The X-Ray Universe

Potsdam University

Dr. Lidia Oskinova Wintersemester 2008/09

lida@astro.physik.uni-potsdam.de astro.physik.uni-potsdam.de/~lida/x-ray.html

Chandra X-ray Observatory Westerlund 2 - a young star cluster d= $2\times 10^4 {\rm ly}$

II. X-ray Telescopes

http://chandra.harvard.edu/resources/

II. 1. Introduction

Before we look at astrophysical X-ray sources, we need to understand how the images are formed and how radiation is detected.

- Wolter Telescopes (soft X-rays up to 15 keV)
- Lobster Eye Telescope
- Collimators
- Coded Mask Telescopes (hard X-rays)

II.2. Reminder of optical telescopes

- Nowadays, optical telescopes are reflectors
- E.g. Primary mirror -> Secondary mirror -> Detector
- Main characteristics of a telescope
 - * collecting area $\pi d^2/4$, where d is mirror diameter
 - * angular resolution $\theta = 1.22\lambda/d$ (perfect seeing)

II. 3. Snell's law

The relationship between angles of incidence and refraction for a wave impinging on an interface between two media with different indices of refraction.

- Total internal reflection: $\theta_2 \ge 90^\circ$
- The incident angle θ_c : $\frac{n_1}{n_2} \sin \theta_c \ge 1 \Rightarrow \theta_c = \arcsin \frac{n_2}{n_1}$
- n(air)=1, n(glass)=1.6, n(silver)=0.18, n(gold)=0.47, n(diamond)=2.4
- optical fibers, mirrors, diamond cutting

II. 4. Refraction of photons

In general, the index of refraction is given by the Maxwell relation: $n=\sqrt{\epsilon\mu}\,,$

where ε is the dielectrisity constant; $\mu \sim 1$ is permeability of the mat For free electrons, e.g. in metal,

$$\epsilon = 1 - \left(\frac{\omega_{\rm p}}{\omega}\right)^2$$
 with $\omega_{\rm p}^2 = \frac{4\pi n_{\rm e} {
m e}^2}{m_{
m e}}$,

 ω_p - plasma frequency, $\omega = 2\pi c/\lambda$, n_e number density of electrons

$$\epsilon = 1 - \frac{n_{\rm e}e^2}{\pi m_{\rm e}c^2}\lambda^2 = 1 - \frac{n_{\rm e}r_{\rm e}}{\pi}\lambda^2,$$

where $r_{\rm e} = \frac{{\rm e}^2}{m_{\rm e}c^2} \approx 2.8 \times 10^{-13}$ cm - the classical electron radius

II. 5. Critical angle

The index of refraction from a metal surface of photons with λ

$$n = \sqrt{1 - \frac{n_{\rm e}r_{\rm e}}{\pi}\lambda^2} \approx 1 - \frac{n_{\rm e}r_{\rm e}}{2\pi}\lambda^2$$

electron number density $n_{\rm e}=rac{
ho}{(Z/A)m_{\rm H}}$, where $m_{\rm H}=1.66 imes10^{-24}~{
m g}$

$$n \approx 1 - 5.4 \times 10^{10} \rho \,\lambda^2$$

Critical angle for reflection θ_c , $\sin\theta_c = n_2/n_1$ lets $\theta_c = 90-\alpha_c \implies$

 $\cos \alpha_c = n_2$ when $n_1 = 1$ (e.g. vacuum)

remember $\cos\alpha \sim 1 - \alpha^2/2$, also λ in Å, $1\text{\AA}=10^{-8\text{m}}$

$$1 - \frac{\alpha_{\rm c}^2}{2} = 1 - 5.4 \times 10^{10} \rho \lambda^2 \Rightarrow \alpha_{\rm c} \approx 5' \frac{\lambda}{1\rm{\AA}} \sqrt{\frac{\rho}{1\rm{g\,cm^{-3}}}}$$

II. 6. Reflection of X-rays

Critical angle $\alpha_{c} \approx 0.5' \frac{\lambda}{1\text{\AA}} \sqrt{\frac{\rho}{1\text{g cm}^{-3}}}$ Optical λ =6000Å $\Rightarrow \alpha_{c} \approx 50^{\circ} \sqrt{\frac{\rho}{1\text{g cm}^{-3}}}$ X-ray λ =6Å $\Rightarrow \alpha_{c} \approx 3' \sqrt{\frac{\rho}{1\text{g cm}^{-3}}}$

Grazing!

