The X-Ray Universe

Potsdam University

Dr. Lidia Oskinova Wintersemester 2008/09

lida@astro.physik.uni-potsdam.de www.astro.physik.uni-potsdam.de/~lida/theormech.html

Chandra X-ray Observatory Westerlund 2 - a young star cluster ${\rm d}{=}\,2\times10^4{\rm ly}$

02 X-rays from PNe

Two possible mechanisms → hot gas in PNe

- Fast stellar wind is shocked when it rams in the AGB shell. The central cavity is filled with shocked gas.
- Fast collimated jets impinge on the AGB wind. Bowshock structures.

X-rays are important to assess the action of stellar wind and test models of PNe shapes

03 Basic Structure of Supernova Remnants

- * Forward shock rams into the ISM or projenitor wind
- * Reverse shock goes back into the unshocked ejecta.
- * Contact discontinuity between shocked ISM and shocked ejecta

Thermal emission

- NEI, characterized by electron temperature, ionization timescale, element abundances
- primarily bremsstrahlung continuum
- collisionally excited emission lines

Nonthermal emission

- blackbody or power law from pulsar/neutron star if present (across electromagnetic spectrum)
- synchrotron emission from electrons accelerated at the shock (usually radio, sometimes up to X-rays)

03a Kepler SNR (Type is not known

Interpreting Thermal SNR Spectra

http://chandra.harvard.edu/photo/2007/kepler low energy; medium energy; high energy

Reynolds etal. ApJ 668, L135

- Time evolution of ρ, P, and T. SNR expands, cooling by line emission and particle acceleration. Heating by collisions and radiation
- Atomic processes: collisional ionization and excitation followed by radiative decay

Spectrum is affected: the denser gas is brighter ($EM=n^2V$), abundances, non-thermal continuum (e.g. synchrotron)

04 Identifying SNR

Chandra: DEM L71 SNR in the Large Magellanic Cloud

- * Clear double-shock morphology: an outer blast-wave shock surrounding a central bright region of reverse-shock--heated ejecta.
- * The abundances of the outer shock are consistent with LMC values, while the ejecta region shows enhanced abundances of Si and Fe.
- * A distinguishing characteristic of SNe Ia is the large amount of iron that is produced mainly through the decay of radioactive ⁵⁶Ni.
- Positions of the blast-wave shock and the CD using SNR evolutionary models
 → total mass 1.5 Msun, 0.8M_{sun} of Fe and 0.12 Si
- * Type Ia supernova several thousand years after explosion.

05 DEM L71 in the LMC

http://chandra.harvard.edu/photo/2003/deml71/

Hot inner cloud (aqua) of glowing Fe and Si surrounded by an outer blast wave.

06 Most Recent Supernova in Our Galaxy: G1.9+0.3

http://chandra.harvard.edu/photo/2008/g19/

2007: X-ray Chandra image is shown in orange 1985: radio NRAO's Very Large Array (VLA) in blue

The youngest known SNR in the Galaxy 140 years old Previously known Cassiopeia A was 330 years old Both were not noticed. G1.9 is visulally obscured, but why not Cas A??

07 Morphology of SNRs

Bipolar jets: Si Compact source SNII Inhomogeneous: Fe is the heaviest element, mixing before or during SN

http://chandra.harvard.edu/photo/2008/g19/

08 Core collapse SNRs as Swiss Cheese

Blondin etal. 2001, ApJ, 557,782

- Freshly synthesized Ni
- Mixing is not complete
- Two-phase SN ejecta structure
- Low density Fe bubbles: from Ni decay
- High density matter around

3D Hydrodynamic simulations Fe bubbles → turbulence and mixing fast narrow filaments and clumps

Red - high density Blue -low density

Composite image of Cas A (Chandra, HST, Spitzer)

09a Composite image of Cas A (Chandra, HST, Spitzer)

http://chandra.harvard.edu/photo

see images of galactic supernovae

10 Supernova 1987A

http://www.spacetelescope.org/images/html/heic0704a.htm December 2006

http://www.spacetelescope.org/images/html/opo0409r.html

11 Optic, X-ray, & radio images

Note correlation between brightness of the hot spots and the size of X-ray emitting region. Radio (synchrotron) is closely following X-rays.

