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The PoWR logo symbolizes a a star (white disc) with its wind, with the white arrows indicating its expansion.
The colored light rays stand for the emergent radiation. The blue dots resemble the Logo of the University of
Potsdam, but can also be understood as clumps in the wind.
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Preface

The main purpose of PoWR is to simulate the emergent spectrum of a hot star with given stellar parameters.
The models have been successfully applied so far for stars of spectral types O, B, early A, Wolf-Rayet, central
stars of planetary nebulae, subdwarfs, extreme helium stars.

Basic assumptions of the code are:
• spherical symmetry;
• stationarity;
• Pre-specified wind velocity law and mass-loss rate.

Physics that is taken into account comprises:

• non-LTE radiative transfer;
• detailed model atoms with up to ∼1000 explicit non-LTE levels;
• iron-group elements with millions of lines in a superlevel approach;
• inhomogeneities on small scales (“microclumping”);
• embedded X-ray sources.

Furthermore, the computation of the emergent spectrum (“formal integral”) can optionally account for:

• pressure broadening of spectral lines;
• inhomogeneities on large scales (“macroclumping”, “porosity”);
• wind rotation;
• a “second model”, which fills a specified part (double-cone or embedded sphere) of the atmosphere’s

volume.

Credits. The code has been developed since the late 1970s under the guidance of Wolf-Rainer Hamann, first
in Kiel and since 1994 in Potsdam. Many students and colleagues contributed to the development of the
code and its various tools: including (in roughly chronological order): Werner Schmutz, Ulf Wessolowski,
Gerhard Dünnebeil, Uwe Leuenhagen, Lars Koesterke, Helge Todt, Götz Gräfener, Wolfgang Leindecker,
Sonja Burgemeister, Martin Steinke, Tomer Shenar, Andreas Sander.
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1. Structure of PoWR

1. Structure of PoWR

1.1. Program flow

Calculating a PoWR model means to run a sequence of shell-scripts, called jobs (see Fig. 1.1. Each of these
jobs executes a sequence of programs. The individual programs communicate with each other via the file
MODEL, which is a name-indexed random-access mass-storage file. If everything goes smooth, only the first
job wrstart must be submitted by the user, while the further sequence wrstart → wruniq → formal then
runs automatically. Launching and controlling this sequence will be explained below (Sect. 4.1).

Job  wrstart

wrstart

steal

adapter

Job  wruniq

[extrap]

wrcont

como

coli

steal

[modify]

[n
jn

]

Job  formal

wrcont

como

formal

wrstart:  setup model, 1st approx. for Jν
steal:  statistical equations with approximate

lambda operator  population numbers

adapter:  [adapt pop.numbers from previous model]

extrap:  speed up convergence by extrapolation

wrcont:  angle-dependent rad transfer (static, cont.)

como:  moment eqns. (static, continuum)

coli:  comoving rad. transfer (continuum & lines)

steal:  statistical eqns.  popnums, [temp. corr.]

modify:  automatic interpolation for bad depth points

wrcont:  (see above)

como:  (see above)

formal:  Formal integral (observer’s frame)

              emergent spectrum

• Job wrstart
Program wrstart sets up the model (radius and frequency grids, velocity and density structure, first
approximations for the radiation field).

Program steal calculates a first approximations for the population numbers.

Program adapter overwrites these population numbers (or part of them) with popnumbers from a previ-
ous model, if requested.
• Job wruniq

Program extrap is an optional tool to accelerate the iteration by a Ng extrapolation; the use of the
corresponding option is currently discouraged (cf. Sect. ??).

Program wrcont is an unimportant program, calculating the continuum radiation transfer without ex-
pansion.

Program como uses the Eddington factors from wrcont and calculates the moment equations for the
continuum radiation transfer without expansion; the resulting continuum radiation field is only used for
start approximations.

10



1.2. The concept of different chains

Program coli solves the radiative transfer in the co-moving frame (see Sect. 12). Emissivities and opac-
ities are based on the population numbers.

Program steal solves the “ rate equations” (equations of statistical equilibrium), based on the current
radiation field (see Sect. 13. steal might also update the temperature structure and/or the density/velocity
stratification.

The programs within the wruniq-Job are repeated in a cycle until the iteration is converged, or until a
specified maximum number of program runs is exceeded. If converged, the formal-job is automatically
started.
• Job formal

Programs wrcont and como for some initializations

Program formal calculates the emergent spectrum, using the population numbers as established by the
wruniq iteration.

1.2. The concept of different chains

The sequence of jobs working on one specific model form a chain. Each user can run different chains in paral-
lel. Each chain has its specific chain number n. A specific chain be submitted to any computer (“machine”) of
the cluster (see Sect. 4.1) and stays there until it finishes, or till it is manually moved to another machine (see
Sect. 3.3).

If a chain number n has never used before, the necessary files and directories must be created by typing
makechain n
which executes the shell script $USER/work/dummychain/makechain.bash

1.3. Input files

Various input files must be prepared in the directory work/wrdatan before the corresponding model chain
can be launched:

• CARDS (see Sect. 2.1)
• FGRID (see Sect. 2.2)
• DATOM (see Sect. 2.4)
• FORMAL_CARDS (see Sect. 9)
• FEDAT (see Sect. 2.6)
• FEDAT_FORMAL (see Sect. 2.6)
• MODEL (needed as input only in case the new model shall start from it)

The MODEL file is also saved in this directory after wrstart and after the wruniq iteration has stopped in a
regular way, either because the model is converged, or the JOBNUM counter exceeded the limit, or the chain
has been manually interrupted by a stat stop or stat break command (see Sect. 3).

Note that there is a shortcut for the shell command to change into wrdatan as present work-directory:
cddat n

1.4. Output files

In the directory ~/work/output/ the output files are collected from all chains. The different chains are
distiguished by their chain number as part of the filenames, e.g. wrstart3.out. These files are:
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1. Structure of PoWR

• wrstartn.out
output listing (ASCII), 132 characters wide, from the wrstart job. It contains the set of input param-
eters, the radius- and frequency grid, and information from the adapter program which atomic levels
have been identified between the old and the new models if their atomic energy level list differs.

• wrstartn.plot
contains plots requested from the wrstart job. All files with the extension .plot, are in the WRplot
format and can be directly viewed with that program (see the WRplot manual).

• wruniqn.out
output listing (ASCII), 132 characters wide, from the wrstart job. It contains a short summary of each
iteration cycle.

• wruniqn.plot
contains plots requested from the wruniq job (last iteration).

• formaln.out
output listing (ASCII), 132 characters wide, from the wrstart job. It contains long lists of all spectral
lines which have been taken into account for each of the requested wavelength ranges.

• formaln.plot
contains the plots requested from the formal job. These are usually the emergent spectra for each of the
requested wavelength ranges.

The above-mentioned output files are copied inthe the work/output/ directory only after the corresponding job
has been successfully finished.

In contrast, there are further output files of each program (e.g. wrstart, wruniq, formal) which are continuously
written by the active programs (even when running on a different machine). These files carry the extension

.cpr – detailed protocol file, error messages

.log – short logfile with time stamps, error messages

1.5. Further directories

• The directory ~/work/wrjobs contains the shell scripts for all jobs. If everything goes smooth, the user
does not need to care about them.
• The wrstart-job copies all necessary files and executables into the directory
~/work/scratch/wrstartn. The output is collected there, until the job is finished.
• The wruniq-job copies all necessary files and executables into the directory
/home/$machine/tmp_data/$user/wruniqn. Here, $machine stands for the computer to which
this chain has been sent, and $user is the username. The output is collected in that directory until the
job is finished or interrupted, and then copied back.
• The formal-job copies all necessary files and executables into the directory ~/work/scratch/formaln.

The output is collected there, until the job is finished.
• The wruniq-job maintains a further directory on the machine where the chain is executed:
/home/$machine/tmp_data/$user/assn. It contains a (possibly very large) file with the Eddington
factors established and needed by the program coli, and the DMFILE used for the Broyden method.

These files are not copied when the chain moves to a different machine, nor when the model is converged
and saved. If wruniq cannot find the corresponding files, they will be generated automatically with
limited extra efforts.
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2. Input files

2.1. CARDS

The file CARDS has multiple functions:

• defining the parameters of the model;
• setting various parameters for numerical details of the model iteration.

Note that the second class of CARDS lines are re-read from the programs in the wruniq-job in each iteration,.
Thefore they can be changed in the course of a running model computation. If the CARDS file has been edited
in the wruniqn directory, the changes must be uploaded to the running chain by the command:
stat break wruniqn

The files CARDS is read by all programs which are executed in the wrstart-job and in the wruniq-job. Each
program interprets only those commands which it can recognize by the first word of the line; all other lines are
ignored. Therefore, lines can be commented out by just inserting one additional character at the beginning,
like - or *. The same holds (in most cases) for optional parameters of commands: if their keyword is not
recognized, the corresponding parameter is ignored.

Valid lines must start with the first character of the line; indention is not allowed. The paramaters which follow
the first keyword ra separated by any seperatorr ot of , = / : and/or blanks, and they sequence is arbitrary
(in most cases).

The lines in the CARDS file do not have to be sorted in any way – their sequence is arbitrary. However, if a
command which sets a certain parameter occurs multiple times, the last occcurence overwrites the previous
ones. This holds not only for commands with identical keywords, but also for those which are alternative to
each other, e.g. defining the stellar mass by specifying it directly or via the surface gravity.

A huge number of possible commands exist for the CARDS file. A full list, sorted alphabetically, is given in
Sect. 7. Most of them you will never need to use. In the following we describe a minimalistic example of a
CARDS file. This file can be found under CARDS.template in the manpowr.dir directory and can be copied
from there.

========================================================================
HEADLINE: 200kK/dex-0.5/2000 L=5.3 C.4 O.05 D10 Fe1.6E-3 WC
========================================================================

This statement defines a text string (max. 65 characters), by which the user can identify the model.
The program will print a time stamp (date and time when the model was started) in front, and will
issue this header line in all output listings and plot files.

-------------------- oldstart options --------------------------------
OLDSTART
OLD T TAU
LTESTART
-JSTART BLACKEDGE=228.
-TMIN_START= 8000.

The above block defines the start approximation for the model to be calculated. OLDSTART means
that the MODEL file that is currently in the wrdatan directory serves as start approximation for the
population numbers. Starting from a similar model greatly facilitates the calculation. If, however,
the new model shall be calculated with different atomic data than those used when calculating the
old MODEL, special LEVEL lines for the CARDS file must be prepared with the help of the tool
levelcards (see Sect. 3).
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2. Input files

With OLD T TAU the temperature structure is also taken from the old model, scaled to the new
stellar temperature, and interpolated over an optical depth scale (recommended). LTESTART or
JSTART specify alternatively the start approximation for the popnumbers or the radiation field,
respectively. In case of an OLDSTART, these popnumbers are anyhow overwritten by the old model
for all atomic levels that both models have in common.

-------------------- model parameters
TEFF= 200000.
LOG L=5.3
-RSTAR=10.
RTRANS=-0.5DEX
-MDOT = -6.6
LOG GGRAV = 3.7
-MSTAR=0.6
VDOP=100.
DENSCON = 10.

The previous block of lines specifies the stellar parameters in the usual units. Obviously, only two
out of the three parameters L,Teff ,R∗ can be specified independently (Stefan-Boltzmann law). The
mass-loss rate can be specified either directly (MDOT as logarithm of solar masses per year), or in
the form of the so-called transformed radius RTRANS where the directly appended DEX means that
the given value is a logarithm.

The stellar mass can be specified directly or via the surface gravity. If none of them is given, the
code guesses the mass on the basis of mass-luminosity relations, etimating the type of star from the
chemical composition.

VDOP is the Doppler-broadening which adopted for establishing the model stratification. It accounts
for turbulence and for unresolved multiplets. It can be overwritten later for calculating the emergent
spectrum. Note that with smaller VDOP the computation times grow dramatically, while the results
are usually not much affected.

DENSCON is the clumping factor which can be specified as radially dependent (see Sect. 7).

-------------------- abundances --------------------------------------
CARBON: 4.0E-1 (mass fraction)
OXYGEN: 5.0E-2 (mass fraction)
GENERIC: 1.6E-3 (mass fraction)

This block of lines specifies the chemical abundances of the respective elements, i.e. oxygen and
carbon in this example. The remaining mass fraction is assumed to be helium.
If the string “mass” is detected in the line with the element’s name, the number is interpreted as
mass fraction. Otherwise, the given number is interpreted as number fraction. Chemical abundance
must be specified all either as mass fractions or as number fractions; a mixture of both formats is
not allowed and leads to an error stop.
GENERIC refers to the sum of all iron-group elements, for which the relative composition has been
specified already when the corresponding data have been assembled; these elements are treated in
the superlevel approach (see Sect. ??).
Abundances must be specified for all elements which occur in the atomic data file DATOM, and vice
versa.
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2.1. CARDS

----------- velocity field and quasi-hydrostatic part ------
RMAX_IN_RSUN
VELPAR: VFINAL (KM/S)= 2000. VMIN=1.6 BETA=1.0 RMAX=1000.
HYDROSTATIC INTEGRATION FULL REDUCE=0.3

The VELPAR line defines the parameters of the wind velocity field. Default is the so-called beta law.
VFINAL will be reached at RMAX. VMIN is an initial guess for the velocity at the inner boundary, and
will be overwritten when the model iterates to achieve a specified TAUMAX (see below). RMAX defines
the location of the outer boundary, as given in units of the stellar radius (default) or in units of solar
radii if the preceeding line RMAX_IN_RSUN requests so.

HYDROSTATIC INTEGRATION invokes a detailed treatment of the density stratification in the lower,
sub-sonic and thus quasi hydrostatic part of the atmosphere. With the parameter FULL the hydro-
static equation is integrated accounting for the radiation pressure. This sophisticated treatment of
the static is not necessary for WR-type atmospheres, but recommended for stars with photospheric
absorption lines.

-------------------- grids in radius and frequency ----------------------------
RGRID: ND= 50. NDDENS= 8. NDVELO= 4. DLOGTAU= 5.0
BLUEMOST-WAVELENGTH = 5.

The RGRID line specifies the depth grid. ND is the total number of depth points; which is usually
chosen berween 50 und 70. The other parameters influence their distribution (see Sect. ??). The
BLUEMOST-WAVELENGTH of the coarse frequency grid must be given in Å.

Note: the options described in the following influence the numerics of the model iteration. They can be edited
“on the fly”, but changes become only active after they were uploaded with the command
stat break wruniqn

-------------------- boundary conditions ----------------------------
TAUMAX=20. FIX EPS=0.01 REDUCE=0.3 CORRLIMIT=-0.5 SAFE
-OB-VERS 0
NOTDIFFUS

TAUMAX specifies the Rosseland-mean continuum-only optical depth at which the inner boundary
is placed at model start (usually 20). The FIX parameter ensures that the final model still has this
optical depth at the inner boundary. The corresponding update of the radius grid is numerically
delicate, and the further parameters regulate this iteration.

-------------- Temperature corrections, Unsoeld-Lucy method -----
-NO TEMPERATURE CORRECTION
NO TEMPERATURE CORRECTIONS WHILE COR. .GT. -1.0 1.0
COLI: UNLUPAR GAMMAT=1. TAUMAX=0. TAUMAX2=0.
UNLUTEC LOC=0.1 INT=.2 OUT=.2 TB=.01 TBTAU=0.01
UNLUTEC TAUINT=10.
UNLUTEC SMOOTH TMIN=8000. CUTCORR=0.02 MONOTONIC

The temperature stratification must be adjusted in the course of the model iteration in order to
establish energy conservation. However, the corresponding temperature corrections should only
start to work after a new model has settled a bit and the maximum relative corrextions of any
population numbers (CORMAX, see below) dropped below -1.0dex; they should be switched off again
if it happens that CORMAX grows above 1.0 again. These limits are set by the line NO TEMPERATURE
CORRECTIONS WHILE ...
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2. Input files

The temperature corrections are calculated by a modified Unsöld-Lucy method, optionally com-
bined with the thermal balance approach (see Sect. 14). This various parameters for these methods
are specified on the UNLUTEC lines; for better readability, the UNLUTEC parameters can be arbitrarily
distributed over more than one line.