To increase α_c need high ρ XMM-Newton: gold Chandra: iridium see Ais-Nielsen & McMorrow, 2004, Elements of modern X-rays physics

for hard X-rays: **Bragg's Effect** Multilayered mirrows, not yet in produciton 06

II. 7. Simple X-ray telescope

Abbe sine condition:

```
Ernst Karl Abbe (1840-1905)
Germany, University of Jena
```

Same idea as optical telescope primary 1960 R. Giacconi & B. Rossi Only paraxial rays parallel to the optical axis are focused: Abbe sine condition not fulfilled

In optical telescopes: secondary mirror

must be fulfilled by optical system in order for it to produce sharp images of off-axis as well as on-axis objects: $\frac{\sin u'}{\sin U'} = \frac{\sin u}{\sin U}$ u, U angles of any two rays as they leave the object u', U' angles of any two rays as they leave the object

II. 8. Wolter I telescope

Hans Wolter (1911 - 1978) Germany

1952 X-ray focusing optics that satisfies Abbe condition

Three types, practical Type I developed for microscopes

1961 R. Giacconi & B. Rossi X-ray telescopes

Small collecting area of a mirror astrophysical X-ray sources are weak How to increase collecting area?

Collecting area $A \propto \frac{\pi r^2 l}{f}$

where f is focal length

II. 9. Nested mirrors

Chandra: four nested pairs of mirrors Two reflections are required to make an image. The grazing angle: 3.5 degrees for the outer pair The grazing angle: 2 degrees for the inner pair.

II. 10. High Resolution Mirror Assembly (HRMA) on Chandra.

Chandra: four nested pairs of mirrors

II. 11. High Resolution Mirror Assembly (HRMA) on Chandra.

CXO Mirror Being Assembled at Eastman-Kodak (Photo: Eastman-Kodak) Optics: Wolter Type-I

Mirror coating: Iridium

Mirror outer diameters: 1.23, 0.99, 0.87, 0.65 m

HRMA mass: 1484 kg

θ_c: 3.42, 2.75, 2.42, 1.80 degrees

PSF FWHM (with detector):
0.5 arcsec !!!

Effective area: 0.25 keV:800 cm², 8.0 keV:100 cm²

II. 12. XMM-Newton mirrors

XMM-Newton mirrors during integration
Image constant of Doguies Satellitensysteme GmbH European Space Agency

Optics: Wolter Type-I

Nested mirrors:

58

Mirror coating: gold

Mirror outer diameters: 3.5,...,1.5 m

Focal length

7.5m

PSF FWHM (with detector):

4 arcsec !!!

Effective area:

1 keV:2000 cm², 8.0 keV:1600 cm²

II. 13. Three telescopes of XMM-Newton

Image of the on-axis PSF for the three telescopes

13

EPIC PN camera larger pixels

Internet in Parlia Per

II. 14. Lobster Eye Telescopes

Wolter I telescopes are inefficient: mirrors are used nearly edge-on Heavy, exepnsive The FoV is small, half-degree XMM Need for many pointings Lobster Eye

Lobster eye uses grazing incidence in optical

10⁶ channels, approx. 20 micron

II. 15. Lobster-ISS

Rays with odd number of reflections in both vertical and horisontal planes arrive in the central focus

Central circle a.3 arcmin; 0.93 keV

from www.src.le.ac.uk/projects/lobster/ov_optics.htm

All others make cross structure and background

II. 16. Collimators

At energies above 10 keV, imaging with mirrors is not possible

(.. development of multilayer mirrors)

How to understand where the X-rays are coming from?

Simpliest: pinhole camera version honeycomb collimator

II. 17. The Mir space station in 2000 with the Kvant attached.

II. 17. Coded Mask Telescopes

Collimators have no imaging capabilities

Coded Masks: imaging for hard X- and γ -rays

Shift of the projected shadow relative the telescope axis.

For multiple sources: image deconvolution.

II. 17. IBIS on board of INTEGRAL

Principle iof image reconstraction: mask shadow on detector plane:

Detector: pixel at (x,y) with "responce" $R(x,y) = C(x,y) - \langle C \rangle$,

C(x,y): measured signal in the pixel $\langle C \rangle$ average signal in the detector

Compare R(x,y) to response expected if there were a source at α , δ on the sky using cross-correlation function CCF(α , δ)

 $CCF(\alpha,\delta) = \int \int R(x,y)R(x,y;\alpha,\delta)dxdy$ CCF has peak if match with real source

Subtract this source and repeat "IROS" iterative removal of sources

http://isdc.unige.ch/Outreach/

II. 19. Shadowgram

ISGRI detector Pre-flight model 122 keV

INTEGRAL

The International Gamma-Ray Astrophysics Laboratory

ESA's Horizon 2000

3 keV - 10 MeV

Angular resolution FWHM 12 arcmin

FOV 8 x 8 degrees

http://www.sciops.esa.int/

ISGRI detector IBIS (Imager on Board INTEGRAL Satellite)

http://pollux.uv.es/integral/Masks/

II. 20. INTEGRAL launched October 2002

II. 21. Milky Way with Integral

http://www.sciops.esa.int/

mainly stellar remnants: black holes and neutron stars

II. 22. X-ray telescopes: Summary

Wolter I mirrors (XMM-Newton, Chandra)

Lobster Eye (LOBSTER-ISS)

Collimators (RXTE)

Coded Mask (Integral)

III. X-ray Detectors

http://chandra.harvard.edu/resources/

III. 1. Introduction

Ideal detector for satellite-borne X-ray astronomy?