Neutrino blast 3 hours before optical detection, unusual light curve, and identified BI type projenitor → core collaps SNII. Where is pulsar?? To understand the physical strucure of SNR we shall understand hystory of mass-loss.

12 Binary channel for observed structure 12

Orbital plane: axisymmetry in the system

http://www.spacetelescope.org/images/html

13 Single star channel

Model of a rapidly rotating $12M_{sun}$ star RSG \rightarrow BSG

- The slow RSG wind will be stalled by the high pressure of the previously created hot wind bubble → shell at the bubble pressure equals the RSG wind ram pressure
- Evovolving to BSG star contracts and speeds up to break-up velocity ejecting a dense equatorial disk.
- BSG wind sweeps up the preceding slow wind into an hourglass structure. Its collision
 with the previously formed spherical red supergiant wind shell forms a short-lived
 luminous nebula consisting of two polar caps and a central inner ring. With time, the
 polar caps evolve into mid-latitude rings which gradually move toward the equatorial
 plane while the central ring fades.

14 Howerglass nebulae around massive stars

Spitzer images of the nebula around HD 168625

There are examples of such nebuae around massive stars

Collision of fast anisotropic wind with slow RSG wind: PNe connections?

Smith ApJ, 2007, 133, 1034

15 Interaction of circumstellar matter with the blast wave

Inner debris of the Supernova 1987A (SN 1987A) ring

http://www.spacetelescope.org/images/html

16 X-ray emission correlates well with bright knots

http://chandra.harvard.edu/photo/2007/sn87a/ 2005

A Gaensler BM, Slane PO. 2006. Annu. Rev. Astron. Astrophys. 44:17–47

17 Neutron Stars in SNRs

- 15 NS in SNRs are known.
 Crab is filled at all λ, Tycho's and Kepler's SNRs → shell morphology
- Pulsars have initial spin P 10..100 ms → E^{rot}_{kin}~10⁵⁰ erg. Pulsars are spinning down, the released energy *Ė* = 4π²*IP*/*P*³ ∝ 10^{35..39} erg/s. (I=10⁴⁵ g cm⁻² moment of inertia, P- speen period)
 Most of the released energy
 - → a relativistic magnetized
 particle wind. Particle wind
 interacts with the SNR →
 pulsar wind nebula (PWN).

17a Standard model for Crab-like PWN

- In the earliest stages of evolution, a PWN is a quasi-spherical expanding wind bubble with a constant central energy source.
- Close to the pulsar (r<0.1pc) wind particles flow freely outward in all directions. This cold wind is not directly observable.
- About 0.1pc from the pulsar, this wind is confined by external pressure, and forms a termination shock. Par-ticles are accelerated at this shock up to ultrarelativistic energies
- Downstream of the termination shock, the flow further decelerates and the gyrating particles emit synchrotron emission, forming the observable PWN.
- In radio the extent of PWN is larger because the synchrotron lifetimes are longer than the age of PWN
- Magnetic filed strenght is $\sim \mu G$

18 PWN properties

Crab

Young SNR (t<1kyr), $\dot{E} = \text{const}$ PWN expands into unshocked ejecta

> LMC G21.5-0.9 Middle-aged (t=10-50kyr), Reverse and forward shocks in SNR Reverse shock interacts with PWN

LMC N132D

Old SNe (t>100kyr)

NS moved far from its birthplace it will essentually escape SNR pulsar wind drives bow shock, confined by ram pressure

19 Cir Pulsar Wind nebula

Young pulsar within unusual SNR large elongated nonthermal nebula a one-sided collimated outflow emanating from the pulsar torus similar to seen in Crab Gaensler et al. 2002, ApJ, 569, 878

20 SNR Summary

Interaction between SN ejecta and projenitor wind or ISM

Thermal X-ray spectra Non-equilibrium ionization (NEI)

Non-thermal X-ray spectra synchrotron from PWN

Explosive nucleosynthesis

Clumpy -- seeds for dust formation Important for chemical evolution

SN 1987A: single or binary? parallels with PNe formation

Importance of magnetic field

Newtron stars and black holes