The X-Ray Universe

Potsdam University

Dr. Lidia Oskinova
Wintersemester 2008/09
lida@astro.physik.uni-potsdam.de
astro.physik.uni-potsdam.de/~lida/x-ray.html

Chandra X-ray Observatory
Westerlund 2 - a young star cluster $\mathrm{d}=2 \times 10^{4} \mathrm{ly}$

Introduction

Purpose of this course

Typically:
explore and understand
an astrophysical phenomenon. All available methods.

- Overview of one method
- High-energy processes
- Methods of X-ray astronomy
- Variety of objects

Chandra X-ray Observatory
Abell 1689 - a massive cluster of galaxies $\mathrm{d}=2.3 \times 10^{9} \mathrm{ly}$

Frontiers of observational astrophysics

Eight active missions: presently most obsevred band of EM spectrum from space
New missions planned

X-ray and optical comparison

THE ROSAT X-RAY SKY AROUND ORION

THE OPTICAL SKY AROUND ORION

Schedule

- Introduction
-24/10 Introduction. History
- X-Ray Detectors and Telescopes
-31/10 Proportional Counters, Scintilators, CCDs, Wolter Telescopes
- 07/11 Codeded Mask Imaging, current telescopes
- X-Ray processes and plasmas
- 14/11 Physics of X-ray emission
- X-Rays accross Hertzsprung-Russell Diagram
-21/11 Evolution of low and solar mass stars
- 28/11 Evolution of massive stars
- Stellar remnants
- 05/12 Supernovae
-12/12 Neutron stars, white dwarfs, γ-ray bursts

Schedule (continue)

- Binary stars
- 12/12 Cataclismic variables, novae, low-mass X-ray binaries
- 19/12 High-mass X-ray binaries. Black Holes
- Galactic Center
- 09/01 Milky Way center
- Active Galaxy Nuclei (AGN)
-16/01 Quasars
- 23/01 AGN: surveys
- Cosmology
- 23/01 Cosmic X-ray background
- 30/01 Missing barions problem
- 06/02 Galaxy clusters

Literature

M. V. Zombeck, Handbook of Space Astronomy \& Astrophysics
(a reference book: avl. in our library)
A. C. Fabian, K. A. Pounds, R. D. Blandford (eds.)

Frontiers of X-Ray Astronomy (2004, Cambridge Planetary Science)
Collection of topical reviews
J. Truemper, G. Hasinger, G. (eds.)

The Universe in X-rays (2007, Springer)
Collection of topical reviews

WWW
http://heasarc.gsfc.nasa.gov/docs/outreach.html

Units and language of X-ray astronomy

- Positions
- Most often equatorial coordinates (α, β)
- Also Galactic coordinates (b,l)
- Angular distances in arcsec
- Distances
- Parsec - distance at which 1 AU subtends 1 arcsec
- $1 \mathrm{pc}=3.1 \times 10^{18} \mathrm{~cm}=3.26 \mathrm{ly}$
- Energy and Power (or Luminosity) (cgs!)
- $1 \mathrm{keV}=1.6 \times 10^{-9} \mathrm{erg}, 1 \mathrm{erg}=10^{-7}$ joule
- 1 watt $=10^{7} \mathrm{erg} / \mathrm{s}$
- Flux (cgs!)
- 1 Jansky $=10^{-26} \mathrm{watt} / \mathrm{m}^{2} / \mathrm{Hz}$
- $1 \mu \mathrm{Jy}=2.42 \times 10^{-11} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{s} / \mathrm{keV}$
- $1 \mathrm{Crab}=1060 \mu \mathrm{Jy}$

- Most information about the Universe: EM radiation
- Different physics: different type of radiation
- Measurable quantities:

- Most information about the Universe: EM radiation
- Different physics: different type of radiation
- Measurable quantities: wavelength, flux, polarisation

- "Soft" X-rays 0.01 .. 1 keV
- "Hard" X-rays > 1 .. 10 keV
- Low energy γ-rays 500 keV (rest enerfy of electron) .. 10 MeV
- High energy γ-rays > 1 GeV (rest enerfy of proton)
- Most of the Universe consist of ?
- Its ioization potential is ?

Attenuation of photons in the atmosphere

Attenuation of photons in the atmosphere II

Attenuation of photons in the atmosphere

Attenuation of photons in the 1972 COSPAR International Reference Atmosphere with $1 / e$ absorption length plotted as a function of energy and altitude or atmospheric depth.

