5-10^{10}$ powered by accretion.

600 obscured and 700 unobscured AGN agree with standard scheme

X-ray surveys deep or wide

many ongoing automatic selection

http://chandra.harvard.edu/photo/2007/

21 XMM spectra of the X-ray background with a relativistic iron line

XMM-Newton spectrum of the X-ray background, showing a relativistic iron line

Image courtesy of Alina Streblyanska (Max-Planck-Institut fuer Extraterrestrische Physik)

22 RASS

Spectrum of Cosmic X-ray Background

• The first direct comparison between the collective hard Xray SED of local AGN and the CXB spectrum.

• The CXB is likely a superposition of AGNs.

• The data are consistent with cosmic evolution of AGNs.

Sazonov etal. 2008

What makes up the cosmic X-ray background?

Energy (keV)

25 Summary

http://chandra.harvard.edu/ngc1068

- SMBH in center of galaxies are scaled up stellar mass BH
- AGN luminous accros the EM spectrum
- Responsible for CXB
- Unification model seems to explain obsevraitions
- X-rays spectra: contribution from a varaiety of processes
- Absorption → complex geometry
- Emission → accretion, reprocessing
- Relativisitc line broadening
- Imaging: multiwavelength approach