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VI. X-rays from Normal Stars

NASA/EIT/W.Waldron, J.Cassinelli

Or not totaly abnormal
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VI. Solar dynamo

Observational laws: 1) 11-year period; 2) butterfly diagram; 3) tilt of
sunspot group; 4) 22-year magnetic cycle
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VI. Ω-effect

http://solarscience.msfc.nasa.gov/

Differential rotation - the change
in rotation rate as a function of
latitude and radius within the
Sun.

Magnetic filed is stretched out
and wound around the Sun

Latitudal differential rotation can
wrap magnetic field line around
the Sun in about 8 months.
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VI. α-effect

http://solarscience.msfc.nasa.gov/

Effect of rotation on the rising
"tubes" of magnetic field- loops
look like letter α

α-effect governs tilt of spot
groups and polarity reversal

Similar effects are observed in
solar type stars, so Sun is an
average star.

Dynamo operates in all low- and
solar-mass stars. Activity scales
with rotation rate.



0202VI. High-Resolution X-ray spectroscopy

from Güdel 2004, A& AR, 12, 71

CIE plasma: Iq /Iq-1  depends on T

collisional ionization is balanced by radiative recombination
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Model the data: E.g. spectrum non-isothermal CIE

wabs*(brems+apec)
kTX =0.6 keV
kTX =0.2 keV
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VI. Electron densities in stellar coronae

from Güdel 2004, A& AR, 12, 71

He-like ions allow to measure density

Interpretation is not strightforward, because coronae are not

homogeneous



0505VI. Stellar flares

from Güdel et al.2002

Flare on Proxima Centauri,observed with XMM-Newton
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VI. Stellar flares: common properites

* Flares are universaly observed

* Theoretically: When the flare energy release evaporates plasma

into the corona, heating and cooling effects compete

determining the density and temperature profiles in a given flare.

* Obsevrationslly: correlation between flare EM and T: larger

flares are hotter.

* The distibution is similar to the Sun: dN
dE ∝ E−α  . But it

apperas that later stars are flaring more
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VI. General properties

http://xmm.esac.esa.int/external/xmm_science/gallery/

Pleiades (100 Myr), an open stellar cluster. The image is false-coloured: soft (0.2 - 1 keV),

medium (1 - 1.3 keV), hard (1.3 - 10 keV).

Age-luminosity correlation for

M~1Msun LX ≈ 3 × 1028t−1.5

erg/s, [t]=Gyr

Sun and its near-twin α Cen A

behave very much alike  Sun is

a star !

Low-mass stars stay active for a

longer time.

Saturation limit of LX /Lbol =10-3

 Dynamo rules it all!



0808VI. Young stars  (solar type)

Feigelson &  Montmerle ARAÄ  37, 363
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VI. Possible sites of X-ray generation

Feigelson &  Montmerle ARA& A  37, 363

X-rays from

collapsing

extended

envelope

X-rays from

inner disk

and outflow

X-rays from

star-disk

magnetic-interaction

region
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VI. Qualitative Models

I

I. the x-wind model of YSOs

showing magnetically collimated

accretion and outflows with

irradiated meteoritic solids

(Shu et al 1997)

II

Feigelson &  Montmerle ARA& A  37, 363

II. magnetically funneled

accretion streams

 broad emission lines

(Hartmann 1998)
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VI. Observations

http://chandra.harvard.edu/photo/2008/dgtau/

DG Tau M=1Msun , Age=1Myr

Jets, disk absorption, flares

Accretion and  corona (?)

Importance for planet formation
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VI. Accretion disks

http://chandra.harvard.edu/photo/2005/orion

T Tau star flares are importnat to induce turbulens in the disks

MHD simulation turbulent disks prevent planet infall to the central star

X-rays may be needed to initiate chemical reaction neccesasry for planet

formation

X-ray activity declines with age
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VI. FIR diagnostic of accretion

http://chandra.harvard.edu/photo/2003/twhy/

Higher densities in younger stars: accretion column

Older stars: disk dissipates, planet formation

X-ray observations are good tool to search for YSOs



1414VI. HST & Chandra: Pillars of Creation in M16

http://chandra.harvard.edu/2007/m16/



1515VI. Chandra’s Orion Nebula

http://chandra.harvard.edu/2005/orion/ see twinkling version



1616VI. Chandra’s Orion Trapezium

http://chandra.harvard.edu/press/00_releases/press_110900.html

Massive stars in the center of Orion nebula

Young (1Myr) O type stars that ionize the nebula

... Are X-ray sources and they are hard

Massive stars (earlier than A-type)

are fully radiative

Solar type coronae powered by αΩ-dynamo

cannot operate there

Massive stars posses strong stellar winds



17
 Massive Stars and Stellar Winds

M∗ > 8M�

Live Fast, Die Young (~ few Myr)

