*********** Johnson U B V R I ************************************************* * from Holberg & Bergeron 2006, Table 15 * VAR names U B V R I * Johnson U \IF $U .NE. ? \CALC lambda = 3971 \CALC logflambda = -8.434 -0.4*$U \LUN LOG$lambda $logflambda M.0 M.0 0.2 &0$U \ENDIF * Johnson B \IF $B .NE. ? \CALC lambda = 4481 \CALC logflambda = -8.184 - 0.4 * $B \LUN LOG$lambda $logflambda M.0 M.0 0.2 &0$B \ENDIF * Johnson V \IF $V .NE. ? \CALC lambda = 5423 \CALC logflambda = -8.420 - 0.4 * $V \LUN LOG$lambda $logflambda M.0 M.0 0.2 &0$V \ENDIF * Johnson R \IF $R .NE. ? \CALC lambda = 6441 \CALC logflambda = -8.643 -0.4 * $R \LUN LOG$lambda $logflambda M.0 M.0 0.2 &0$R \ENDIF * Johnson I \IF $I .NE. ? \CALC lambda = 8071 \CALC logflambda = -8.951 -0.4 * $I \LUN LOG$lambda $logflambda M.0 M.0 0.2 &0$I \ENDIF ***************** 2 MASS ******************************* * from Holberg & Bergeron 2006, Table 15 * K means K_S * VAR names J H K \CALC logflambda = -9.508 - 0.4 * $J \LUN LOG1.235E4 $logflambda M.0 M.0 0.2 &0$J \CALC logflambda = -9.942 - 0.4 * $H \LUN LOG1.662E4 $logflambda M.0 M.0 0.2 &0$H \CALC logflambda = -10.376 - 0.4 * $K \LUN LOG2.159E4 $logflambda M.0 M.0 0.2 &0$K ******** WISE ****************************************** * zero magnitude attributes from Jarret et al. 2011, ApJ 735, 112 * VAR names: W1 W2 W3 W4 \CALC logflambda = -11.0873 - 0.4 * $W1 \LUN LOG3.3526E4 $logflambda M.0 M.0 0.2 &0$W1 \CALC logflambda = -11.6171 - 0.4 * $W2 \LUN LOG4.6028E4 $logflambda M.0 M.0 0.2 &0$W2 \CALC logflambda = -13.1861 - 0.4 * $W3 \LUN LOG11.5608E4 $logflambda M.0 M.0 0.2 &0$W3 \CALC logflambda = -14.2933 - 0.4 * $W4 \LUN LOG22.0883E4 $logflambda M.0 M.0 0.2 &0$W4 ********* IRAC ********************************* * from Cohen et al. 2003, AJ, 125, 2645, Table 11 * VAR names: IRAC1 IRAC2 IRAC3 IRAC4 \CALC logflambda = -11.18 - 0.4 * $IRAC1 \LUN LOG3.6E4 $logflambda M.0 M.0 0.2 &0$IRAC1 \CALC logflambda = -11.58 - 0.4 * $IRAC2 \LUN LOG4.5E4 $logflambda M.0 M.0 0.2 &0$IRAC2 \CALC logflambda = -11.96 - 0.4 * $IRAC3 \LUN LOG5.8E4 $logflambda M.0 M.0 0.2 &0$IRAC3 \CALC logflambda = -12.52 - 0.4 * $IRAC4 \LUN LOG8.0E4 $logflambda M.0 M.0 0.2 &0$IRAC4 ********** IR MSX6C ****************************** * fluxes in Jy, not magnitudes * VAR names: A_flux C_flux D_flux E_flux * band wavelength in \AA \VAR A_band = 8.28e4 \VAR C_band = 12.13e4 \VAR D_band = 14.65e4 \VAR E_band = 21.34e4 * band flux in Jy -> erg/s/cm^2/Ang \VAR CLIGHT = 2.9979E18 \CALC A_flux = LOG(( $A_flux * $CLIGHT * 1.e-23 ) / ( $A_band * $A_band )) \CALC C_flux = LOG(( $C_flux * $CLIGHT * 1.e-23 ) / ( $C_band * $C_band )) \CALC D_flux = LOG(( $D_flux * $CLIGHT * 1.e-23 ) / ( $D_band * $D_band )) \CALC E_flux = LOG(( $E_flux * $CLIGHT * 1.e-23 ) / ( $E_band * $E_band )) \LUN 4.92 $A_flux M.0 M.0 0.2 &0A \LUN 5.08 $C_flux M.0 M.0 0.2 &0C \LUN 5.16 $D_flux M.0 M.0 0.2 &0D \LUN 5.33 $E_flux M.0 M.0 0.2 &0E ****** IRAS ********************************************************** * fluxes in Jy, not magnitudes * VAR names: IRAS12flux IRAS25flux IRAS60flux IRAS100flux * band wavelength in \AA \VAR IRAS12_band = 12.E4 \VAR IRAS25_band = 25.e4 \VAR IRAS60_band = 60.e4 \VAR IRAS100_band = 100.e4 * band flux in Jy -> erg/s/cm^2/Ang \VAR CLIGHT = 2.9979E18 \CALC IRAS12flux = LOG(( $IRAS12flux * $CLIGHT * 1.e-23 ) / ( $IRAS12_band * $IRAS12_band )) \CALC IRAS25flux = LOG(( $IRAS25flux * $CLIGHT * 1.e-23 ) / ( $IRAS25_band * $IRAS25_band )) \CALC IRAS60flux = LOG(( $IRAS60flux * $CLIGHT * 1.e-23 ) / ( $IRAS60_band * $IRAS60_band )) \CALC IRAS100flux = LOG(( $IRAS100flux * $CLIGHT * 1.e-23 ) / ( $IRAS100_band * $IRAS100_band )) \LUN 5.079 $IRAS12flux M.0 M.0 0.2 &0IRAS \LUN 5.398 $IRAS25flux M.0 M.0 0.2 &0IRAS \LUN 5.78 $IRAS60flux M.0 M.0 0.2 &0IRAS \LUN 6.0 $IRAS100flux M.0 M.0 0.2 &0IRAS ************* Smith u b v *************************************** * definition and zero points from Smith (1968), MNRAS, 140, 409S * VAR names: u b v \EXPR logflambda = 0.4 * $u \EXPR logflambda = -8.103 - $logflambda \LUN LOG3650. $logflambda M.0 M.0 0.2 &0$u \EXPR logflambda = 0.4 * $b \EXPR logflambda = -8.240 - $logflambda \LUN LOG4270. $logflambda M.0 M.0 0.2 &0$b \EXPR logflambda = 0.4 * $v \EXPR logflambda = -8.404 - $logflambda \LUN LOG5160. $logflambda M.0 M.0 0.2 &0$v ************* HST NICMOS ************************************************* * Zeropoints (10.513, 10.510) are averages (by M. Steinke, 2.12.2013) from * HST/NICMOS Galactic Center survey catalogue by Dong et al. (2011), * MNRAS, 417, 114D \VAR F187N_flux=0 (in Jy! if in mJy or muJy then E-3 or E-6) \VAR F190N_flux=0 (in Jy! if in mJy or muJy then E-3 or E-6) \VAR F187_mag=? (if the magnitude is known, enter here) \VAR F190_mag=? (if the magnitude is known, enter here) \VAR CLIGHT= 2.9979E18 \VAR F187N_ch=1.87E4 \VAR F190N_ch=1.90E4 \CALC F187N_flux = log ( ( $F187N_flux * $CLIGHT * 1.e-23 ) / ( $F187N_ch * $F187N_ch ) ) \CALC F190N_flux = log ( ( $F190N_flux * $CLIGHT * 1.e-23 ) / ( $F190N_ch * $F190N_ch ) ) \IF F187_mag .EQ. ? \CALC F187_mag = -2.5*($F187N_flux + 10.153) \ENDIF \IF F190_mag .EQ. ? \CALC F190_mag = -2.5*($F190N_flux + 10.150) \ENDIF \LUN LOG$F187N_ch $F187N_flux M.0 M.0 0.2 &0$F187_mag \LUN LOG$F190N_ch $F190N_flux M.0 M.0 0.2 &0$F190_mag ******************************* GALEX ****************************************** * GALEX uses AB-Magniutes, conversion following: * http://galexgi.gsfc.nasa.gov/docs/galex/FAQ/counts_background.html * VAR names FUV NUV \CALC logflambda = -0.4 * $FUV -7.322 \LUN LOG1565. $logflambda M.0 M.0 0.2 &0FUV \CALC logflambda = -0.4 * $NUV - 7.654 \LUN LOG2301. $logflambda M.0 M.0 0.2 &0NUV ************* SDSS colors (AB magnitudes) ************** * effective wavelengths from Fukugita et al. (1996) * correction for u' from * http://classic.sdss.org/dr7/algorithms/fluxcal.html#sdss2ab * VAR names u_SDSS g_SDSS r_SDSS i_SDSS z_SDSS \CALC logflambda = -0.963 - 7.102 - ( $u_SDSS -0.04 ) * 0.4 \LUN LOG3557 $logflambda M.0 M.0 0.2 &1u' \CALC logflambda = -0.963 - 7.367 - $g_SDSS * 0.4 \LUN LOG4825 $logflambda M.0 M.0 0.2 &1g' \CALC logflambda = -0.963 - 7.593 - $r_SDSS * 0.4 \LUN LOG6261 $logflambda M.0 M.0 0.2 &1r' \CALC logflambda = -0.963 - 7.770 - $i_SDSS * 0.4 \LUN LOG7672 $logflambda M.0 M.0 0.2 &1i' \CALC logflambda = -0.963 - 7.918 - $z_SDSS * 0.4 \LUN LOG9097 $logflambda M.0 M.0 0.2 &1z' **************** GAIA DR 2 (Vega magnitudes) ************** * center wavelengths and zeropoints (ZP) from * http://svo2.cab.inta-csic.es/svo/theory/fps3/index.php?mode=browse&gname=GAIA&gname2=GAIA2 * VAR names : G Gbp Grp * note: G is very broad (3300 - 10000 Ang and covers Gbp and Grp) * lambdas are lambda_eff (Vega) \VAR lambda = 5845.67 \CALC logflambda = -0.4 * $G - 8.604 \LUN LOG$lambda $logflambda M.0 M.0 