---- version for handling lasering lines --------
LASERV = 2

Lasering lines are often a problem for the model calculation, and we have different versions to cope
with it. Version 2 is currently recommended.

--------------- Ensuring hyperbolical type of the moment eqns. -----
-NO EDDIMIX
EDDIMIX START = 1.
EDDIMIX FIX = 1.
EDDIMIX MAX = 1.

The moment equations (second-order differential equations) require hyperbolical type. Although
this type is principally given in the analytical equation, this might not be the case numerically. To
always ensure the hyperbolical type, the “mixed” form for the Eddington factor g has been devel-
oped (see Sect. 12.6). The EDDIMIX lines specify the starting value and the minimum value of the
“eddimix factor”. The program automatically increases this facor if necessary, but this might cause
some disturbances in the convergence. One might watch the corresponding output in wruniq.cpr,
and chose higher values if appropriate.

----- Rate equations ------------------------------------
POPMIN = 1.E-27
SPLITINVERSION
BROYDEN= 2
BROYDEN RESET 10.

Popnumbers below POPMIN are set to zero in the radiative transfer. In the rate equations, levels with
popnums lower than POPMIN are eliminated under certain circumstances. SPLITINVERSION allows
that the matrix inversion is performed separately per element block (recommended). BROYDEN=2
allows that the iterative solution of the non-linear rate equations at each depth point can be per-
formed with the (faster) Broyden method instead of the Newton-Raphson method, unless some
criterion defined by BROYDEN RESET=10.

-------------------- numerical parameters ----------------------------
REDUCE=0.5
REDISMODE= COHERENCE

REDUCE reduces all corrections on popnumbers per iteration by the facto given as parameter (de-
fault: 0.5). Using this option might stabilize the iteration against growing oscillations. But it slows
down the convergence, and can also make the temperature corrections going weird.

The REDISMODE line is necessary in the present version, but will become obsolete soon. Therefore
we refrain from documenting it here.

---------Approximate lambda operator parameters ---------
OPC= DIAGTAU
AUTO GAMMA 640. 160. -1.1 0.5 0.1 0.1 1.
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2.2. FGRID

GAMMAD=1.
COLI: GAMMA=20.

NO EXTRAPOLATION

OPC choses among the different versions coded for the Approximate Lambda Operator (this option
refers only to the continua). DIAGTAU seems to work best.

The GAMMA parameters regulate the iteration with approximate lambda operators. Ideally, the γ
values should be as small as unity; the larger the values, the less agressive is the pre-estimated
feedback of the popnumber corrections on the radiation field. The AUTO GAMMA line invokes a
sophisticated mechanism which tightens the γ values as long as the iteration goes fine with it, and
releases them otherwise (see Sect. 2.1 for details. GAMMAD refers to the iron superlines, for which
the value 1.0 usually works fine. Note, however, that as default GAMMAD=.0 is set automatically,
as soon as temperature corrections are active, because the ALO extrapolation is not compatible with
a temperature correction factor which is applied to the iron line trasition rates (cf. Sect. ??).

-------------------- plot options ----------------------------------
PLOT_INBOX
PLOT_POPRANGE=1.E-30
PLOT POP GROUNDSTATES
PLOT FLUX FLAM 10PC
PLOT T(LOG(R-1))
PLOT HTOT
PLOT UNLU
PLOT ACC
PLOT ACC VELOCITY
PLOT RTAU1
-PLOT VELO

This block of lines requests standard plots which are assembled in the file steal.plot and finally,
when the wruniq-job is finished, in wruniqn.plot.

--------- Convergence criteria --------------------------
SMALLPOP=1.E-8
EPSILON=0.005
FLUXEPS=0.01
JOBMAX=9000.

SMALLPOP defines a threshold for the popnumbers, below which their corrections are not taken
into account for evaluationg the maximum relative corrections (default: 1.E-12). EPSILON defines
when a model is considered as converged, namely when the maximum of all relative popnumber
corrections is smaller then the given value (default: 0.05). If FLUXERR is given, convergence also
demands that the radiatibe flux never deviates by more than the given fraction from flux conserva-
tion. JOBMAX defines the maximum job counter after which the wruniq iteration terminates without
launching the formal integral. If one wants to continue the iteration, one may submit the wruniq
job again with increased JOBMAX limit, or reset the JOB counter by sub njnn.

2.2. FGRID

The coarse grid of frequency (or wavelength) points can be defined in different ways:

17



2. Input files

• with the CARDS option OLD FGRID, if the model is starting with OLDSTART from an old MODEL file. In
this case, the grid is taken from that old model;
• if OLD FGRID is NOT requested, the program checks if the CARDS file contains a line like
BLUEMOST-WAVELENGTH = x.x
(only BLUEMOST is significant for the keyword). In this case, x.x specifies the shortest wavelength
point (in Å), which, however, might be superseded by a bluer edge or line encountered in the atomic
data;
• if neither OLD FGRID nor BLUEMOST-WAVELENGTH = x.x is found in the CARDS file, the FGRID file

is read and all wavelenghts listed there are inserted into the coarse grid, in addition to those points
induced by the atomic data. If the FGRID file is not found in this case, an error stop is produced.

Thus, the file FGRID is usually not necessary. It can be used to define “manually” additional points for the
coarse frequency grid. For this purpose, the file must contain wavelengths (in Å) in monotonically increasing
order. Lines beginning with * are comment. The first or only value is the bluemost freqency point. If it
is intended to study the X-ray range, wavelengths as short as 2 Å might be needed. Otherwise, too short
wavelengths might risk a program crash because of an underflow induced by the Boltzmann factor.

Example for an FGRID file:

*--- Bluemost Gridpoint set to 2A: This is for testing K-shell absorption!
********************************************************************************
2.0

2.3. MODEL

The file MODEL communicates between the individual programs that work subsequently in the course of a
model calculation (cf. Fig. 1.1). Only if the model iteration starts from a previous model, the file MODEL is input
to the wrstart job. In any case, wrstart writes the file MODEL into the directory wrdatan when finished.

A wruniq-job fetches the file MODEL from wrdatan in the beginning, and replaces it when the job terminates
regularly. Note that the MODEL-file is not updated if the wruniq-job crashes or is manually killed.

For the formal-job, the MODEL-file is only input.

The MODEL-file is organized as a name-indexed random-access mass-storage file with the help of self-written
software. Since it is a binary file, it cannot be opened with an editor. However, for the advanced user or
developer we have special tools to inspect the content of such files.

2.4. DATOM

The ASCII file DATOM describes the model atoms for all elements except of the generic element for the iron-
group. An abundance must be assigned to each element which appears in the DATOM file, and vice versa.

For the beginner, it might be easiest to use an already existing DATOM file. If, however, you need to to include
or exclude certain elements, or account for different ionization stages, you will have to customize your DATOM
file accordingly. For this purpose there exists the job newdatomn, which is described in Sect. 6.1.

2.5. FORMAL_CARDS

This file is input to the formal-job and has two functions:

1. to specify which kind of emergent spectra shall be synthesized (e.g. for which wavelength ranges);
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2.6. FEDAT and FEDAT_FORMAL

2. to supply the formal integral with additional atomic data, e.g. for the splitting of lines into multiplet
components.

Especially because of the latter purpose, the file FORMAL_CARDS is huge and no longer convenient to handle
manually.

For the beginner it might be sufficient to work with an existing file FORMAL_CARDS (which must be consistent
with the DATOM file used).

If, however, you have changed the atomic data (DATOM file), or you want to change the wavelength ranges,
you will have to create new FORMAL_CARDS by running the job newformal_cardsn, which is described in
Sect. 6.2.

2.6. FEDAT and FEDAT_FORMAL

These files describe the model atom of the generic element, i.e. of the iron group, in the superlevel ap-
proach. These files are also name-indexed random-access mass-storage files. They are created with the help
of Blanketing program package which is documented elsewhere. This program package makes use of the
huge database provided by Kurucz with many millions of lines, plus the opacity data for the Fe ions higher
than Fe xiii.

Various FEDAT files have been prepared, and can be found in the directory ∼wrh/Blanket/Models. The
relevant files are in the respective model directory and carry the extension “.mS”.

Each model comes in two versions, distinguished by BIG and SMALL in their filename. The big version ac-
counts for all lines available in the database, most of them being only theoretically predicted without confir-
mation in the lab, while the small version has only lines which are confirmed by measurements. Our original
idea was to use the BIG version for the model calculation (FEDAT) to account for the maximum line-blanketing
effect, but apply the small version in the formal integral (FEDAT_FORMAL) in order to avoid the appearance of
features at possibly wrong wavelength in the emergent spectrum. Since this implies to underestimate the “iron
forest”, we now prefer to use the BIG version in both cases.

The FEDAT files are really big. Therefore, it is recommended to not copy the files into the wrdatan directories,
but instead only provide symbolic links like, for instance,
ln -sf ∼wrh/Blanket/Models/G2_BIG_VD100_FeXVI-K2015-parity/G2(...).mS FEDAT
The following points shall be taken into account when selecting the FEDAT links:

• Only use versions with the word parity. Without grouping the levels according to parity, spurious
emissions might appear in the emergent spectra, as we had encountered before 2015 (“Ute emission”).
• Make sure that the FEDAT file covers all ionization stages that you need to include. The roman number

in the filename gives the highest ion that is in the file with full data, i.e. you can ask one higher ionization
stage which will be included with its ground level only.
• Make sure that your FEDAT files has a resolution that is fine enough for your purpose. For FEDAT, the

VDOP encoded in the filename shall correspond to the VDOP in your CARDS file. For FEDAT_FORMAL,
the encoded VDOP should not be higher than the smallest microturbulence VMIC that you are adopting
in the FORMAL_CARDS. Unnecessary small VDOP versions cost unnecessary computing ressources.
Note that versions with different VDOP can be combined for FEDAT and FEDAT_FORMAL without prob-
lems, as long as the rest of the specifications (filenames) agree.
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3. How to run a model

3. How to run a model

3.1. Preparing the input files

The command
stat
shows your available chains (cf. Sect. 1.2). Choose under which chain number n you want to run your model.
If you need to have an additional chain, you can create one by executing the script
∼/work/dummychain/makechain.bash
It is recommended to keep the number of chains low (<20), because each chain costs memory resources.
Especially, chains should not be abused as a storage for models which are done.

Secondly, you consider if your intended calculation can start from a similar model which already exists. Note
that it is much easier to start from a similar model than to run a new model from scratch.

If you know such a suitable start-model, you change into the directory where this model has been saved, e.g.:
cd ∼wrh/science.dir/wnegrid.dir/models.dir/11-11
Note that this model does not need to be your own, but can belong to any user on the cluster as long as you
have read permission.

Then you load this model into your chain n by typing:
loadmod n
By this, the files relevant as input are copied into your directory work/wrdatan. See Sect. 4.3 for more details.

Now you go into that directory with the shortcut:
cddat n and edit the file CARDS as the most important input file (cf. Sect. 2.1).

In case you choose there the OLDSTART option, the current file MODEL will serve as start approximation.

Note that this only works without further ado, if the DATOM file (i.e. the atomic data) is also kept the same.
However, yoy may want to change the atomic data as well, for instance in order to include an additional
chemical element. In this case, you must assemble new files DATOM and FORMAL_CARDS with the help of the
tools newdatom and newformal_cards (see Sects. 6.1 and 6.2, respectively). Before doing so, you should
first rename the previous DATOM file:
mv DATOM DATOM_OLD.

After having created then the new file DATOM, you type the command
levelcards
and paste the content of the file LEVELCARDS into your CARDS file. These lines are necessary to correctly
identify the levels between the previous and the new model atom.

Finally, make sure that the files FEDAT and FEDAT_FORMAL are linked to generic-element data files which are
appropriate for your purpose (cf. Sect. 2.6).

3.2. Submit the model calculation

Next you have to choose on which computer (“machine”) you want to start your model calculations. With the
command
psx all
information about the capacities and current workload of all machines in our cluster is displayed. For a specific
machine, you can ask
psx machine
where the default for the machine is the computer with your home directory.

The model is finally started with submitting the wrstart job by typing
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3.3. Supervising model calculations

sub wrstartn machine
where the specification of the machine is optional (default: the computer with your home directory).

You can check the status of your model computation with the stat command. The ACTIVE flag should first
appear in the wrstart column, and then move to wruniq. After some time (hours to days), the wruniq
iteration should report converged and the ACTIVE flag proceeds to the formal job. When finished, the
formal job finally reports the status done.

The following commands may be typed for a running chain n:
stat break wruniqn
Effect: at next occasion, the MODEL file will be saved in its current status of iteration into the directory
wrdatan, and the CARDS file will be loaded from there into the scratch directory where the model is calcu-
lating. Thus, any changes edited in the CARDS file become activated from now. The wruniq iteration will
automatically continue.

stat to-machine wruniqn
same as break, but the wruniq job migrates to the computer machine

stat stop wruniqn
same as break, but the interation will not continue automatically. The stat command will display “Non-act”.

stat KILL wruniqn
kills the wruniq-job immediately. The no files will be saved. The MODEL file in wrdatan will stay as it was
written at the last break or at the beginning of the wruniq job.

You might encounter that the stat command shows the wruniq entry “Non-act” (meaning: not active) for a
specific chain. If you haven’t stopped the chain by hand (see above), the reason is probably that the maximum
number of jobs (specified by JOBMAX in the CARDS file) has been exceeded before the model finally converged.
After having checked this diagnosis and the health of the model with the check tools (see below), you may
edit the corresponding CARDS file in work/wrdatan and specify a higher JOBMAX limit, and then submit the
wruniq-job again by typing
sub wruniqn [to-machine]
for continuing the iteration. Alternatively, one can submit the “new job number” job
sub njnn [to-machine]
which resets the job counter in the MODEL file to 100 and restarts the iteration.

3.3. Supervising model calculations

It is usually a good idea to keep an eye on running model calculations. The corresponding commend-line tools
will be described in more detail in Sect. 4. Here we mention already the most important commands:

The progress of the individual jobs can be observed using the respective commands
stat tcpr wrstartn
stat tcpr wruniqn
stat tcpr formaln

These commands watch the tail of the corresponding cpr-files in the work/output directory. To quit the
command, hit ctrl-c.

In case of troubles it might be also usefull to look at the tail of the corresponding log-files with, e.g.,
stat tcpr wrstartn

Note that all sub and stat-commands are nicely supported by auto-completion (tab-key).

The process of convergence of the wruniq-iteration can be observed with the check tools:

check n [username]
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3. How to run a model

displays, for your chain n, a logarithmic plot with the maximum relative correction of popnumbers, COR-
RMAX, over job number. This curve should go down until convergence is reached at EPSILON (unless other
criteria, such as sufficiently accurate flux conservation (FLUXEPS) if requested in the CARDS file, are not
satisfied). With the optional parameter username you can check the convergence of models from other users.

checkt n [username]
displays the current temperature stratification in comparison to the previous iteration (difference 100 times
enhanced).

The check commands open an X11 window with WRplot, which is very minimalistic and therefore apt for
remote use even via slow internet. In worst case, i.e. without X11 display, one can get the CORRMAX as
ASCII list by typing
checkh n

Note that after a check-command, the present work directory (pwd) of this shell is set to the temporary
directory in which the corresponding wruniq-job is running. Hence, you can inspect there, for instance, the
current version of the plots by typing:
wrplot steal
or inspect the incrementally written output file (here named: out), or even look into the MODEL file with the
appropriate tools (see Sect. 4).

3.4. Save models

If stat shows that in your model chain n the wruniq-iteration is converged and the formal-job is done,
your model is finished and shall be saved:

• create (or change into) the directory where you want to store the models for your current project;

• create there a new subdirectory with an arbitrary name which helps you later to maintain the overview
over your different models;

• change into this directory (cd)

• type:
modsave n
where n is the chain from which the model is to be saved.

Note that the modsave command warns you if the current directory is not empty before; in this case, you have
probably forgotten one the necessary steps described above.
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4. Command-line tools

4.1. Job submission

sub jobname [to-machine]

The parameter in brackets is optional; default is the machine where your home directory resides. The sub
command sends the shell-script jobname via ssh to the specified computer (machine) and starts there its
execution. It first checks the availability of this machine. The submit procedure maintains its own logfile
output/submit.log and also issues messages in the .log and .cpr file of the submitted job jobname.