- High spatial resolution
 - Large useful area
- Excellent temporal resolution
 - Good energy resolution
 - Broad bandwidth
- Stable on timescales of years
- Very low internal background
- Immune to damage by the in-orbit radiation
 - Require no consumables
 - Simple and cheap
 - Light in weigh
 - A minimal power consumption
 - No moving parts
 - Low data rate

Such a detector does not exist!

III. 2. Types of X-ray detectors

We want to detect a weak source against a fairly strong background. 1 ph with E 1..10 keV per 1 cm² per s is a strong X-ray source Integrating detectors (such as film) not much useful Source detection is done on a photon-by-photon basis. Non-imaging and imaging detectors

NB Dualism! X-ray quantum is both particle and wave

Ionization detectors: X-ray hits detector and ionizes an atom:
Photo-electric absorption
Resulting free electron will create secondary electrons
Electric field: the electrons can be collected and counted.
Mesured charge is proportional to the deposited energy

Microcalorimeters: Exited electorns go back to the original energy Returning to ground state they loose energy to heat Measured heat is proportional to the deposited energy

III. 3. Proportional counters - Non-imaging

www.orau.org/ptp/

Measured voltage:

 $\delta U = -\frac{\mathrm{e}N}{C} \cdot A$

A is amplification factor $(10^4...10^6)$

A is constant, voltage puls $\propto eN \propto energy$ Propotional counter.

The Size of the Pulse:

Operating Voltage.
 The higher the operating voltage,
 the larger each avalanche
 and the larger the pulse.

2. Energy of X-ray photon.The greater the energy of photonthe larger the number of primary ionsthe larger the number of avalanches,and the larger the pulse.

III. 4. Proportional counters. Avalanche.

www.orau.org/ptp/

III. 5. Background.

Background results from:

- * Particles and Photons
- * Particles: cosmic rays, inreplanetary rays, radiation belts around Earth
- * radioactivity of detector, trapped electrons, solar activity..
- Cosmic X-ray background, unresolved sources, secondary UV photons
 optical leakage, et cet...

Understanding the background is key to correct intrpreatation of the data **Non-Imaging Instruments: how to reject background?**

Energy Selection:

rejecting all events which deposit energies outside the X-ray bandpass rise-time discrimination

- anti-coincidence within a sub-divided gas cell
- Reducing backgruond by factor 100!

III. 6. The Rossi X-ray Timing Explorer Mission (1995-present)

http://heasarc.gsfc.nasa.gov/docs/xte/xtegof.html

NASA, 2 to 250 keV Proportional Counter Array High-energy X-ray timing experiment All Sky Monitor µsec resolution, it is all about timing Blach Holes, pulsars, etc...

III. 7. CCD: Charge Coupled Devices - Imaging

- An array of linked ("coupled") capacitors
- Photons interact in a semiconductor substrate
 and are converted into electrons
- An applied electric field collects
 and stores the electrons in pixels
- Pixels are "coupled" and can transfer their stored charge to neighboring pixels
- Stored charge is transferred to a output amplifier and read out

III. 8. Reminder: What is Semiconductor?

A silicon crystal is different from an insulator

- T>0: finite probability that an electron in the lattice
- is knocked loose from its position
- behind is an electron deficiency called a "hole"
- voltage: both the electron and the hole contribute to small cu

The Doping of Semiconductors

The addition of a small percentage offoreign atoms in the regular crystal lattice of silicon or germanium changes their electrical properties producing n-type and p-type semiconductors.

see http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

-Atoms with 5 valence electrons produce n-type semiconductors by contributing extra electrons.

-Atoms with 3 valence electrons produce p-type semiconductors by producing a "hole" or electron deficiency.

III. 9. Photoelectric Absorption

Photoelectric interaction of X-ray with Si atoms generates electron-hole pairs.

On average: Ne = E_X/w , Ne = number of electrons, E_X = energy of X-ray photon W ~ 3.7 eV/e- (temperature dependent)

X-ray creates a charge cloud which can diffuse and/or move under influence of an electric field

> A single metal-oxide-semiconductor (MOS) storage well, the basic element in a CCD

- X-ray CCDs operated in photon-counting mode
- Spectroscopy requires 1 photon interaction per pixel per frametime
- Minimum frametime limited by readout rate
- Tradeoff between increasing readout rate and noise

To be continued...