- Optical depth $\tau_{\mathrm{E}}=\int \kappa_{\mathrm{E}} \rho d s$
- κ_{E} mass absorption coefficient
- $\left[\kappa_{\mathrm{E}}\right]=\mathrm{cm}^{2} \mathrm{~g}^{-1}$

The Universe in X-rays
is visible only from space

History of X-ray astronomy

- X-rays are discovered in 1895
by Wilhelm Conrad Röntgen (Lennep, Prussia)

1901 Röntgen was awarded the very first Nobel Prize in Physics
"in recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him"

History of X-ray astronomy II Vergeltungswaffe 2

Vergeltungswaffe 2 captured by allies after the WWII

Navy Reseach Lab (US) 1946 discovery of UV radiation from space

1949 Friedmann et al. NRL
Geiger counter
X-ray emission from the Solar corona
if Sun would be at stellar distances

- forget it

NB! It is still not understood how solar corona is heated

History of X-ray astronomy II How to get Nobel Prise

2002: Giacconi recieves NP from the king of Sweeden

1962 Bruno Rossi \& Riccardo Giacconi American Science \& Engineering (AS\&E)

A rocket: to seach X-rays from the Moon Third attmept - success

Rocket spans -
the field-of-view passed a bright source named Scorpius X-1

Sun: X-rays are 10^{-6} visible light intensity Sco $X-1: L_{x}=10^{9} L_{X}^{\text {sun }}$

History of X-ray astronomy III

Figure 2. The first observation of Sco X-1 and of the x-ray background in the June, 12, 1962 flight. From Giacconi, et al., 1962.

Sco X-1 is the first extrasolar X-ray source
Sklovsky 1967: Sco X-1 is a binary containing neutron star 1967: Hewish discovery of pulsars
Note the X-ray background

History of X-ray astronomy IV UHURU

src. Wikipedia

Rockets: 5 min above 100 km for each launch

Need a satellite!

12 Dec 1970: UHURU
(swahili for "freedom"), from Kenia

First X-ray space observatory
Angular resolution 0.52 degree

Increased time for obs by 10^{5} times

History of X-ray astronomy V UHURU Dec 1970 - March 1973

Figure 4. The x-ray sources observed by UHURU plotted in galactic coordinates. The site of the dot is proportional to intensity on a logarithmic time scale. From X-ray Astronomy (Eds. R. Giacconi, H. Gursky), 1974, Riedel, Dordrecht, p. 156.

Band 2 .. 20 keV , flux 1/10,000th of Sco X-1, $A=0.084 \mathrm{~m}^{2}$ First black holes Cyg X-1, Her X-1, X-ray pulsars
Extragalatic X-ray sources \& galaxy clusters!
Total 339 sources, 4th Catalog names 4U1957+11 etc..

Many X-ray sources
Galactic: accreting NS and BH in binary systems
Extragalatic: galaxies
Primarily emission of hot gas with $\mathrm{T}^{6-7} \mathrm{~K}$

History of X-ray astronomy VII

Selected Past Missions

- ANS - Lifetime: Aug 1974 - June 1977, Energy Range: 0.1 - 30 keV and

1500-3300 Angstoms

- Ariel V - Lifetime: Oct 1974 - Mar 1980, Energy Range: 0.3-40 keV
- ASCA - First X-ray mission to combine imaging capability with broad pass band,
good spectral resolution, and a large effective area. (1993-2001)
- BBXRT - Lifetime: Dec 1990, Energy Range: 0.3-12 keV, Shuttle-borne instrument
- Beppos.AX - Broad band energy. X-ray imaging the sources associated with Gamma-ray bursts and determining their positions with an unprecedented precision.
(1996-2002)
- CGRO - Compton Gamma Ray Observatory. First Great Gamma-Ray observatory.

Discovery of an isotropic distribution of the Gamma-ray bursts. (1991-2000)