The sub command works independent from the present-work-directory; the job-script to be submitted must
exist in your directory wrjobs, and must be designed for being directly submitted. The following job-scripts
might be submitted:

jobname action

wrstartn start-job of a new model in chain n
wruniqn continues model iteration if it stopped
set_repeatn necessary before continuing iteration if converged before - see (a)
njnn sets job counter to 100 and re-starts wruniqn
modifyn starts a modify-job for manipulation of the model (see Sect. 5.6)
formaln manual submission of the formal-job

(a) Each chain stores in wrdatan/nextjob the information, which program has to work next on the MODEL
file. Once the model in chain n converged, this entry is set to MODEL. In order to resume the iteration, the entry
must be set to WRCONT, which is done by the set_repeatn job, before wruniqn can be submitted again.

4.2. Job status

stat [parameters]

The stat-commands can be issued from any shell, independent of the present-work-directory. The stat tool
has many options for checking or changing the status of model chains; possible parameters are:

parameters action

help displays help
(none) status of all chains
-u username status for a different user; this argument must be the last one
tcpr jobname shows incrementally the tail of output/jobname.cpr (a)
tlog jobname shows incrementally the tail of output/jobname.log (a)
break wruniqn save MODEL to and reload CARDS from wrdatan, then continue wruniqn
to-machine wruniqn same as break, but wruniqn migrates to computer machine
stop wruniqn wruniqn stops at next occasion; MODEL is saved
KILL jobname kills job jobname immediately; nothing is saved
clear jobname sets the status entry of jobname to clear (b)
name wruniqn Name sets the name of the chain to Name
+name wruniqn string inserts string at the beginning of the chain’s name
name+ wruniqn string appends string to the chain’s name

(a) hit ctrl-c to quit
(b) Submission of a job is aborted if the corresponding chain is still ACTIVE; this prevents that you can destroy a
running model accidentally. If, however, a program or computer crash has left an ACTIVE entry and you made
sure that the job is really not executing anymore, the stat clear command will make the corresponding
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chain usable again.

4.3. Load an existing model

loadmod n
copies from from working directory to wrdatan all files that are needed to (re-)calculate this model, which
include:

CARDS
FORMAL_CARDS
MODEL
DATOM
FEDAT
FEDAT_FORMAL

For the FEDAT files, only the links are copied. Write permission is given to all these files. The Name entry of
chain n (see Sect. 3.3) is set to blank.

4.4. Save a model

modsaven
saves model data into the current working directory, which should be empty for that purpose. The following
files are copied:

CARDS
DATOM
FEDAT
FEDAT_FORMAL
FORMAL_CARDS
formal.out
formal.plot
MODEL
modinfo.kasdefs
wrstart.out
wruniq.out
wruniq.plot

For the FEDAT-files, only symbolic links will be stored. The file modinfo.kasdefs defines a long list of
variables in WRplot syntax which might be usefull to include in a WRplot-file which displays the model.

The saved files will all become write-protected.

4.5. Create an additional chain

makechain n

generates chain n with all necessary directories and some dummy files
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4.6. Clone a chain

clone n m [username]
copies model input files from wrdatan (optionally: of user username) to the own wrdatam

4.7. Reading from the MODEL file

The file MODEL is a binary file (name-indexed random-access mass storage file, using our own structure and
syntax definitions) which can only be read with special tools. Other files of this type are the iron-data files
(FEDAT, FEDAT_FORMAL) and the temporary file with Eddington factors. Note that in the directory where the
model calculations are performed, e.g. /home/corona/tmp_data/wrh/wruniq1, these mass-storage files
are renamed to fort.3, fort.17, and fort.21, respectively, for the reason that fortran cannot open mass-
storage files by their name.

msinfo file [parameters]

Possible parameters are:

msinfo MODEL INFO-L
displays a list of all variable names that are stored in this name-indexed mass-storage file (here: file MODEL)

msinfo MODEL INFO-D name-of-variable formatstring
displays the content of the requested variable; the formatstring must be given in FORTRAN syntax (see ex-
amples). Quotes are needed. Examples:

msinfo MODEL INFO-D ’ND’ ’(I6)’
displays the variable textttND (number of depth points) as 6-digit integer;
msinfo MODEL INFO-D ’TEFF’ ’(F8.1)’
displays the effective temperature of the model as floating-point number with 8 digits (one decimal).

A short version of this tool is
msread name-of-variable [file]

which uses default formats. file is the name of the mass-storage file to be read; if this parameter is not given,
the default is MODEL or fort.3 in the present work directory.
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5. Troubleshooting

5. Troubleshooting

5.1. Job submission has no effect

The problem: after having submitted a wrstart or wrstart job, you cannot observe that this job is really
executing.

Diagnosis: inspect
stat tcpr wrstartn
or
stat tcpr wruniqn

One possible reason is that the corresponding chain is still flagged as ACTIVE, although the corresponding job
has crashed.

Solution: use the stat clear command (see Sect. 3.3).

5.2. DIMENSION INSUFFICIENT

The PoWR executables are provided in three versions which differ regarding the size of the arrays and thus the
computer memory they require (remember that FORTRAN programs might still use fixed memory allocation).
The versions are:
std (standard)
vd20 (medium, often sufficient for VDOP=20 km/s)
xxl (largest available dimensions).

If you encounter an error message like DIMENSION INSUFFICIENT, you must change the corresponding job-
file to a higher-dimensioned version (by commenting/uncommenting corresponding lines). If even the xxl
version is insufficient, you might reconsider your requirements. In worst case, a program version with higher
dimensioning has to be compiled.

5.3. Solution of the Rate Equations fails at some depth points

stat tcpr wruniqn
displays from each run of steal (statistical equations solver) a block like

L= 1 Niter= 3 NBT
L= 2 Niter= 7 NBTTTTB
L= 3 Niter= 7 NBTTTTB
L= 4 Niter= 7 NBTTTTB
L= 5 Niter= 7 NBTTTTB
L= 6 Niter= 7 NBTTTTB
L= 7 Niter= 7 NBTTTTB
L= 8 Niter= 7 NBTTTTB
...

Here, L is the depth index, while each letter in the row NBTTTTB stands for one iteration step (N = Newton-
Raphson, B = Broyden, T = two-point Broyden). Occasionally, the maximum number of iterations ITMAX
(default: 50) might be reached without convergence.
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If this happens only occasionally, this is not a problem. PoWR will replace the population numbers for this
depth point by interpolated values by automatically generating a corresponding modify-job (cf. 5.6).

If, however, many such non-converged depth points are encountered, the wruniq-job might terminate with a
corresponding error message.

In this case, something went fatally wrong with the model. If the problem is encountered immediately after
the model was started, the start approximation might be too bad.

In case the calculation started from a previous model, something might have gone wrong with the assignement
between the level indices in the old and new MODEL file. Compare the DATOM files and, if they differ, make
sure that the LEVELCARDS have been properly created and included in the CARDS file (cf. Sect. 3).

In case the model calculation was started from scratch (i.e. without OLDSTART option), one may try different
start approximations (LTESTART, JSTART) and, in the latter case, with different values for the BLACKEDGE
parameter. If nothing helps, one may re-think to find a previous model that is suitable for an OLDSTART.

In case that such massive non-convergence of rate equations occurs later in the course of a model computation,
the model went obviously completely wrong and is probably lost. Maybe you have saved the model in some
intermediate stage by a stat break command; then you may quickly stat KILL wruniqn the chain and
have a chance for continuing from the saved stage with different settings of the numerical parameters (see
Sect. 5.4).

5.4. Global convergence problems

The problem: the plot displayed by
check n
reveals that the corrections do not decrease.

One should understand thet a model calculation consists of several, nested or coupled iteration algorithms.
The outer iteration refers to the population numbers; this iteration is accelerated by means of Approximate
Lambda Operators. Obviously, too strong acceleration bears the risc of over-corrections which might lead to
a runaway or an alternating divergence of the iteration.

These Approximate Lambda Operators can be tuned by a parameters called GAMMA: the lower GAMMA, the more
the iteration is accelerated. Largest acceleration is for GAMMA=1., lowest for ver large values. In the syntax of
the CARDS file GAMMA=.0 means to switch off the acceleration entirely.

Alternating corrections might also be damped with the REDUCE command (cf. Sect. 7).

Often, convergence problems are caused by the temperature correction. There are various parameters to tune
the Unsöld-Lucy method, see Sect. 7.

Temperature corrections might go weird if they are already applied at the beginning of a model iteration, when
all other equations are also still not fulfilled sufficiently. Therefore, the line in the CARDS file:

NO TEMPERATURE CORRECTION [parameters]

should be tuned such that temperature corrections remain switched off until the corrections settled below some
threshold (see Sect. 7 for the parameters).

5.5. Flux conservation problems

Sometimes, models do not reach flux conservation to the accuracy demanded with the FLUXEPS option. This
can have various reasons:

- EDDIMIX issues (see ...)

Another issue has to do with the superlevel approximation. In Eq. ??
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5. Troubleshooting

In the original version,

IRONLINES-EXPFAC TRADITIONAL

IRONLINES-EXPFAC OFF

IRONLINES-EXPFAC TEFF

See also the PoWR-Memo 20180219.txt

5.6. Manual intervention: job modify

From inspection of the corresponding plots, you might feel that the temperature stratification of the stratifi-
cation of population numbers show some defect (e.q. a discontinuity) which the iteration is unable to fix. In
this case, one might intervene manually by interpolating (or extrapolating) temperature and/or popnumbers
between selected depth points:

First, if the iteration is still running, stop it by typing stat stop wruniqn and observe that the chain really
stopped.

In the meantime, you may edit the file work/wrjobs/modifyn. Somewhere in the middle of this file, you
will find a block like

cat > MODIFY_INPUT << %
-NO TEMPERATURE CORRECTIONS
-NO POPNUMBER CORRECTIONS
INTERPOLATE FROM POINT 40 TO POINT 44
-INNER EXTRAPOLATION FROM POINT 69. SECOND POINT 69.
-OUTER EXTRAPOLATION FROM POINT 10 SECOND POINT 11
%

The meaning of these lines is obvious:

NO TEMPERATURE CORRECTIONS
means that the manipulation does not involve temperatures;

NO POPNUMBER CORRECTIONS
means that the manipulation only involves the temperatures;

INTERPOLATE FROM POINT 40 TO POINT 44
means that for the depth points 41, 42, and 43 the current values are replaced by those obtained by an inter-
polation between the values of the given points (depth indices 40 and 44 in this example. The interpolation is
linear in logarith for popnumbers, and just linear in temperatures.

If the points to be manipulated are attached to the inner or outer boundary, the adequate commands are, for
example:

INNER EXTRAPOLATION FROM POINT 69. SECOND POINT 69.
OUTER EXTRAPOLATION FROM POINT 10 SECOND POINT 11

If the two depth indices differ, a linear extrapolation will be tight to the two given points; if the indices are
identical, the values will be constantly repeated from this index to the boundary.

One can give a whole list of interpolation commands which then will be executed sequentially by the modify
job.

When the modify job reports success (which can be seen also with stat tcpr wruniqn), you may now type
sub wruniqn for continuing the iteration.
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5.7. Restart converged model

5.7. Restart converged model

If the model is already converged, but you want it to iterate further for better accuracy. In this case, tighten the
convergence criterion, e.g.

• decrease EPSILON in the CARDS file

• reset the job status by typing sub set_repeatn

• restart by typing sub njnn or sub wruniqn

5.7.1. Do your model atoms cover the ionization stages as needed?

Please check the plots of the population numbers for the ion’s groundstates (requested by the CARDS line: PLOT
POP GROUNDSTATES). Often the lowest as well as the highest ion of each element is represented by only one
or two control levels. This is especially true for iron. If such control level becomes leading in significant parts
of the atmosphere, the coreponding ion should obviously described with more levels in the atomic data (see
Sect. 6.1).
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6. Providing atomic data

The PoWR code is supplied by atomic data via three files:

• DATOM
is an ASCII file read by all individual programs and contains the energy levels and transition cross
sections of the model atoms, except for the generic element (iron group). For the latter, only the range
of ionization stages is specified in datom;

• FEDAT
is also read by all individual programs and contains the data for the generic element (iron group) which
is treated in the superlevel approximation. The file is binary (mass-storage). FEDAT files are created by
the program package Blanket;

• FORMAL_CARDS
is an ASCII file only read by program formal. It specifies the wavelength ranges and line transitions
for which the emergent spectrum is calculated;

• FEDAT_FORMAL
is a file analogues to FEDAT, but for the program formal. It may be identical to FEDAT, or may have been
created with the program package Blanket under restriction to those lines with confirmed wavelengths.
In any case, both FEDAT and FEDAT_FORMAL must have been created with the same definition of the
superlevels in the Blanketing program, otherwise nonsense will be calculated, although the program
may not necessarily crash.

6.1. Assembling a new DATOM file

DATOM files from existing models may be re-used. However, we are permanently updating our atomic data
base; therefore it is highly recommended to construct a new DATOM file when starting a new project. A new
DATOM file in wrdatan (n = chain number) is created by submitting a job
sub newdatomn

This program needs an input file NEWDATOM_INPUT in the same wrdatan directory. The syntax of this file
becomes obvious from the following example:

-------------------------------------
PATH = /home/corona/wrh/work/wrdata-archive
DRTRANSIT
NO-K-SHELL

ELEMENT HE
ION I NLEVEL=1
ION II
ION III

ELEMENT C
ION II NO-DRTRANSIT
ION III
ION IV NLEVEL=3

ELEMENT G 3 10
-------------------------------------
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6.1. Assembling a new DATOM file

Any line which does not start with a valid keyword is considered as a comment. Note that each DATOM file
generated with newdatom gets a comment header which shows the NEWDATOM_INPUT lines that have been
used.

The file starts with specifying the PATH to the data source. The current and maintained data base is presently
located in the directory /home/corona/wrh/work/wrdata-archive. The PATH can be re-defined subse-
quently, e.g. in order to include a test version for one specific ion.

DRTRANSIT is a global switch to include the dielectronic transitions. The opposite command is NO-DRTRANSIT.
By default the dielectronic transitions are switched off (NO-DRTRANSIT).

The DRTRANSIT switch can also be turned per element: in this case, the DRTRANSIT or NO-DRTRANSIT com-
mand line must follow after the ELEMENT line and holds only for that element. – Note that there is also an
individual switch for each ion (see below).

NO-KSHELL is a global switch to suppress the K-shell opacities in the X-ray regime. By default these opacities
are included. Contrary to NO-KSHELL acts the switch KSHELL (default). As described above for the DRTRANSIT
switch, the KSHELL switch can also be turned back and forth per element when the corresponding command
line follows after the ELEMENT line.

Each element has a block starting with the line
ELEMENT <symbol>
where <symbol> denotes the chemical symbol of the element, like HE or C. The chemical symbol must corre-
spond to files in the data base.

Presently, chemical symbol with two characters (like HE, SI for helium or silicon) must be written with capital
letters. We plan to change this, but since each level name in the atomic data must start with the chemical
symbol this needs some efforts to stay compatible.

For each element, the ions that are to be included must be specified by a line like
ION IV
or, for example with optional parameters,
ION IV NLEVEL=17 NO-DRTRANSIT

One may chose different sets of ions according to the parameter range of the stellar models to be calculated,
e.g. omitting low ions like O ii for hot models. Note that we use roman numbers for specifying the ionization
stages. The file names in the data base are constructed from the chemical symbol and this roman number.

Ions can be restricted in their number of levels by the optional parameter NLEVEL= n.

One possible application is to omit the high-excitation part of a model ion which has been introduced only for
simulating the infrared spectrum, when the present project has no intention in this wavelength range.

More often, the NLEVEL options will be used to omit ionization stages that are not needed. E.g., for cool
models one may want to omit high ions. Usually we include more ions (one of lower and one of higher stage)
than actually needed in the form of (one or few) control levels for which one can check in the final model
that the population is indeed negligible. For this purpose one may chose NLEVEL=1. However, it may happen
that by restricting some ion (e.g. C iv) to only one level, some photoionization transitions (e.g. from C iii)
may loose their target level. In this case, newdatom automatically increases NLEVEL till all target levels are
included.

Optionally, an ION line can set the DRTRANSIT switch differently from the global setting with the optional
parameter DRTRANSIT or NO-DRTRANSIT.