0.2 &0G \VAR lambda = 5017.28 \CALC logflambda = -0.4 * $Gbp - 8.393 \LUN LOG$lambda $logflambda M.0 M.0 0.2 &0G&Tbp&M \VAR lambda = 7593.40 \CALC logflambda = -0.4 * $Grp - 8.900 \LUN LOG$lambda $logflambda M.0 M.0 0.2 &0G&Trp&M **************** GAIA eDR 3 (Vega magnitudes) ************** * center wavelengths and zeropoints (ZP) from * http://svo2.cab.inta-csic.es/svo/theory/fps3/index.php?mode=browse&gname=GAIA&gname2=GAIA3&asttype= * VAR names : G Gbp Grp \VAR G = \VAR Gbp = \VAR Grp = * note: G is very broad (3300 - 10000 Ang and covers Gbp and Grp) * lambdas are lambda_eff (Vega) \VAR lambda = 5822.39 \CALC logflambda = -0.4 * $G - 8.601 \LUN LOG$lambda $logflambda M.0 M.0 0.2 &0G \VAR lambda = 5035.75 \CALC logflambda = -0.4 * $Gbp - 8.389 \LUN LOG$lambda $logflambda M.0 M.0 0.2 &0G&Tbp&M \VAR lambda = 7619.96 \CALC logflambda = -0.4 * $Grp - 8.897 \LUN LOG$lambda $logflambda M.0 M.0 0.2 &0G&Trp&M ***************** Pan-STARRS DR1 (g,r,i,z,y) ********************************** * Zero points and reference wavelengths (Max Pritzkuleit 24.8.2021) from: * http://svo2.cab.inta-csic.es/svo/theory/fps3/index.php?id=PAN-STARRS/PS1.y&&mode=browse&gname=PAN-STARRS&gname2=PS1#filter * VAR names : \VAR PSg = \VAR PSr = \VAR PSi = \VAR PSz = \VAR PSy = \VAR lambda = 4849.11 \CALC logflambda = -8.3505 -0.4 * $PSg \LUN LOG$lambda $logflambda M.0 M.0 0.2 &0$PSg \VAR lambda = 6201.20 \CALC logflambda = -8.56413 -0.4 * $PSr \LUN LOG$lambda $logflambda M.0 M.0 0.2 &0$PSr \VAR lambda = 7534.96 \CALC logflambda = -8.73334 -0.4 * $PSi \LUN LOG$lambda $logflambda M.0 M.0 0.2 &0$PSi \VAR lambda = 8674.20 \CALC logflambda = -8.8556 -0.4 * $PSz \LUN LOG$lambda $logflambda M.0 M.0 0.2 &0$PSz \VAR lambda = 9627.79 \CALC logflambda = -8.94623 -0.4 * $PSy \LUN LOG$lambda $logflambda M.0 M.0 0.2 &0$PSy **************************************************************** ** Example for conversion model flux to photometric magnitude ** **************************************************************** * Filters and Zeropoints from : http://svo2.cab.inta-csic.es/svo/theory/fps3/ * input: DM (e.g., 14), EBV (e.g., 0.4), LAW (e.g., "CARDELLI 3.1") * SHIFT (ideally 0., if model has correct logL) \CALC REDD = 1.0 * $EBV \CALC NEGREDD = -1. * $REDD \CALC DILUTE = 0.4 * $DM * Zeropoint is log10(3.09069e-10) \CALC logjflux = LOG( $jflux ) * plot a box vor comparison with observed photometry (as plotted above) \RECTLUN LOG1.235E4 $logjflux M0 M0 0.5 0.4 * value only for comparison, zeropoint -9.51 is from svo2.cab.inta-csic.es \CALC jmag = ( $logjflux + 9.51 ) / -0.4 N=? XYTABLE SYMBOL=0 COMMAND SETNAME filterJ * filter function from http://svo2.cab.inta-csic.es/svo/theory/fps3/getdata.php?format=ascii&id=2MASS/2MASS.J * Normalization of filterfunction: jnorm COMMAND CF-INT jnorm COMMAND Y/ $jnorm COMMAND INCLUDE 2MASS_2MASS.J.dat N=? SYMBOL=0 SIZE=0.2 COLOR=3 COMMAND SETNAME formalIRflux * in formal.plot 2MASS wavelength in micron -> Ang COMMAND X* 10000 COMMAND XLOG COMMAND YLOG COMMAND REDDENING $REDD $LAW COMMAND Y- $DILUTE COMMAND Y+ $SHIFT COMMAND XDEX COMMAND YDEX * This step is only required for the UV range COMMAND HLYMANA EBV= $NEGREDD COMMAND ARI filterJ * formalIRflux COMMAND CF-INT jflux 10620.0 14500.0 DATASET=filterJ * flux-calibrated formal flux (f_lambda @ 10pc in erg/cm^2/s/Ang over lambda) COMMAND INCLUDE $FNAME INCKEY="* CALIBRATED * J-BAND"