- Copernicus - Lifetime: Aug 1972 - late 1980, Energy Range: 0.5-10 keV
- COS-B - Lifetime: Aug 1975 - Apr 1982, Energy Range: 2 keV - 5 GeV "
- DXS - Lifetime: Jan 1993, Energy Range: $0.15-0.28 \mathrm{keV}$, Shuttle-borne instrument
- Einstein - Lifetime: Nov 1978 - Apr 1981, Energy Range: 0.2-20 keV
- EUVE - Extreme Ultraviolet Explorer. First dedicated extreme ultraviolet mission.
(1992-2001)
- EXOSAT - Lifetime: May 1983 - Apr 1986, Energy Range: 0.05 - $20 \mathrm{keV}, 90$-hour
highly eccentric Earth orbit
- Ginga - Lifetime: Feb 1987 - Nov 1991, Energy Range: 1 - 400 keV
- Granat - Lifetime: Dec 1989 - Nov 1998, Energy Range: $2 \mathrm{keV}-100 \mathrm{MeV}$
- Hakucho - Lifetime: Feb 1979 - Apr 1985, Energy Range: 0.1-100 keV
- HEAO-1 - Lifetime: Aug 1977 - Jan 1979, Energy Range: 0.2-10 keV
- HEAO-3 - Lifetime: Sep 1979 - May 1981, Energy Range: $50 \mathrm{keV}-10 \mathrm{MeV}$
- HETE-2 - Lifetime: Oct 2000 - Oct 2006, Energy Range: 0.5-400 keV , designed to detect and localize gamma-ray bursts
- OSO-7 - Lifetime: Sep 1971 - Jul 1974, Energy Range: 1 keV - 10 MeV
- OSO-8 - Lifetime: Jun 1975 - Sep 1978, Energy Range: 0.15 keV - 1 MeV
- ROSAT - Roentgen Satellite. All-sky survey in the sof X-ray band with catalog
containing more than 150000 objects. ($1990-1999$)
- SAS-2 - Lifetime: Nov 1972 - Jun 1973, Energy Range: $20 \mathrm{Mev}-1 \mathrm{GeV}$
- SAS-3 - Lifetime: May 1975-1979, Energy Range: 0.1-60 keV
- Tenma - Lifetime: Feb 1983 - late 1984, Energy Range: $0.1-60 \mathrm{keV}$
- Uhuru - Lifetime: Dec 1970 - Mar 1973, Energy Range: 2-20 keV
- Vela 5B - Lifetime: May 1963 - Jun 1979, Energy Range: 3-750 keV

History of X-ray astronomy VIII First imaging telescope

Einstein Nov 1978 - April 1981

NASA, 0.2-20 keV
$\theta=2 \operatorname{arcsec}$
First X-ray spectra
Coronae of stars
Supernova remnants
resolved extragalactic sources

History of X-ray astronomy IX Rosat

Röntgen Satellite 1990-1999

Germany, USA, UK 0.2-2.4 keV
$\theta=2$ arcsec
X-ray all-sky survey catalog, more than 150000 objects detection of isolated neutron stars
Comets
Collisionin of Comet Shoemaker-Levy with Jupiter

Initial Diffuse Background Maps from the ROSAT All-Sky Survey

-These maps of the diffuse background have the highest angular resolution and statistical signiticance of any past, present, or planned future mission .They show extensive structure over the entre ROSAT $0.1-2.0 \mathrm{keV}$ energy range which was never before observed.
-They are greatly aiding in the understanding of energetic processes in the local intersteitar medium and the Galactic halo.
et hey have been instrumental in identifying an extensive Galactic X-ray bulge.

Top: Snowoen ef al 1995, ApJ, 454,643 Inital $1,4 \mathrm{keV}$ tilluse backyound map from the ROSAT al-slyy savey it is in an Atofl. Hanmer equal area project on, zero-centened, in galacte esordirates. Units are pounts/fiammin'. The image shows cansiderable stuctare never befose obsenved in this energy rasge.

Right: Map of the 30 keV dffise backpround from the ROSAT allsly survey. The proiection is the same as for the 164 keV map. The difference in stricture between the two maps is an icdioation of the extreme differences in their source components.

Major Modern Telescopes I XMM-Newton

X-ray Multi-Mirror 1999 -

ESA (with NASA) 0.2-12.0 keV
Orbit: 7000 km peregee
114000 km apogee
58 hours = 170 ksec
$\theta=6 \operatorname{arcsec}$
X-ray all-sky survey catalog, curently 250000 objects
best sensitivity achieved so far
biggest science satellite ever built in Europe
$200 \mathrm{~m}^{2}$ polished gold mirrors

Major Modern Telescopes I Chandra

NASA's Great Observatory 1999 -
NASA 0.2-12.0 keV
Orbit: 16000 km peregee
150000 km apogee
64 hours $=240 \mathrm{ksec}$
$\theta=0.5 \operatorname{arcsec}$ (Unprecedented!) best imaging for many decades best spectral resolution

The astrophysical significance of X-ray observations

Direct insight into accretion onto compact objects the most efficient process known in $\mathrm{E}=\mathrm{mc}^{2}$ sence

Physical properties of space-matter in the near environment of black holes

Physics of coronae and shocks : stars and supernovae

Metal enrichment of interstellar medium

Eliptical galaxies and clusters:
the profile of dark matter halo, the enrichment hystory

Cooling flows provide estimate of the mean density in the Universe