The line
ELEMENT G n m
for the generic element has a special syntax. This line has two further mandatory arguments, which are integer
numbers specifying the lowest (n) and highest (m) ionization stages which will be taken into account. The
lowest and highest ion are represented by their ground level only (“control level”). For including neutral iron
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in detail, the lowest GENERIC stage must be specified as “0”.

6.2. Assembling a new FORMAL_CARDS file

The FORMAL_CARDS file from an existing model may only be re-used if the DATOM file remained also un-
changed. If, however, a new DATOM file has been assembled, the FORMAL_CARDS file must also be reconstructed
for consistency.

We are permanently updating our atomic data base; therefore it is highly recommended to construct new
DATOM and FORMAL_CARDS files when starting a new project. A new FORMAL_CARDS file in wrdatan (n =
chain number) is created by submitting a job
sub newformal_cardsn

This program needs an input file NEWFORMAL_CARDS_INPUT in the same wrdatan directory.

The syntax of this file becomes obvious from the following example:

-------------------------------------
STANDARDPATH /home/corona/wrh/work/wrdata-archive/
CALIB
CONT
************************************************
STRING COMMENT * UV
STRING COMMENT * IUE
STRING COMMENT * FUSE
STRING COMMENT * IUE SHORT
STRING COMMENT * IUE LONG
RANGE 950. 3000. UV
************************************************

************************************************
STRING COMMENT * OPT
STRING COMMENT * VIS
RANGE 3160. 9000. OPT
************************************************

The effects of the NEWFORMAL_CARDS_INPUT commands are:

1. Some specific input lines are interpreted by the newformal_cards program itself and guide its actions;
these options are listed below.

2. The main action of the newformal_cards program is initiated by the command(s) RANGE (see below):
for all lines and multiplets in the specified wavelength range, the FORMAL_CARDS data are assembled
from our atomic data base.

3. The newformal_cards program also reads the DATOM file; only those transitions can be included in
the FORMAL_CARDS, for which the corresponding levels do exist in the model’s atomic data (i.e. in file
DATOM).

4. All other lines encountered in NEWFORMAL_CARDS_INPUT, including comment lines, are directly passed
into the NEWFORMAL_CARDS file. Consult Sect. 9 for the list of possible commands.

NEWFORMAL_CARDS_INPUT commands which guide the actions of the program newformal_cards:

STANDARDPATH = pathname
Path to the atomic data archive (mandatory!)
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TESTPATH = pathname
Path to nother (e.g. own) atomic data archive, with FORMAL_CARDS which you want to test. For those
ions for which FORMAL_CARDS are found in the TESTPATH, these test data are taken instead of the
corresponding data in the STANDARDPATH.

NOTESTPATH
after this command, the TESTPATH is no longer used.

RANGE λ1λ2
causes the atomic data for the wavelength range from λ1 to λ2 (in Å) to be assembled, with all additional
options which are active in this moment.

DRTRANSIT
includes the DRTRANSIT cards in FORMAL_CARDS. cf. →NO-DRTRANSIT

NO-DRTRANSIT
switches off the inclusion of DRTRANSIT cars in the FORMAL_CARDS. The default. cf. →DRTRANSIT

RESTRICT Element | NONE [ION]
Only the FORMAL_CARDS for the given element or (more restrictive) the given ion are included. One can
set serveral RESTRICT cards. Option NONE resets all restrictions.
Examples:

RESTRICT NITROGEN
RESTRICT HE II
RANGE 950. 3000. IUE #ALIAS "UV" "FUSE" "IUE SHORT"

RESTRICT NONE

6.3. Harvesting atomic data from the Opacity Project (OP)

This tool written by G. Gräfener uses data from the Opacity Project (theoretical values) and from the NIST
Atomic data base (observed levels and lines) to generate atomic input data, e.g. the files DATOM and FOR-
MAL_CARDS.

6.3.1. Source code

The sources of this program and executables for linux and OSF can be found at

/home/musca/htodt/lib_opdat

the directory includes a makefile to generate the executable.

6.3.2. Input files

6.3.2.1. OP_LEV Please check the following options

• General energy order

• Electron configuration

• Energy (Ryd) wrt ionization potential

• Statistical weight

• Effective quantum number

and uncheck all other Output options.
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6.3.2.2. OP_LIN Please check the following options

• Level order

• gf-value

• Wavelength (A)

• Statistical weight (i)

• Statistical weight (j)

and uncheck all other Output options.

6.3.2.3. OP_CONT (optional) Please check the following option

• General energy order

6.3.2.4. LEVELS This file contains a description of the levels of the model ion to be generated.
Comment lines start with a *.
The kind of the ion is described by the keyword ION followed by the atomic number, the number of electrons
and the ionization energy in cm−1 (unformatted), e.g. for O ii:

ION 8 7 283270.9

Every level to appear in the DATOM file is generated by a line containing the Keyword LEVEL followd by a
level designation, e.g.

LEVEL "O 2p3*4S01"

Note the format for the level designation: the first two characters (both capitals) must be the symbol of the
element, followed by some arbitrary description like the ionization stage, the quantum number, the angular
momentum, the mulitplicity and the parity.

Every LEVEL keyword must have at least one following line with the keyword SUBLEVEL followed by the
number of the OP level of the file OP_LEV and the energies (from NIST) for every J or an asterisk * if the OP
level eneryg should be used, e.g.

SUBLEVEL 023 232480.44 232527.09
SUBLEVEL 120 *

The keyword END stops the further readin of this file.

6.3.2.5. INPUT contains the output options. Keywords are

LEVELS
LINES
CONTINUA HYD
CONTINUA POLYFIT
CHECK

6.4. Remarks

6.4.1. Line strengths

The oscillator strength flu is related to the Einstein coefficient Aul (with λ in Å and Aul in s−1) via (Wiese et al.
1996):
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6.4. Remarks

flu = 1.499 × 10−16λ2 gu

gl
Aul (1)

Aul = 6.670 × 1015λ−2 gl

gu
flu (2)

or

Aul =
8ν2π2e2

mec3

gl

gu
flu (3)

(4)

For the multiplet transitions from a lower state l to an upper state u the following equations hold:

fmultiplet l−u =
∑

Ju

flu (only upper state u is splitted) (5)

Amultiplet u−l =
∑

Jl

Aul (only lower state l is splitted) (6)

For the case of only small fine structure splitting, e.g. small ∆E, the levels with different Js are combined to
one for the line radiative transfer and the statistical equations. This combined level has a statistical weight and
energy:

g =
∑

J

gJ E = E =
1
g

∑

J

EJ gJ , (7)

where the statistical weights are

gJ = 2J + 1 gM = (2L + 1)(2S + 1) (8)

The latter ones applies to an intial or final state of a multiplet (M).

So the fine structure components of the line multiplet for the upper and lower level are combined to one single
transition with wavelength

λul[Å] =
108

Eu[cm−1] − El[cm−1]
. (9)

Furthermore, following Wiese et al. (1966) the absorption oscillator strength is a weighted mean by

f lu =

∑
Jl,Ju(2Jl + 1)λ(Jl, Ju) f (Jl, Ju)

λul
∑

Jl(2Jl + 1)
=

∑
l,u gl λ(l, u) f (l, u)

λul
∑

l gl
(10)

≈
∑

l,u gl f (l, u)
∑

l gl
for only small split in energy (11)

where (2J + 1) is the statistical weight of this fine structure level or analogously the transition probabilities
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Aul =

∑
Jl,Ju(2Ju + 1)λ3(Jl, Ju)A(Ju, Jl)

(λul)3 ∑
Ju(2Ju + 1)

=

∑
l,u gu λ

3(l, u)A(u, l)

(λul)3 ∑
u gu

(12)

≈
∑

l,u gu A(u, l)
∑

u gu
for only small split in energy (13)

These are the generalizations of Eqn. (5), (6).

For the usual case of small fine structure splitting, the differences in λ within a multiplet are very small and
the wavelength factors can be neglected.

On the NIST web interface the average f and A for a multiplet can be shown via the following output options:

Output ordering: Multiplet

Transition strength: f_ik
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2BETALAW BETA2=x.x FRACTION=x.x
e.g. 2BETALAW BETA2=8. FRACTION=0.4
uses a different β exponent for the velocity for the outer part. FRACTION specifies the velocity fraction
of VFINAL which is calculated from BETA2 (WR-Memo 060512). Velocity law is given by

v(r) = v∞
[
q1

(
1 − r0

r

)β1

+ q2

(
1 − r1

r

)β2
]

where q1 + q2 = 1.
Note that this card is set in addition to VELPAR.

ABORT_AUTO_MODIFY obsolete, see p. 55 STOP_AUTO_MODIFY

AUTO GAMMA 640. 40. -1.1 0.5 [0.1 0.1 1.]
Automatic adjustment of GAMMAs, with following arguments:

AG(1) maximum GAMMA, start GAMMA
AG(2) minimum GAMMA, final GAMMA
AG(3) maximum CORRMAX allowed for decreasing GAMMA
AG(4) minimum CORRMAX threshold for increasing GAMMA
AG(5) GAMMAL factor
AG(6) GAMMAR factor
AG(7) GAMMAD factor

last three parameters are optional and are used to calculate GAMMAL = GAMMAC / AG(5) and so on,
default is 1. For explanation of GAMMAs see keyword GAMMA. GAMMA is increased by factor 2,
if one ore more depth point did not converge in last iteration. GAMMA is decreased, if last 6 iterations
converged.
Note: It is strictly recommended not to set the first parameter (maximum GAMMA) to zero. Otherwise
GAMMAs can cause floating point overflow. Note: Explicitly set GAMMAs overwrite AUTOGAMMAs.

AUTO_MODIFY [ TEMP | NOTEMP ]
without any further options it is the default and be therefore omitted (see p. 46 NO_AUTO_MOD). So,
by default population numbers and temperature (if T -corrections are active) for a non-converged depth
point are interpolated from the neighboring depth points.

Option TEMP enforces T -corrections while NOTEMP prohibits T -correction regardless of T -corrections
are active or not.

BLUEMOST-WAVELENGTH x.x
is one of three possible methods to specify shortest wavelength for the coarse grid of wavelenths /
frequencies:

- In connection with an OLDSTART, the CARDS option OLD FGRID takes that grid also from the old
MODEL;

- In case OLD FGRID is not requested, the program checks if the CARDS file contains a line like
BLUEMOST-WAVELENGTH = x.x
(only BLUEMOST is significant for the keyword). In this case, x.x (in Angstroem) specifies the
shortest wavelength point, which, however, might be superseded by a bluer edge or line.
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- If neither OLD FGRID nor BLUEMOST-WAVELENGTH is found in the CARDS file, the code looks for
a file FGRID in the wrdatan directory and takes all wavelenghts listed there to the coarse grid. If
FGRID does not exist in this directory, all methods to specify the coarse wavelength grid failed and
an ERROR STOP is executed.

BROYDEN= n
use Broyden method for solving the rate equation (steal) not before the n-th iteration. So for the first n
- 1 iterations the Newton-Raphson method is used. (This is indicated in the cpr-output file by the letter
“B” for Broyden and “N” for Newton, e.g. L= 13 Niter= 3 NNB, meaning that for the first and second
iteration Newton is used and from the third iteration on - here also the last one - the Broyden method.)

E.g. BROYDEN= 1: begin immediately with Broyden method, no inverse Jacobian is calculated (faster).
For improving the convergence, the inverse Jacobian from the last steal can be used as start approxima-
tion, saved in the DMFILE (fort.16 in tmp directory) in the ass$kn directory.

If convergence gets worse, the steal job switches back to Newton-Raphson method.

As no DMFILE is available for the very first steal, this steal must begin with a Newton-Raphson itera-
tion, and only the subsequent steals can use Broyden form the first iteration on. 1

BROYDEN RESET 1.
parameter for cancelation of Broyden iteration. Broyden iteration is canceld, if the norm ||⃗n|| > BRRESET
× ||⃗nold||.
(subroutine: linpop)

COLI: GAMMA
s. GAMMA; this GAMMA is used for iron and continua in the coli job on the fine frequency grid.
Recommended are values like GAMMA=20. or 10.

COLI: INTEGRATION ELABORATED obsolete option (is now default)

COLI: OPERATOR NOFREQUENCY obsolete option, never used

COLI: UNLUPAR GAMMAT=x.x TAUMAX=x.x TAUMAX2=x.x
Option for ALI-like amplification of the temperature correction of the "first term" in the Unsoeld-Lucy
procedure, de-activated if GAMMAT=0. Damping of the Temperature-ALO with high Rosseland optical
depth and test output to file taccelerate and wruniq$n.cpr
Defaults: GAMMAT = 0. UNLU_TAUMAX = 1000. UNLU_TAUMAX2 = 100.
Typical values:
COLI: UNLUPAR GAMMAT=1. TAUMAX=0. TAUMAX2=0.
Routines: read by deccoli, used by frequint and frequnorm.

DENSCON = d.d [TAU|VELO|RADIUS x.x1|SONIC x.x2]
| [ HILLIER x.x | EXPRADIUS x.x | EXPTAU x.x | NAJARRO x.x1 d.d2 x.x2 ]
| [LIST TAU|VELO|RADIUS x.x1 d.d1 x.x2 d.d2 . . . ]
defines the density contrast for clumped models between the clumps as seen by the rate equations and the
average matter as seen by the radiative transfer. E.g. for [WC] stars DENSCON =10., for WN DENSCON=
4, i.e. the density of the clumps is 10 times higher than the average density. Between the clumps is

1The DMFILE is copied only at the beginnig and and the end of wruniq to the tmp_data directory and back. Meanwhile it is - like
the EDDI file usually in /home/$TMPHOST/tmp_2day/$USER/ass$kn, where $TMPHOST is an entry in work/wrjobs/tmphosts,
therefore the ass directory exists only once per chain.
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nothing than void, so D is the inverse of the volume filling factor f :

D =
ϱclump

⟨ϱ⟩ = f −1
V (14)

For unclumped, smooth models DENSCON= 1.

Without any further argument the clumping starts at R∗ (innermost depth point).

More “realistic” and needed for hydrodynamic consistent models following Gräfener & Hamann (2005)
is a depth dependend clumping. If the second argument (CLUM_CRIT) is TAU, then the next argument
(x.x1) defines the optical depth τ where to start followed by the value (x.x2) of τ where clumping has
reached DENSCON value, e.g. DENSCON = 10. TAU 0.7 0.35. For the routine clump_struct.f
the order of τ1, τ2 doesn’t matter (automatically sorted). So, the smooth transition for every depth point
L between τ1, τ2 is described by

Dl =
1
2

[
1 − cos

(
π

∆x
[τl − τ1]

)]
+

1
2

[
1 + cos

(
π

∆x
[τl − τ1]

)]
D∞ (15)

where Dl is the density contrast at depth point l, ∆x = τ2 − τ1 and D∞ is the given (maximum) DENSCON
value.

If the second argument is VELO, arguments x.x1 and x.x2 are understood as velocities. If the second
argument is RADIUS, arguments x.x1 and x.x2 are understood as radii.

The keyword SONIC refers to radius, velocity, or optical depth of the sonic point (instead of giving x.x).
Note that the sonic point here refers only to the sound speed and does not account for any microturbu-
lence which might be specified via the MIC card.

For numerical stability (esp. in the TAUMAX iteration) one should avoid to have something like a shallow
step for D over τ. At least 3 grid points for a not too steep increase of D are recommended.

The HILLIER version (Martins et al. 2009) of depth dependent clumping is called via, e.g.

DENSCON = 10. HILLIER 100

with the last argument being the reference velocity vcl in the formula for the depth dependent filling
factor:

f = f∞ + (1 − f∞) exp(−v(r)/vcl) (16)

Note that f∞ is only reached for v(r) ≫ vcl

Alternatively, the last argument can also been as a relative number w.r.t. the sonic point, e.g., 0.75S
means 75% vsonic.