Teff > 10 000  K →  high
surface brightness

Light: momentum (+ energy)
→  force to the scattering

atoms

Light force > gravitational
force →  STELLAR WIND

Radiative driving is by line
scattering

Moving media: Doppler: line
width ∆ν ∝ v

Feedback: radiative driving
force depends on acceleration
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The evolution of (very) massive stars
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Line-driven stellar winds

(Castor, Abbott &  Klein 1975)

Stellar wind transparent in continuum, opaque in many lines

Absorption from ~ radial direction; re-emission isotropic

Acceleration  velocity  Doppler shift of the line

Photons from a whole frequency band ∆ν  are swept up

In one  line intercepted momentum per time: Lν0 ∆ν/c = L v
∞
/c2

  ∆ν = ν0 v∞ / c
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Wind momentum per time: Ṁ v
∞

Mass loss driven by one  line:

Ṁ =
L
c2

= mass loss by nuclear burning

! L = dE
dt =

d
dt (Mc2)



2020VI. All O stars emit X-rays

http://xmm.esac.esa.int/external/xmm_science/gallery/

NGC6231
0.01MK<Teff <0.06MK, Lbol =104..6 Lsun

Clumped wind Ṁ = 10−6..−8  Msun /yr,

vwind >103 km/s

Einstein, Rosat: LX ∼ 10−7Lbol (Seward

etal. ’79, Berghoever etal. ’97 )

There are no coronae
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How X-rays are generated in O stars? Leading theories.

Bow shocks around blobs (Lucy &  White ’80, Cassinelli etal. ’08)

Magnetically confined loops at the stellar base (Cassinelli &  Swank ’83)

Wind shocks from the instabilities of radiation driving (Owocki etal. ’83)

Collisions of dense shells in deep wind regions (Feldmeier etal. ’97)
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21a
How X-rays are generated in O stars? Leading theories.

Bow shocks around blobs (Lucy &  White ’80, Cassinelli etal. ’08)

Magnetically confined loops at the stellar base (Cassinelli &  Swank ’83)

Wind shocks from the instabilities of radiation driving (Owocki etal. ’83)

Collisions of dense shells in deep wind regions (Feldmeier etal. ’97)
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High-Resolution X-ray Spectra
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Line Ratios of He-Like Ions: Location and Temperature

Strong UV field ⇒  radiative de-population of metastable level 3 S

Weakening the forbidden (F) line in favor of the interrecombination (I) line

f /i  is diagnostic of UV field. UV field dilutes with radius

ζ Oph
v
∞
= 1550  km/s

MgXI

λR λI λF

0.00

0.04

0.08

9.10 9.15 9.20 9.25 9.30 9.35
 Wavelength (A

o
)

ζ Pup
v
∞
= 2250  km/s

λR λI
λF

MgXI

0.1

0.2

Oskinova+’06

Similar trends for different

stars



24
Wind opacity for X-rays

Using modern atmosphere model ζ Pup Ṁ = 8.7 × 10−6 M�/yr−1
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LMC 30 Dor Chandra+Spitzer Brandl etal. ’05

Why it matters: mass-loss from massive stars

Ṁ  - key feedback agent
Ṁ  - key parameter of

stellar evolution

Empirical determinations
are model dependant

Spectral analisis is
hampered by unknown
degree of wind clumping

Literature values differ by
100 times

X- rays measure wind
opacity -> Ṁ
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Observed lines are broad

Observed emission line profiles are similar
Lines are formed in the wind

ζ Ori

Pollock ’07

X-rays are produced in wind shocks
ζ Pup (RGS)
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WInd structure from X-ray lines

clumped wind

smooth
wind

same Ṁ
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Observed and model lines of ζ Puppis (no fitting!)
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Conclusions: Intrinsic wind emission from O stars

X-rays originate close to the stellar core. Hot plasma fills some

space between clumps.

There are some indications that hottest plasma located close to

the core.

"Hybrid" model? Loop-like structures at the surface, shocks

around blobs due to the wind instability?

Stellar wind is clumped untill proven otherwise. RT in clumped

wind is not the same

Clumping explains shape of X-ray emission line profiles.

Consitent Ṁ  estimates ranging from radio to X-ray