Similiar to the Hillier formula but over radius, is the EXPRADIUS formula:

f = f∞ + (1 − f∞) exp
(
− r − R∗

rcl − Rast

)
(17)

or over the τRoss, cont scale, the EXPTAU:

f = f∞ + (1 − f∞) exp
(
−τ(r)
τcl

)
(18)

Morover, the clumping formula by Najarro et al. (2009) via keyword NAJARRO also allows for a an
increase of the clumping, but also for a decrease after the maximum (d.d) has been reached. With
d.d2 = 1 the wind will be unclumped again in the outer parts. Note, however that this maybe unphysical,
as usually vexp ≪ v∞ for the clumps.

f = fmax + (1 − fmax) exp
(
− v(r)
vcl,1

)
+ ( f∞ − fmax) exp

(
−v∞ − v(r)
vcl,2

)
(19)
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Note that for this formula the first density contrast does not denote the outermost value, but only the
maximum value Dmax. Hence Dmax = f −1

max = d.d, D∞ = f −1∞ = d.d2, vcl,1 = x.x1, and vcl,2 = x.x2.

Examples:
DENSCON 20 TAU 0.01 0.1
DENSCON 20. VELO 0.1 1.
DENSCON 20. RADIUS SONIC 2.
DENSCON 10. HILLIER 0.75S
DENSCON 20. EXPRADIUS 1.04
DENSCON 25. EXPTAU 1.0
DENSCON 12.5 NAJARRO 2.5 1. 2.0

A different, more flexible way of describing the depth dependence of the density contrast is possible by
using LIST, e.g,
DENSCON = 50. LIST VELO SONIC 5. 1000. 15.
with pairs depth-coordinate clumping-factor, where the depth-coordinates can be given as velocities,
radii, or optical depths, depending on the keyword after LIST. The density contrast before the the LIST
keyword refers to the default and outermost value while the list has to be given in the direction inside to
outside. For the given example this means that D = 5 from v(R∗) up to the sonic point, D = 15 from the
sonic point up to v = 1000 and, since no further steps are given, D = 50 outwards. To avoid numerically
unfavorable harsh steps, a smoothing over three depth points is performed.

DRLINE ALL | i | i TO j
include DRTRANSIT lines from file DATOM in radiative transfer performed by the coli program, so
stabilizing lines from autoionization levels are treated as normal line transitions.
Arguments:
DRLINE ALL – include all lines
DRLINE i – include only the i-th DRTRANSIT line
DRLINE i TO j – include the i-th up to the j-th DRTRANSIT line

Mixing of moment equations with the coeficient EDDIMIX is enabled by default, meaning g+EDDIMIX·h,
where h = H/J and g = N/H. EDDIXMIX is autmatically adjusted (minimized), for each radial point
(otherwise: NO EDDIMIX).

EDDIMIX START =x.x
sets start value for EDDMIX the automatic adjustment of the EDDIMIX coefficient; default is x.x = 1.0.

EDDIMIX FIX=x.x
sets the minimum value for EDDIXMIX; by default, no minimum value is set.

EDDIMIX MAX=x.x
sets the maximum value for EDDIXMIX; by default, no maximum value is set.

Note: By setting all three EDDIMIX values (START, FIX alias minimum, and MAX) to the same number,
the EDDIMIX coefficient has constantly that vaule throughout all depth points and iterations.

EDDINGTON-GAMMA x.x
setting the Eddington Γ for the hydrostatic part of the atmosphere for HYDROSTATIC INTEGRATION
instead of calculating it from the model atmosphere. If HYDROSTATIC INTEGRATION FULL is chosen,
Γ includes the full radiative force.

Option AUTO is not supported any more.

This option is only read in wrstart and written to the model.
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see→HYDROSTATIC INTEGRATION,→LOG GEFF
EPSILON=x.x

threshold for model convergence criterion: As soon as the relative corrections of all levels with popula-
tion numbers larger than given by SMALLPOP (CORMAX in wruniq.out) are smaller than this value

CORMAX =

(
max
|nnew − nold|

nold

)
< EPSILON (20)

the model is considered to be converged. Typically EPSILON= 0.01. The check command shows
log CORRMAX.

EXTRAP [NOTEMP]
perform extrap job based on the method by Ng (1974). The corrections of the population numbers and
the temperature stratification of the last 4 iterations are extrapolated (method NG4). Extrapolation is
only performed for population numbers larger than 1.E-15 and not for the 5 outermost depthpoints.
Option NOTEMP disables extrapolation of the temperature.

FLUXEPS=x.x
With this option in use, a model will not report as converged, and will not proceed to the formal job,
unless the relative deviation between the actual flux and the correct flux is at all depth points smaller
than the value specified by this option (cf. PLOT HTOT). This criterion only works when temperature
corrections are applied.

GAMMA=x.x
sets γ to the given value , e.g. GAMMA= 1.05. This parameter controls the Approximate Lambda
Operator (ALO) in the following way: a frequency is understood as not beeing a part of the line core if a
ray exists, which reaches the outer or inner boundary of the atmosphere on a optical path with τ(ν, r) < γ
.

In an expanding atmosphere every photon is redshifted w.r.t. its comoving frame (CMF). Therefore
every photon, emitted at the blue line wing has to pass the line core. Therefore the blue part of the line
is part of the line core, if τ(r) > γ.

The smaller γ, the larger is the core fraction, which are calculated via the ALO method (with core
fraction fc),

Jnew = (1 − (1 − ε) fc)−1 (JFS − (1 − ε) fcJold) . (21)

This acclerates the convergence of the model.

Construction of ALO (Hamann 1987):

Λ∗ν = 1 − 1 − e−τν/γ

τ/γ
(22)

The ALI method can be switched of by γ = 0.

GAMMAD=x.x
similar to GAMMA but acts on iron lines only. Note, however, that as default GAMMAD=.0 is set automat-
ically, as soon as temperature corrections are active, because the ALO extrapolation is not compatible
with a temperature correction factor which is applied to the iron line trasition rates (cf. Sect. ??). See
also the option TCORR FERATES OFF

GAMMAL=x.x
similar to GAMMA but acts on weak non-resonance linse only.

should maybe be a little bit larger, e.g.
GAMMAL=5.
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HYDROSTATIC INTEGRATION [FULL|FULLHD] [MEAN] [REDUCE=x.x] [SONIC] [EPS=x.x]
Action: perform detailed integration of the hydrostatic equation in WRSTART and SUBROUTINE ENSURETAUMAX.
Default: apply the barometric formula with fixed scale-height.

In WRSTART, after calculation of popnumbers and T (r) by subroutine GREY, the subroutine VELTHIN
recalculates the hydrostatic stratification. The geomesh is then setup again, including recalculations
by GREY. If τmax-enforcement has been enabled (by using the FIX or MIN option in the TAUMAX line)
the subroutine VELTHIN will be called in a similar way as in WRSTART, just without using the GREY
approximations.

Options:
FULL : the radiative force includes all contributions from continua and lines – if FULL is not given, only
the radiation pressure from Thomson scattering by free electrons is taken into account.
FULLHD : same as option FULL, but now solving not the hydrostatic, but the hydrodynamic equation, i.e.
taking into account the inertia term 3 3′.
MEAN : the radiative force is averaged over the hydrostatic part, either for Thomson scattering or all
contributions (so together with option FULL).
REDUCE [=x.x] : damping factor for the corrections of the radiative force between subsequent itera-
tions. (If the REDUCE keyword is set without a value, a damping factor of 0.1 is used. If the REDUCE
keyword is missing, the damping factor is 1.0, i.e. no damping is applied.)
SONIC [=x.x] : the connection point is forced to coincide with the sonic point; consequently, the ve-
locity gradient is not necessarily continuous there. If the SONIC keyword is followed by a number, the
connectionpoint is forced to lie at the velocity 3sonic × x.x. 3sonic denotes the isothermal sound speed, not
accounting for any microturbulence.
EPS=x.x : recommended parameter; by default, the fulfillment of the hydrostatic equation is NOT a
necessary criterion for considering a model as converged. By adding the EPS parameter, this becomes a
convergence critertion. E.g.,
HYDROSTATIC INTEGRATION FULL[HD] EPS=0.05
requests that the deviation from the hydrostatic equation must be less than 5 percent before a model is
considered as being converged.

The HYDROSTATIC line is read in every iteration and can therefore be changed on the fly.

Attention if combined with LOG GEFF option:

If LOG GEFF is prescribed it must be followed by the option RADFORCE=FULL or RADFORCE=ELECTRON
to be consistent with HYDROSTATIC INTEGRATION. The only two allowed combinations of LOG GEFF
and HYDROSTATIC INTEGRATION are therefore:
LOG GEFF = x.x RADFORCE=FULL
HYDROSTATIC INTEGRATION FULL

which accounts fully for the radiative force or, if only accounting for the Thomson scattering:
LOG GEFF=x.x RADFORCE=ELECTRON
HYDROSTATIC INTEGRATION

Further options for tests and debugging:

NORUKU : emply simpler integration based on the grid points instead of a sub-grid Runge-Kutta integra-
tion;

SMOOTH : smooth the resulting velocity stratification between neighboring points;

NONMONO : allow for non-monotonic velocities in the quasi-hydrostatic part;

PRINTV : print a table with the resulting velocity stratification on the new grid, indicating the criterion
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for each new grid point.

See also→VTURB,→EDDINGTON-GAMMA,→RADGAMMA-START
ITERATION CONTINUUM obsolete, since it is now default.

Sets the BITCONT on TRUE, enables iteration of the continuum at low jobnumbers of 3 . . . 10 (short
coli, only steal-help!). Necessary if started with temperature corrections, first COLIs and STEALs are
omitted. See also NO CONTINUUM ITERATION

ITMAX=n
maximum number of iterations n to solve rate equations (population numbers) for every depth point.
Usually ITMAX= 50. If a solution after ITMAX iterations can not be found for some depth point, a
modify is performed automatically (default) to interpolate population numbers for this depth point
from the next (converged) depth points.

The steal program stops if 30 or more of 50 depth points are not converged (AB_steal). However, this
stop criterion is not applied if the→NO_AUTO_MODIFY option is set.

JOBMAX=n
set the maximum number of jobs to execute, usually JOBMAX = 996., i.e. stopping after 996 iterations;
if commented out only one iteration is performed. Every job (steal, wrcont, etc.) is one iteration.

JSTART [BLACKEDGE=x.x]
better than LTESTART (?), as beginning from τ = 2/3 a geometrically diluted (∼ 1

r2 ) blackbody radia-
tion field with Teff(?) is used for the start approximation of Jν and this Jν is used for the first steal
to calculate population numbers. If using this option one should give the shorter wavelength cutoff
of the emergent flux via the additional argument BLACKEDGE in Å. This cutoff can be determined by
comparison with a similar model. In some cases, the proper choice of the BLACKEDGE argument can
determine whether a model might fail immediately after the start or run smoothly, since unnaturally high
fluxes at very short wavelengths can severely harm the radiative transfer calculation.

Example for a cool model: JSTART BLACKEDGE=504.

For the range τ =TAUMAX (usually TAUMAX = 20.) up to τ = 2/3 the population numbers are
calculated under the assumption of LTE.

JSTART is the default for the WRSTART job and is executed by the wrstart program before the adapter
program (OLDSTART). Therefore wrstart.plot always contains the population numbers of the start
approximation.

LASERV=n [x.x] | [LINES=x.x]
activates Laser Version n (default: n=1; recommended: n = 2)

Background: because we write the radiative transfer equation in second order, negative total opacities
must be avoided.

Optional parameter LINES=x.x (in old syntax also without keyword): the minimum total (line + con-
tinuum) opacity is limited to x.x· continuum opacity (default: x.x = 0.01). Hence, the default allows
overpopulations in line transitions as long as the remaining opacities extinguish the laser. Strict sup-
pression of lines which would laser for themselves is requested by setting x.x = 1.0.

LASERV=2 prevents additionalle that lines with negative opacities are included in the correction amplifi-
cation via ALOs (see Sect. 13).

Note that in the current code version (since April 2019), bound-free continua are strictly prevented from
adding negative opacities to the total opacity.
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LEVEL n- m
for wrstart evaluated by adapter program, together with OLDSTART. E.g.:

LEVEL 1-350
LEVEL351-999 SHIFT 36

adopts the numbers of the first 350 levels of the MODEL file and inserts at the 351th level 36 new levels.
Formatted input: after the command LEVEL three digits fixed for the levelnumber, then “-” and again
three digits fixed for level numbers O R free formatted, but with spaces between numbers and ’-’ (wrh
version only).
Further examples:

LEVEL 1- 97
LEVEL 98-210 SHIFT 2
LEVEL211-999 SHIFT 4

The first 97 levels are kept, between the former 97. and 98. level insert 2 new levels and also insert after
the 210. level 2 more new levels (SHIFT = 2 + 2 = 4).
Further options

LEVEL n = m

Population numbers for level n (new) are taken from level m (old).

LEVEL n NULL
LEVEL n - m NULL

Population numbers for level n or n - m respectively are set to zero (otherwise LTE numbers from the
steal-program).

LEVEL n WEIGHT w
LEVEL n - m WEIGHT w

Multiplication of the old population numbers with w.

E.g. split an existing level (n = 7) into two:

LEVEL 1-7
LEVEL 8-999 SHIFT 1
LEVEL 8=7
LEVEL 7 WEIGHT 0.33
LEVEL 8 WEIGHT 0.66

LOG G=x.x
deprecated, use→LOG GEFF or LOG GGRAV instead. Due to backward compartibility issues, LOG G is
interpreted as→LOG GEFF.

LOG GEFF=x.x RADFORCE=[ FULL | ELECTRON ]
value of log geff (in cgs) for the density scale height (depth grid), e.g. LOG GEFF= 2.3 for an extreme
helium star.
LOG GEFF= ? calculates log geff from→MSTAR and RSTAR with initial guessing of Eddington-Gamma
Γ.

LOG GGRAV=x.x
value of log ggrav, i.e. without correction for Γ.
Note: For setting log ggrav and accounting for Γ at the same time, use additionally
→ EDDINGTON-GAMMA

LOG L=x.x
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value of the luminosity in log(L/L⊙), e.g. LOG L=3.7 for 5000 L⊙.

LOG Q=x.x
specification of the parameter Q, which is more common for O-stars, instead of the transformed radius
Rt (→RTRANS) or mass-loss rate Ṁ (→MDOT), where

Q :=
Ṁ
√

D
(v∞ R∗)3/2 (23)

So the transformed radius can be obtained from Q via

Rt = N Q−2/3 v−1/3
∞ (24)

with normalization N =

(
10−4 M⊙ yr−1

2500 km s−1

)2/3

(25)

following ? and also with density contrast fcl ≡ D from eq. (54) in ?.

LTESTART [BLACKEDGE=x.x]
the start approximation for Jν is calculated from a blackbody radiation field of the local temperature in
wrstart. This Jν is used for the calculation of the population numbers of the first steal running after
wrstart. This option can also be combined with the OLD TEMPERATURE STRATIFICATION card.
The optional argument BLACKEDGE (in Å) allows for a cutoff at shorter wavelength to avoid unnatural
high fluxes there.

MDOT=x.x
value of the mass loss rate in log

(
M⊙ a−1

)
, e.g. MDOT= -4.625, cf. also RTRANS. One has to specify

either MDOT, MDTRANS, RTRANS, or LOG Q.

MDTRANS=x.x
value of the transformed mass loss rate Ṁt in log

(
M⊙ a−1

)
, e.g. MDOT= -3.5. This quantity, introduced

by Gräfener & Vink (2013), is an alternative to RTRANS and can be seen as the mass-loss rate the star
would have if it has D = 1, a luminosity of 106L⊙, and 3∞ = 1000 kms s−1. The formal definition reads

Ṁt = Ṁ
√

D ·
(
1000 km s−1

v∞

) (
106L⊙

L

)3/4

(26)

MLANGER
enforce the use of the M-L-relation by Langer (1989) for WN stars, i.e. if→WRTYPE is set or composition
of the star corresponds to a WN star. Otherwise the relation by Gräfener et al. (2011) is used.

see→MSTAR,→WRTYPE
MSTAR=x.x

prescribe the value of the stellar mass in M⊙, e.g. for Central Stars of Planetary Nebulae: MSTAR=0.6.
Needed for calculation of density scale height as an alternative to given parameter LOG GGRAV. If neither
MSTAR nor LOG GGRAV of LOG GEFF is given, MSTAR is calculated from an appropriate mass-luminosity
relation for the corresponding composition, i.e. for WC star (XC ≥ 0.1 mass fraction), O star (XH ≥
0.45), or WN star (else).

see→WRTYPE,→LOG GEFF, LOG GGRAV, HYDROSTATIC INTEGRATION

NCORE= n
specifies the number of impact parameter points < 1.0 (core rays), see Fig. 11 on page 136. Default is
NCORE = 4
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NEWWRC= n
solve angle-dependent radiative transfer equation for specific intensity Iν (only continuum, WRCONT)
only after each nth iteration (default: n = 5), i.e. after nth steal.
Most important: a COLI+ is initiated, which performs additionally to the usual COLIMO – solving the
moment equations – a COLIRAY, which solves the angle-dependend radiative transfer equation for lines
and continua with help of short characteristics (“ray-by-ray”), and by that, it updates the Eddington
factors.
Recommended: NEWWRC= 6.

NO_AUTO_MODIFY
if this command is given, non-converged depth-points are not interpolated. Instead, the last result of
the Newton/Broyden iteration is used. Be aware that the program will not stop even if more than 30
depth points are not converged, as it would do without this option. Warning: This should be used under
manual supervision only and after making a backup copy of the MODEL file.

NO EXTRAP
skip extrapolation job extrap (usually before wrcont)

NO CONTINUUM ITERATION
switches continuum iteration off. See ITERATION CONTINUUM.

NO TEMPERATURE CORRECTION
do not apply any temperature corrections. The temperatue stratification remains unchanged. This can
also be usefull to “calm” the corrections of the population numbers (convergence problems).

NO TEMPERATURE CORRECTIONS WHILE COR. .GT. -1.0 1.0
do not apply temperature corrections as long as the logarithm of the relative maximal correction of
the population numbers are larger than the first value given. And switch off temperature corrections
again as soon as logarithm of the relative maximal corrections excess the second value. (s. also TCORR
ALTERNATE).

NO DATOM OUTPUT FOR CONVERGED MODEL obsolet, see p. 51 PRINT DATOM IFCONVERGED

NO POPNUMBER OUTPUT FOR CONVERGED MODEL obsolet, see p. 52 PRINT POPNUMBERS IFCONVERGED

NOTDIFFUS
Option to switch off TDIFFUS (the latter is now standard). If this option is set, the temperature cor-
rections are perfomed as specified on the UNLUTEC cards up to inner boundary. Furthermore, a flux-
corrected temperature gradient is used for the diffusion approximation at the inner boundary used in the
comoving frame radiative transfer calculations instead of the pure diffusion gradient.

OB-VERS n Outer Boundary condition for inward specific intensity I− (ν always omitted):

0 = no radiation from outer boundary inwards: I− = 0

1 = from damped source function: I− = S (1) · (1 − e−τB
)
, where τB = κ(1)r(1)

2 = sourcefunction damped by r−2:

I− =



ηK(1)
κK(1)

τB
3

: τB < 10−3

ηK(1)
κK(1)

min

1 − 2

τB
+

2
τ2B
− 2
τ2B

e−τB
 , 0.9999

 : τB ≥ 10−3

4 = (default) similar to OB-VERS 2,
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but S B is extrapolated via SFIT(ND, OPA, ETA, ENTOT, XLAM, SBOUND, PLOT) 2 , so:

I− =



S B
τB
3

: τB < 10−3

S B

1 − 2
τB
+

2
τ2B
− 2
τ2B

e−τB
 : τB ≥ 10−3

5 = same as OB-VERS 4, but τB = κ1r(1), where κ(1) is only continuum opacity

calculation of I− from source function:

τ(r) =
∫ ∞

r
κB

r2
B

r′2
dr′ =

κBr2
B

r
(27)

τB = τ(rB) (28)

S (r) = S B
r2

B

r2 = S B
τ(r)2

τ2B
(29)

I−(rB) =
∫ τB

0
S B
τ2

τ2B
eτ−τBdτ = S B

1 − 2
τB
+

2
τ2B
− 2e−τB

τB

 (30)

OLDSTART [DEPART] [TAU]
for wrstart script; the adapter program reads in (decadp.f) the population numbers from the old
MODEL file in the wrdata$kn directory and replaces the population numbers from the preceding steal
run of the start approximation by those from the old model.

Default is interpolation of population numbers ni/ntot on the radius grid.

See also OLD T.

By keyword DEPART the departure coefficients3 from the old MODEL file are used instead of population
numbers.

By keyword TAU interpolation is done on the τ grid instead of the radius grid. If also the temperature
should be adapted from old model, please use OLD T TAU.

Recommendations:
• Interpolation on radius grid ist appropriate for correct adaption of wind region. E.g. changing

mass-loss rate.

• Interpolation on τ grid is appropriate for correct adaption of photospheric region. E.g. if TAUMAX
is relevant.

• If photosphere matters: If the old model has a very different TAUMAX at the end of the iteration (see
output in wruniq.out), e.g. 30 instead of 20 used by wrstart, it is recommended to perform
the interpolations of the adapter on the τ grid, i.e. OLDSTART TAU and OLD T TAU.

• Deparature coefficients may be useful when changing abundances only.

OLD STRAT
short for OLD STRATIFICATION; equivalent to OLD VELO or OLD V; as effect, the velocity field is taken
from the old MODEL for the start approximation, as well as the radius grid and the associated vector

2Smooth extrapolation of MBOUND outermost points (default: MBOUND=30) via polynom of degree KPLUS1 - 1, default: KPLUS1 =
4, i.e. cubic. Least-square fit of of Trad from line source function for weighted MBOUND depth points, lower weight for outer points.

3Departure coefficients are defined as the ratio of the population numbers in the non-LTE case to LTE population numbers:

bul :=
nu

nl
· rlu with: rlu :=

(
nl

nu

)

LT E
(31)

I.e. for bul = 1 and same profile function for absorption and emission this is the LTE case again and therefore S ν = Bν.
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with the DENSCON table. Note that the velocity field and the DENSCON vector will be updated later
when the TAUMAX FIX option is set and requieres a new stratification in order to ensure the requested
optical depth TAUMAX at the inner boundary.

Caution: Using OLD STRAT together with a change of the terminal velocity v∞ will result in a linear
scaling of the old velocity field to match the new v∞. If the stratification changes by much, e.g. due to
different v∞ or mass-loss rate, it might be a better start approximation to keep just the radiation pressure
in the hydrostatic domain by using the option RADGAMMA-START=OLD instead of OLD STRAT.

OLD STRATIFICATION
s. OLD STRAT

OLD T
abbrevation for OLD TEMPERATURE STRATIFICATION.
Interpolation over the radius grid (better to use together with OLDSTART).

OLD T TAU
s. OLD T,
interpolation over τ. Should be used together with OLDSTART TAU

OLD TEMPERATURE STRATIFICATION
same as OLD T

OLD V
see OLD STRAT

OLD VELOTABLE
takes the tabulated velocity field (see VELOTABLE) from the old MODEL. This is only possible if the old
MODEL hab been calculated with a VELOTABLE input as well, and if VELOTABLE is also requested in
the current CARDS file. In contrast to other OLDSTART options, the OLD VELOTABLE is not only a starting
value, but remains valid throughout the model calculation in the same way as a TABLE input file would
be.

By default, also the SONIC=x.x value from the old model is carried over. However, if SONIC=x.x is
explicitely given on the VELOTABLE line, this new value applies for the new model.

OPC= DIAGTAU | DIAGMIN | DIAG | DIAGNC | NONE
different ways of setting up dJ/dS c (Scharmer weight factor for the continuum) by subroutine FREQUINT.

PLANE-PARALLEL TEMPERATURE STRUCTURE
use a plane-parallel temperature stratification for the approximation in wrstart (default is spherical tem-
perature structure.

PLOT ACC [DEPTHINDEX|RADIUS|VELOCITY]
plot log(a/g) as function of the radius grid (depth points). Acceleration a is caused by gas- and radia-
tion pressure, while g is gravitational accerlation. Furthermore the important work ratio a/g is shown.
Usually a/g ≤ 1, hydrodynamical consistent is a/g = 1. If a/g > 1 the value of the mass loss compared
with luminosity and g is too low, rescale at least one of them.

The different options allow to plot this quantity over various depth scales. E.g., with the option VELOCITY,
log(a/g) is plotted as function of v(r)/v∞ within the range 0 . . . 1.

PLOT DEPART [GROUNDSTATES]
followed by level designations, e.g.
PLOT DEPART ”HEI 1S1..1” ”HE II....1”
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plots the departure coefficients, i.e.

bi =
ni

ntot

(
ntot

ni

)

LTE
(32)

to indicate the departure of the NLTE population numbers from LTE, so in LTE log(bi) = 0.

With option GROUNDSTATES the departure coefficients are automatically plotted for all groundstates.

PLOT FLUX [TRAD|FLAM|LOGF] [10PC] [XMIN=x.x] [XMAX=x.x]
delivers a plot of the emergent flux, both of the continuum-only ( wrcont in black) and including lines
(como in red) (but after degrading the spectrum to the coarse frequency grid). The x axis is always in
log λ[Å], shown is output from wrcont (black) und como (red).

Options (free in format and position):

TRAD in K, i.e. as a radiation temperature (default),
FLAM in erg cm−2 s−1 Å−1, i.e. as log Fλ or
LOGF in erg cm−2 s−1 Hz−1, i.e. as log Fν
10PC gives the flux at 10pc distance; default is the flux referring to the stellar radius R∗.

XMIN = x.x begin of plotted range (in log lambda/Ang); default: XMIN=2
XMAX = x.x end of plotted range; default: XMAX = 4
s. WR-Memo 060306

PLOT GAMMA [INDEX|RADIUS|TAU|VELOCITY|DENS|ENTOT]
plot Γrad := arad/g as a function of the quantity indicated by the given optional third keyword (default:
INDEX, i.e. plot over depth points). All contributions to the radiative acceleration are shown on a non-
logarithmic scale, thereby focussing on the layers with Γrad ≤ 1. In addition, the contributions to arad
from the total continuum and from scattering of free electrons are shown. The latter can be calculated
in two ways, either directly from the radiative transfer (COLI) or from the electron density (STEAL)
multiplied with the L/M-ratio of the model. Since both terms should agree eventually, the difference of
these last two curves can also be used as a convergence indicator.

The different options allow to plot this quantity over various depth scales. E.g., with option VELOCITY
log(a/g) is plotted as function of v(r)/v∞ within the range 0 . . . 1.

PLOT GRADI
plots the velocity gradient dv/dr over log(r/R∗ − 1). The connection radius is indicated by a vertical
line.

PLOT HTOT
calls plot HSUM: plot flux H in units of Trad[ kK] over depth grid, with colors:
black, thick line: the intended CMF-flux of the model in radiative equilibrium, obtained by integrating
eq. (61) from Hamann & Gräfener (2003), i.e. accounting for the losses due to wind work, starting at
inner bound ( HTOTCMF0)
red, normal line: actual flux H of the model (HTOTL)
green, thin line: Teff
Radiative equilibrium is therefore reached, if the red line (actual flux HTOTL) equals the black line
(CMF-flux in radiative equlibirium HTOTCMF0), i.e. correct temperature stratification.
Routines: plot written by PLOTHSUM, called by STEAL

PLOT HTOTC
plot flux as Trad over depth index, done by como.

PLOT_INBOX
in the output steal.plot, plot only symbols within the plot boundary given by PLOT_POPRANGE.

PLOT JNUE L|K n|m [TRAD]
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calls plot JNUE: plot the continuum radiation field Jc,ν (aka XJC variable) in erg cm−2 s−1 Hz−1 or (if
TRAD keyword is set) in units of Trad[ kK] either over log wavelength for a given depth point (keyword
L), or over depth index for a given frequency index (keyword K). Note that the fourth parameter, i.e.
the specified depth point or frequency index, must be an integer. Multiple lines with PLOT JNUE
and different parameters are allowed and can be used to study the radiation field throughout a model
stratification.

Example: PLOT JNUE L 15

PLOT JLINE L|IND n|m [TRAD]
calls plot JLINE: plot the line radiation field JL,ν (aka XJL variable) in erg cm−2 s−1 Hz−1 or (if TRAD
keyword is set) in units of Trad[ kK] either over log wavelength for a given depth point (keyword L), or
over depth index for a given line index (keyword IND). Note that the fourth parameter, i.e. the specified
depth point or line index, must be an integer. Multiple lines with PLOT JLINE and different parameters
are allowed.

Example: PLOT JLINE L 25

PLOT POP "LEVEL NN" ... | GROUNDSTATES [ELEMENT]
Plot the population numbers of the given levels (from DATOM) over density log(ntot/ cm3). The depth
point grid is added automatically for each plot. E.g. PLOT POP, "HEI 1S1..1" "HE II....1" "HE
III...." for the ground states of our standard helium.

With option GROUNDSTATES population numbers are plotted for each groundstate of all ions. Each
element in an extra plot. If additionally ELEMENT is given, e.g. HE, then only the groundstates of this
element are plotted.

PLOT_POPRANGE x.x
defines the minimum of plot range for the population numbers in the output steal.plot,
e.g. PLOT_POPRANGE=1.E-35 plots log(ni/ntot) from −35 up to 0.

PLOT RTAU1
plot R(τ = 1) over frequency, done by como.

PLOT SIGMAFE "LEVEL N" "LEVEL M"
plots the superlevel cross-section σLU (if existing) between the superleves "LEVEL N" and "LEVEL
M" in units of 10−15 cm2 over wavelength λ in Å. The order of the given levels is not important, they
are automatically sorted into lower and upper one. In order to obtain a valid plot, both levels must exist
and there must also be a superlevel transition between them. In all other cases, a warning will be issued
and no plot will be created.

Example: PLOT SIGMAFE "G 6....1e" "G 6....5o"

PLOT T [TAU] [XMIN=x.x XMAX=x.x YMIN=x.x YMAX=x.x]
plot temperature stratification over radius grid (log

(
R
R∗ − 1

)
, i.e. R∗ at −∞.)

Options: XMIN=x.x XMAX=x.x YMIN=x.x YMAX=x.x in arbitrary order and selection. Default is to
use auto scaling by WRplot.

With option TAU the temperature stratification is plotted over τRoss.

PLOT UNLU [ALL|LOCAL|TBALANCE]
plot temperature corrections over depth grid. With option ALL all terms, even if set to 0, are shown for
information. Option LOCAL enforces plotting of the local term, while option TBALANCE enforces plotting
of the thermal balance term.

PLOT V
(only wrh) plots v(r)/100 km/s over log(r/R∗ − 1). If a beta-law is connected to a hydrostatic part, the
connection point is indicated by a small square.
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POPMIN
Typical: POPMIN = 1.E-27, population numbers of levels, calculated by solving the rate equation
smaller than this value (in ni/ntot), especially negative ore zero ones, will be set to this value.
wrh: Furthermore, for transition rates between levels set to POPMIN the emissivity will be set to zero,
otherwise there can appear “spikes” in the emergent flux from these “unpopulated” levels.

PRINT DATOM
output of the decoded DATOM file, i.e. atomic data, into steal.out or wruniq$1.out respectively, cf.
PRINT ELEMENT.

PRINT DATOM IFCONVERGED
output of the decoded DATOM file to wruniq.out only for converged model (NODATOM=.FALSE.). Re-
places the former option NO DATOM OUTPUT FOR CONVERGED MODEL, but with contrary meaning.

PRINT ELEMENT [OXYGEN]
Restricts PRINT options to the given element, e.g. oxygen. Instead of the name OXYGEN also the
symbol of the element O is possible. Affects
PRINT POP
PRINT DATOM
PRINT RATES

PRINT FLUX
This option is automatically activated at the end of program steal in case that the model is finally
converged.

If set in the CARDS file during iteration, PRINT FLUX will create an overwhelming amount of output –
even worse since the same action is also executed each time by program wrcont.

However, it perfectly makes sense to use PRINT FLUX in a separate run of program steal, for instance
with OUTPUT ONLY – the so-called steal-help job.

The output demanded by PRINT FLUX starts with a long list of fluxes over the coarse frequency grid in
various units. Note that these fluxes are continuum-only as calculated by program wrcont, i.e. corre-
sponding to the black curve returned by PLOT FLUX.

Subsequently follows a table with various ionizing fluxes; this table is given first for the continuum flux,
and then for the full flux from COLI.

Finally follow tables with ABSOLUTE MONOCHROMATIC MAGNITUDES and with ABSOLUTE MAGNITUDES
in various broad-band filters (cf. Fig. 1).

PRINT HTOTC
como will print the total continuum flux as Teff
Format: DEPTH.INDEX |TEFF(L)

PRINT INT
wrcont and como will print mean intensities to stdout
long table for every frequency (continuum, e.g. 769 points), and every depth point (e.g. L = 1 . . . 50).
Format wrcont:
FREQ.INDEX | DEPTH.INDEX | J-NUE | T-RAD | EDDI-f | SPHERICIY-q | EDDI-h
Format como:
FREQ.INDEX | WAVELENGTH |DEPTH.INDEX | J-NUE |T-RAD

PRINT MODINFO
output of model info (to out and modinfo.kasdefs) as for a stealhelp or converged model (alterna-
tively one may use the CARDS option PRINT SUMMARY)

PRINT OPA [n]
wrcont and como will print to the corresponding .out file tables with continuum opacity, emissivity,
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Figure 1: Filter functions used for calculating absolute magnitudes. Those magnitudes are printed by the com-
mand PRINT FLUX, or automatically at the end of wruniq.out when a model is finally converged.
Source of the filter functions is mainly the website http://svo2.cab.inta-csic.es/svo/theory/fps3/

source function, etcetera. The table columns are:
FREQ.INDEX | DEPTH.INDEX | OPA | Th-Frac | TAU | R(TAU=1) | MAIN_CONTRIB (PROCESS
| LEVEL) | LASER WARN | ETA | S (i.e. source function as brightness temperature)
The tables are grouped per frequency point in the coarse frequency grid (see wrstart.out) i.e. ≈1000 ...
3000 blocks. In each block, the depth index runs from 1 ... ND. If the optional number n is specified, the
output is reduced to depth indices 1, 1+n, 1+2n, ..., ND.

PRINT POP
print population numbers, cf. PRINT ELEMENT.

PRINT POP IFCONVERGED
print population numbers to wruniq.out only for converged model (NOPOP=.FALSE.). Replaces the
former option NO POPNUMBER OUTPUT FOR CONVERGED MODEL, but with contrary meaning.

PRINT RATES [i] [FROM d1] [TO d2] [LEVEL=”levelname”]
print the rate matrix for every ith (integer) depth point between d1 and d2 into the steal.out or wruniq$1.out
respectively. If a levelname is given (wrh version), only the five leading gains and losses (absolute rates,
not net rates) for this level are printed E.g.

PRINT RATES 1 FROM 35 TO 35 LEVEL="N III5P2.."
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R

prints the rate matrix for every (“1”) depth point between L = 35 and L = 35, so for only one, for the
level “N III5P2..”, so:
Leading transition rates from/to level: N III5P2.. at depth index 35

------------- GAINS ---------------- ------------- LOSSES ----------------

N III3S2.8 LOWER 2.977E-03 RAD N III3S2.8 LOWER 1.811E-03 RAD
N III5D2.. UPPER 4.755E-04 COL N III3D211 LOWER 6.809E-04 RAD
N III3D211 LOWER 3.953E-04 RAD N III4D220 LOWER 6.697E-04 RAD
N 32P2D2.3 LOWER 3.382E-04 RAD N III5D2.. UPPER 6.331E-04 COL
N III5S2.. LOWER 2.918E-04 COL N III5S2.. LOWER 4.076E-04 RAD

If used in the the steal-job, the OUTPUT ONLY option must be disabled, as the steal-program has to
solve the equations instead of just reading the population numbers. This is done with the subroutine
POPZERO, which otherwise is only used for the very first steal run in the wrstart job. The more
sophisticated algorithms used in the ALI iteration would not be able to provide the pristine rates and
rate coefficients RATCO, CRATE, RRATE.

PRINT RATES can produce huge amounts of output. Thefore, it is inhibited to use it repeatedly within
the iteration chain. Instead, PRINT RATES makes the next run of the steal program to stop the chain
after the rates have been printed. Moreover, this steal job does not update the MODEL file, i.e. it
effectively is for printing only.

routines: PRI1RAT, STEALCL, DECSTE, POPZERO, NLTEPOP

PRINT ZERORATES
enables output by subroutine flag_zerorates into wruniq.cpr. Lists atomic levels and correspond-
ing depth points for which the statistical equation was replaced by n( j) =POPMIN.

PROGRAM VERSION: CL obsolete

RADGAMMA-START = x.x | OLD
prescribe an initial guess of the Eddington-Gamma (including the full effect of the radiative force) in
order to faciliate the start of the hydrostatic integration in the WRSTART if HYDROSTATIC INTEGRATION
FULL is set.

x.x must be smaller than 0.9
OLD similar to option OLD STRATIFICATION, but instead of the stratification only the full radiative
acceleration is adopted from the old model for the start approximation.

see→HYDROSTATIC INTEGRATION,→EDDINGTON-GAMMA
REDUCE [.x]

reduction of all corrections done in steal, i.e. population numbers. The reduction factor .x must be
between 0. and 1. If 0. or nothing is given, then .x is set to 0.5.
Routines: read by DECSTE; used by STEALCL, PRICORR, REDCOR, STHIST.

RGRID: ND=n1 NDDENS=n2 NDVELO=n3 DLOGTAU=x.x
setting up the radius grid (depth points).

E.g. usually used:

RGRID: ND= 50 NDDENS= 8 NDVELO= 4 DLOGTAU= 5.0

meaning: ND= 50: number of depth points; NDDENS= 8 (old syntax: ND2= 8) number of depth points
used for density criterion; NDVELO= 4 (or ND3= 4) number of depth points used for the velocity crite-
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rion; DLOGTAU= 5.0 τ-spacing for the remaining points (TAU criterion)

Numbering starts at outer depth point L = 1 (RMAX criterion).

Example with more depth points:

ND= 70 NDDENS= 25 NDVELO= 5 DLOGTAU= 3.5

To ensure a proper boundary treatmeant, additional points can be set via the optional CARDS lines
SPECIAL_INNER_POINTS and SPECIAL_OUTER_POINTS (see p. 54) Although such points are called
“special”, they are part of the total number of points ND which means that they reduce the number of
remaining points for the TAU criterion.

RMAX_IN_RSUN
distance to the most outer depth point (RMAX) is given in R⊙

RSTAR x.x
specify radius of the star (at τ = TAUMAX) in R⊙. You can only prescribe two out of these three quantities:
RSTAR, TEFF, LOG L.
Note: The old syntax RSTAR (SOLAR UNITS): 12.3 is not longer supported.

RTRANS x.x[DEX]
specifying the “transformed radius”. That quantity is related to the inverse of the wind density Rt ∼ ϱ−1.
More precisely, it is the ratio between the emission measure of the wind and the area of the stellar
surface:

Rt = R∗


v∞

2500 km s−1

/
Ṁ
√

D
10−4M⊙yr−1


2/3

(33)

E.g.: RTRANS=0.48DEX, with trailing keyword DEX in logarithmic units, or in linear units Rt = 3.
The physical values envolved in Rt can also be given directly, see →MDOT, →DENSCON, →VFINAL,
→RSTAR. One has to specify either RTRANS or MDOT.

SMALLPOP=1.E-25
originally used for the CORRMAX criterion

goetz: set to 1.E-25, population numbers smaller than SMALLPOP are not accounted for in the Newton-
Raphson iteration; differing from the wrh version, population numbers smaller than 1.0E-12 are
not accounted for in the CORRMAX criterion (cannot be set by CARDS options)

wrh: set to 1.E-12 or at maximum 1.E-8, as relative large corrections for very small population num-
bers are used for the CORRMAX-criterion, i.e. population numbers smaller than SMALLPOP are
not accounted for in the MAX. CORRECTIONS criterion

SPECIAL_INNER_POINTS n [SPACING=x.x]
e.g. SPECIAL_INNER_POINTS 4 SPACING=2. Inserts additional points between the inner boundary
and the next usual grid point. The spacing parameter defines at which fraction between the boundary and
the next point the new depth point is inserted. Note that the special points are set iteratively, meaning
the if two points should be set with a default spacing of 2.0 the first one will be set at half the distance
between the inner boundary and the next point, while the second one will be set at a quarter of the
original distance as the next point is now already the first special point. If this line is not found in the
CARDS file, four special inner points are inserted. This line is an addition to the RGRID line and special
points also contribute to the total number of depth points specified in that line.

SPECIAL_OUTER_POINTS n [SPACING=x.x]
Inserts additional points between the outer boundary and the next usual grid point. The spacing param-
eter defines at which fraction between the boundary and the next point the new depth point is inserted.
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The details are described in SPECIAL_INNER_POINTS which works in the same way. Note that special
outer points contribute to the total number of depth points given in the RGRID line and therefore effec-
tively reduce the number of points inserted via τ criterion. If this line is not found in the CARDS file,
no special outer points are inserted.

SPHERICAL TEMPERATURE STRUCTURE obsolete, is now default.
See also: →PLANE-PARALLEL TEMPERATURE STRUCTURE. Only used in wrstart.

SPLITINVERSION
For inverting the derivative of the rate coefficient matrix (M) the subroutine LINSOL_SPLIT is used
instead of LINSOL. The split subroutine uses the fact that M is (almost) block-diagonal and invertes
each block instead of the complete matrix. This helps when dealing with larger numbers of atomic
levels.

STOP_AUTO_MODIFY | STOP_NONCONVERGED
the wruniq iteration is stopped if one ore more depth points are not converged. No subsequent modify
is executed automatically.

TABLE
(read by decstar, used by wrstart, tabread).
read in velocity and/or temperature structure from file TABLE for not more than 70 gridpoints. Format
of file TABLE must be:

TABLE 001 0.00001 100000.2
XXXXXXXXXXXXXXXIIIXXXXXXXFFFFFFFXXXXXXXFFFFFFFF
= 15X,I3,7X,F7.1,7X,F8.0

for depthpoint, v, and T . Alternatively a line can also have the format I5, 4F10.5 holding information
about deptpoint, radius, velocity, and temperature. The table is ended by the keyword ENDGRID. The
given quantities are then interpolated over the radius.

TAUMAX x.x [FIX|MIN] [EPS=y.y] [REDUCE=z.z] [CORRLIMIT=w.w]
Value of the optical depth which should be reached at the inner boundary (largest L),i.e. at the “radius”
of the star. Usual value is τmax = 20.
Option FIX - ensure the intended optical depth at R∗ during wruniq-iteration by readjusting the radial
depth grid and the velocity field in the steal program.
Option MIN - same as FIX, but readjustment is only done if the τND drops below the specified value.
Option EPS=x.x - accuracy for τmax (default: 1.E-4)
Option REDUCE=x.x - reduce the applied change to the velocity field by the given factor to obtain a
numerically more stable behavior. If the REDUCE keyword is found without a given factor, a damping
of 0.2 is used. If the keyword is missing, the factor is 1.0, i.e. no damping is applied.
Option CORRLIMIT=w.w - perform readjustments only if log CORRMAX is belog the specified w.w.

example: TAUMAX=20. EPS=1.E-2 FIX REDUCE=0.1

The optional parameters can be of arbitrary order. Note that REDUCE and CORRLIMIT require FIX or
MIN to be set.

TCORR ALTERNATE
apply temperature corrections only every second steal-job.

TCORR FERATES OFF
de-activates a temperature correction factor that is applied to the downward line transition rates betwenn
the (iron-group) superlevels (see end of Sect. ??. By default. these correction factors are used because
they were found to be beneficial to the convergence. However, they are incompatible with the use of
ALOs for iron. Therefore, when the correction factors are used (default), GAMMAD=.0 is enforced
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automatically as soon as temperature corrections are performed, disregarding any GAMMAD setting in
the CARDS file.

TDIFFUS obsolete
This option became standard, and is therefore no longer needed to be given. It requests that the temper-
ature and its gradient at the inner boundary are calculated from the diffusion approximation in constrast
to all other depth points.

With the option →NOTDIFFUS the innermost temperature is instead obtained in the same way that all
other temperatures are obtained, i.e. via the Unsöld-Lucy method.

Using diffusion approximation for temperature adjusting at the inner boundary, i.e. S ν = Bν for large κ
(inner boundary) after 1st order series expansion of Iν from formal solution

Iν = Bν +
µ

κν

dBν
dr

(34)

By adjusting the temperature, i.e. dT/dr for the given luminosity / flux at inner boundary via

F = −16
3
σT 3

κRoss

dT
dr

(35)

the incoming intensity is yielded by Eq. (34).

This correction is usually very small therefore it is maybe not necessary to set this card.

Read by decste into bTIDIFFUS. Subroutine tdiffus ( steal) applies T corrections according to
diffusion approximation, if bTDIFFUS is true.

TEFF=x.x
effective temperature in Kelvin at R∗ according to

L = 4πR2
∗σSBT 4 (36)

e.g. TEFF= 140000. for 140 kK.

THIN outdated, use HYDROSTATIC INTEGRATION instead (see p. 43)

TMIN outdated syntax for TMIN-START

TMIN-START=x.x
smallest temperature (in Kelvin) for the intial temperature stratification, i.e. usually at outer boundary.
E.g.: TMIN-START= 15000.

TWOTEMP x.x
This option only works in if OLD TEMPERATURE STRATIFICATION has been set. If a new model
is calculated based on an old MODEL file, this option allows you to use a second old model to set up
the temperature stratification of the new one. The second model file must be named model (in contrast
to MODEL) in the wrdata folder. The parameter specifies the weight f of the second model temperature
in relation to the first one, so the new temperature stratification is

Tnew(L) = Told1(L)
[
1 − f

]
+ f Told2(L) (37)

However, there is hardcoded cutoff at any temperature point if Tnew(L) differs more than 20% from
Told1(L).

UNLUTEC [options ]
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Note: The UNLUTEC options can be distributed over many lines, each one starting with the keyword
UNLUTEC.

Purpose: Specification of options and parameters for the Unsöld-Lucy temperature corection method.
Example:
UNLUTEC LOC=0. INT=1. OUT=1. TBALANCE=1. SMOOTH TMIN=8000.
UNLUTEC SMOOTH TMIN=6000. CUTCORR=0.02

Options and parameters:

The options:
LOC=x.x
INT=x.x
RMAX=x.x alias OUT=x.x
refer to the three different temperature correction terms as described in Hamann & Gräfener (2003),
where x.x are decimal numbers to specify their weight factor (usually 1.0 or smaller). LOC means the
local energy balance, INT the flux conservation ter„ and RMAX the contribution to the flux conservation
term from the outer boundary. Defaults are LOC=0., INT=1., and RMAX=1..

Additionally (or alternatively) to the LOC term, there is a formulation of the local energy balance as seen
from the free electrons (and not from the radiation field), invoked by the option TB=x.x (default: 1.0).

In the current form with keywords, e.g. LOC, the damping is applied only to the corresponding term.

Note that at least one of the keywords LOC, INT, OUT, TBALANCE must appear in order to indicate the
new syntax of the UNLUTEC command. Not all parameters must be in the same line, it is possible to have
up to 10 lines in beginning with UNLUTEC.

Keywords:

ACC = x.x determines the accelaration for temperature correction, the smaller this value, the sooner
the corrections will be applied (only Götz version).

CORRMAX = x.x works as a damping factor F on the applied temperature corrections ∆T , where F ist
CORRMAX / maxL(|∆T |/Told) over all depth points.

CUTCORR = x.x limits the applied temperature corrections ∆T to 1. + CUTCORR for each depth point
individually (recommended is 0.02).

EXPTAU=AUTO
Activation of depth-dependent damping factors for all temperature correction terms, with the aim that
flux conservation should be established progressingly from inner to outer layers. The factors are:

Term Damping factor
LOC exp(−τ/τ0)
INT 1 − exp(−τ/τ0)
OUT 1 − exp(−τ/τ0)
TB exp(−τ/τ0)

With AUTO, τ0 is set automatically. It can also be defined manually (e.g. EXPTAU=1.0).

For test purposes, one can also chose the parameters:

EXPTAU=AMAX1→ automatic τ0, but maximal 1.0 part

EXPTAU=AMIN1→ automatic τ0, but minimal 1.0

Alternatively to the described damping with an exponential factor, there is a different option COSTAU=τ0
(or COSTAU=AUTO etc.) which uses a cosine function for switching the damping factors between 0.0 and
1.0 over a short range in τ.
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INT = x.x damping of the integral term (default is 1.0). This term accumulates the deviation from
flux conservation from the outer boundary to the current point.

LIMIT-TO-FLUXERR = x.x damping: factor x.x by which the maximum relative temperature correc-
tion ∆T must stay below the relative deviation from flux conservation FLUXERR. All T -corrections are
scaled accordingly, i.e. the form of their radial dependence is kept.
Recommendation: LIMIT-TO-FLUXERR = 0.1

LOC = x.x damping of the local term (default is 0.0).

MONOTONIC enforces a monotonic temperature structure by interpolation (inward direction) of non-
monotonic point pairs (default is off).

OUT = x.x damping of the “RMAX”-term, which gives the deviation from the correct flux at the outer
boundary (default is 1.0).

SMOOTH smoothing of the temperatur structure (default is off).

TBALANCE = x.x [TBTAU = x.x] damping of the thermal balance term (default is 1.0). This term
accounts for thermal equilibrium of the electrons, i.e. by “heating = cooling” without taking spectral
lines into account. This term is thus an alternative to the local term, for more details see Sect. 14.2.

In contrast to the LOC term, the “thermal balance” correction does not vanish automatically in the opti-
cally thick regime (where the flux corrections are to be prefered). Therefore, the TBALANCE correction
is switched off artificially beyond some Rosseland optical depth, i.e. for τRoss > TBTAU. For a smooth
transition, the reduction of the TBALANCE term starts already when τRoss > 0.1 TBTAU. Note that τRoss
used here includes also line opacities.

The optional parameter TBTAU allows to specify the optical depth τRoss where the TBALANCE term is
switched off. Default is TBTAU = 0.1

TMIN = x.x sets the minimum allowed temperature for the corrections, i.e. every correction leading
to a lower temperature is cut off (default is 6000 K).

VDOP
Doppler velocity of micro-turbulence, given in km s−1, usually VDOP has to been scaled with VFINAL,
i.e. vDop ≈ v∞/10, e.g. VDOP=100. for VFINAL=1500. The FEDAT file opacities should be computed
with similar VDOP.

VELPAR ...

This line specifies the parameters for the wind-velocity law (β-law), which is

v(r) = v∞
(
1 − R∗

r

)β
(38)

The VELPAR line must carry all of the following four parameters:

• VFINAL=<value>
where the value terminal velocity (v∞) at outer boundary in km/s;

• VMIN=<value>
velocity at the inner boundary in km/s. If the TAUMAX option is chosen, the value specified here
serves only as initial value for the corresponding iteration in wrstart;

• BETA=<value>
gives the β exponent, e.g. β = 1.0. There exists a standard version and an alternative, slightly
different formulation of the beta-law (see Sect. 11.2). This alternative version can be selected by
setting β negative, where only the absolute value will be used as exponent and the minus sign is
the switch.

• RMAX=<value>
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defines the radius of the outer boundary; by default, the value is in units of the stellar radius RSTAR.
If the VELPAR line was preceeded by a line
RMAX_IN_RSUN
the value is interpreted as solar radii. set.

Example:
VELPAR: VFINAL= 3000. VMIN=1.598 BETA=1.0 RMAX=100.

VELOTABLE
or

VELOTABLE SONIC = x.x
uses a tabulated wind-velocity field that has to be provided. This can be done in two ways:

1. A file TABLE is provided in the directory wrdata<n> which contains two columns (XY-table):
Column (1): radius in units of the stellar radius R∗;
Column (2): velocity in arbitrary units; if the values should not be scaled to VFINAL but are
to be taken at face value, the velocities must be in km/s (this case is requested by specifying
VFINAL=FROM-VELOTABLE or VFINAL=x.x with a non-positive value).

Additional columns will be ignored. Comment lines must have a * as first character. Blank lines
are skipped as well.

Moreover, this table must comply with the following conditions (if not, wrstart will terminate with
an ERROR message):

• number of table entries between 20 and 2000 data pairs

• data are sorted in ascending or descending order

• the velocity grows monotonically with radius

• the radial points cover RMAX

2. Alternatively, one might give in the CARDS file the additional line OLD VELOTABLE (see there).

As with the built-in wind velocity laws (e.g. the β-law), the tabulated wind velocity law will be connected
continuously and smoothly to the v(r) in the photosphere; see Sect. 11.2.3.1 for more details.

VMIC = x.x
where x.x is the microturbulence in km/s. This option is useful for OB-star models and adds “turbu-
lence pressure” to the hydrostatic equation, i.e. this option is only used together with→HYDROSTATIC
INTEGRATION. Internally this quantity is converted to→VTURB.

VTURB = x.x obsolete, use instead→VMIC (but note that vmic =
√

2vturb)
where x.x is the turbulence velocity in km/s. This option is useful for OB-star models and adds “turbu-
lence pressure” to the hydrostatic equation, i.e. this option is only used together with→HYDROSTATIC
INTEGRATION. The gas pressure is than ∝ (a2 + v2turb).

This line is read by wrstart, and VTURB is written to the model file, i.e. it cannot be changed later
anymore. Watch the occurrence of VTURB in various places of the output (wrstart.out, wruniq.out).

WJCMIN=0. (non default)
if set to zero all continua will be scharmered. Default is WJCMIN=0.9, i.e. only for τ > 0.9 continua will
be scharmered.

WRTYPE = OB | WN | WC
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explicit choice of the STARTYPE (alternative keyword) to select a corresponding mass-luminosity rela-
tion. Otherwise the type is choosen by its chemical composition (→MSTAR). For WC stars the relation
by Langer (1989) is used, for OB stars and WN stars the relation from Gräfener et al. (2011) is used.
The use of the Langer-relation for WN stars can be enforced by setting the cards option→MLANGER.

XJLAPP
approximate radiation field for lines
e.g. XJLAPP CORE (old, Koesterke?),XJLAPP CORE GAMMA=1.5 partially saturated
XJAPP NEW saturated line core for radiative transfer
better and new XJLAPP FINE 20. 12000. GAMMA=1.05 (λstart and λend in units Å) with finer fre-
quency grid and diagonal operator following goetz
XJLAPP FINE 20. 12000. GAMMA=1.05 FAST
faster steal-Job, as iron opacities are not taken into account
XJLAPP NEW
or
XJLAPP CORE
as fallback, if steal stops

XRAY
adding X-ray free-free continuum emission from a shock-heated plasma immersed in the atmosphare,
with ad-hoc assumed prameters, e.g.:

XRAY XFILL 1.0 XRAYT 2.E6 XRMIN 1.5

XFILL is the fraction of electrons that are in the hot plasma phase.
XRAYT is the X-ray temperatur in K.
XRMIN is the minimum radius in R∗ at which the shockwaves occurs.

Further options (the options can be distributed over several lines, which all have to begin with the
keyword XRAY
1) Two-temperature X-ray plasma by giving the parameters for a 2nd component, e.g.:

XRAY XFILL 1.0 XRAYT 2.E6 XRMIN 1.5
XRAY XFILL2 2.0 XRAYT2 1.E6 XRMIN2 1.1

2) Multi-temperature X-ray plasma with a given differential emission measure (DEM); the distribution
is given by a power law with the exponent 1.5 or 2.5, e.g.:

XRAY XFILL 12. XRAYT 2.E6 XRMIN 1.1 DIFF-EM-EXP 1.5

XRAY LOGLXLBOL = x.x
sets the aim value for log(LX/LBol), and leads to an automatic adjustment of XFILL (and in parallel of
XFILL2, if a two-temperature plasma is specified) in the course of the model iteration; the input value
of XFILL serves as starting approximation.

Note that a typical value for O-stars would be
XRAY LOGLXLBOL = -6.5

Values > 0 are not allowed. By default, this feature is switched off.

For an unambiguous definition of LX/LBol one must specify the X-ray band. By default, we adopt the
definition as for XMM: 0.2 ... 12.0 keV, corresponding to 1 ... 62 Å. Note that the actual band starts
only with the BLUEMOST-WAVELENGTH = x.x

If you want to define the X-ray band differently, there are the new options (on the XRAY lines):

XSTART = x.x
begin of interval defining LX; in Å; default: bluemost wavelength
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XSTART_KEV = x.x
begin of interval defining LX; in keV Default: 0.2 keV corresponding to 62 Å

XEND = x.x
end of interval defining LX; in Å; default: 62 Å

XEND_KEV = x.x
end of interval defining LX; in keV; Default: corresponds to 12.0 keV (about 1 Å) or the bluemost
wavelength

The sequence of XSTART, XEND does not matter

The following recommendation we consider today (July 2025) as obsolete:
NOTE: While using these additional X-ray emissivity the energy conservation is violated. It is therefore
recommended to use X-rays only for an already converged model with correct temperature stratification
and for the iterations with X-rays to switch off the temperature corrections, the TAUMAX corrections, and
the TDIFFUS adjustment.

As T (r) etc. should not be altered, is is recommended to use this option with OLD STRAT only.

Also obsolete:
In goetz version: X-ray spectrum by Raymond-Smith code (from file XDATA).

Please add the following to the wrstart-Job:

# FETCH AND ASSIGN THE NECESSARY FILES: --------------------
# echo ’Copy files now (forward)’

cp $path/XDATA XDATA
..

# ------- END OF JOB -------------------------
# rm fort.*
# rm *exe*
rm XDATA

assuming that the XDATA file is in wrdata directory. K-SHELL data must be in the DATOM file.
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8. Syntax of the DATOM file

The file DATOM specifies all atomic data for the ions that should be taken into account for the intended model
calculation, except for the Generic Element representing the iron-group elements. The latter data are pro-
vided by the file FEDAT with the help of the Blanketing program (cf. Sect. 16.8.1. The DATOM file is usually
assembled from the PoWR atomic-data base with the tool newdatom (cf. Sect. 6.1).

In file DATOM, the input columns have fixed positions! Lines starting with an asterisk (“*”) are comments.

The content of file DATOM is grouped in the chemical elements (in arbitrary sequence). Only helium is manda-
tory. Each element section starts with the ELEMENT line, e.g.:

************************************************
*KEYWORD-- ---NAME--- SYMB ATMASS STAGE
************************************************
ELEMENT HELIUM (HE) 4.00 2
* ------ *

The entry for STAGE specifies an (obsolete?) guess of the main ion’s charge that is only used as very first
guess.

Subsequent entries then must start with one of the keywords:
LEVEL
LINE
CONTINUUM
DRTRANSIT
K-SHELL

For all ions of the same element, newdatom will group all entries with the same keyword into one block.

8.1. LEVEL entries

Example:

*KEYWORD-- ---NAME--- CH WEIG--ENERGY-- EION----- QN
LEVEL HEI 1S1..1 0 1 0.00 198310.76 1
LEVEL HEI 2S3..2 0 3 159850.32 2
LEVEL HEI 2S1..3 0 1 166271.70 2
LEVEL HEI 2P3..4 0 9 169081.26 2
LEVEL HEI 2P1..5 0 3 171129.15 2
...

Meaning of the entries:
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NAME name (unique, 10 characters); the first two characters must be the chemical symbol of this
element

CH ion charge

WEIG statistical weight of the level (degenaracy)

ENERGY level energy in wavenumber (cm−1, Kayser); the LEVEL entries must be sorted in sequence
of increasing ion charge, and within each ion in sequence of increasing level energy.

EION Ionisation energy (only given for ground state)

QN principle quantum number

8.2. LINE entries

LINE entries are required for all possible transitions between the bound levels specified by LEVEL entries.
The sequence of the LINE entries is arbitrary. Internally, each line transition is assigned to a line index IND
numbered in the sequence in which the LINE entries occur in the DATOM file.

Examples:

*KEYWORD--UPPERLEVEL LOWERLEVEL--EINSTEIN RUD-CEY --COLLISIONAL
COEFFICIENTS--
LINE NE4p3*2D02 NE4p3*4S01 2.58E-3 KB24 1.00
LINE NE4p3*2P03 NE4p3*4S01 0.887 KB24 1.00
LINE NE4p3*2P03 NE4p3*2D02 0.725 X KB24 1.00
LINE NE4p4 4P04 NE4p3*4S01 -0.23 KB22 0.70
LINE NE4p4 4P04 NE4p3*2D02 X KB24 1.00
LINE NE4p4 4P04 NE4p3*2P03 X KB24 1.00

Meaning of the parameters:

UPPERLEVEL must correspond to one existing LEVEL name;

LOWERLEVEL must correspond to one existing LEVEL name;

EINSTEIN if positive: Auℓ; if preceeded by minus sign: value is the oscillator strength fℓu

RUD if marked with “X”, this line is treated as rudimental only; in this case, JL will not
be calculated from line transfer, but interpolated from the background radiation field.
Typically used for lines with very small or unknown f-values.

CEY keyword of the formula for the collision cross section to be aplied for this bound-bound
transition (cf. Sect. 16.1.2).

COL... COLLISIONAL COEFFICIENTS are further parameters required by the specified colli-
sion cross section formula;

8.3. CONTTINUUM entries

Examples:
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*KEYWORD LOWERLEVEL ----SIGMA ----ALPHA ----SEXPO -IGAUNT- -KEYCBF-
-IONLEV---
CONTINUUM N III2P2.1 2.16 0.895 2.
CONTINUUM N 32P2P4.2 3.871 2.1302 1. DETAILN3 N IV 2P3.2
CONTINUUM N 32P2D2.3 3.71 2.457 3. N IV 2P3.2
CONTINUUM N 32P2D2.3 1.45 2.519 3.5 N IV 2P1.3
CONTINUUM N 32P2S2.4 3.42 2.784 3. N IV 2P3.2

Meaning of the parameters:

LOWERLEVEL must correspond to an existing LEVEL name

SIGMA photo cross section at the threshold, σth, in units of 10−18 cm2

ALPHA parameters of Seaton’s formula for σ(ν); cf. Sect. 16.4.2.2

SEXPO parameters of Seaton’s formula for σ(ν); cf. Sect. 16.4.2.2

IGAUNT keyword of alternative formulas for σ(ν), changing also the meaning of ALPHA,
SEXPO; see Sect. 16.4.2.2

KEYCBF keyword for alternative descriptions of the bound-free collisional cross sections;

IONLEV Aim-level of the ionization process; default for IONLEV is the ground level of the next-
higher ion. If, however, the lower level is doubly excited;, the ionization may lead into
an excited state. For each existing LEVEL (except if belonging to the highest ionisation
stage of this element) there must be at least one CONTINUUM entry.

8.4. K-SHELL entries

optional entries starting with the keyword K-SHELL; see Sect. 16.5

8.5. DRTRANSIT entries

optional entries starting with the keyword DRTRANSIT; see Sect. 16.6

8.6. Iron-group elements

If iron-group elements shall be considered (line blanketing), the file DATOM must contains a line like

ELEMENT GENERIC (G ) 3 15

This line, usually written towards the end of the DATOM file, specifies the range of ionisation stages of the
generic element that are taken into account. In the given example, the lowest ion is Fe iii and the highest Fe xv.
The lowest and highest ion are represented by their ground level only (“control level”). For including neutral
iron in detail, the lowest GENERIC stage must be specified as “0”. A fatal error will result if the assigned
iron-data file FEDAT does not cover the requested ionisation stages.
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The file FORMAL_CARDS provides essential input for the program formal which is executed by the job formal
that is automatically submitted after a model has converged. Its purpose is the computation of the emergent
spectra in specified wavelength ranges.

Not that the job-scripts wrjobs/formaln often prefix the FORMAL_CARDS with some additional commands,
as a kind of shortcut to define default options, see the section begining with: cat >CARDS << EOF in those
job-scripts. This is definitely a bad habit and should be abandoned in future.

The lines in the FORMAL_CARDS must be distinguished into two different groups:

1. Specifications for the program formal; those are listed in alphabetic order in the subsequent Sect. 9.1.

2. Atomic data for the program formal, for instance in order to split the spectral lines into multiplet
components. The syntax of these data is documented in Sect. 9.2.

It is in general not necessary for the PoWR user to edit the FORMAL_CARDS file by hand. Usually, this file
is assembled with the help of the newformal_cards job (see Sect. 6.2). Instead, the user edits only the file
NEWFORMAL_CARDS_INPUT. The newformal_cards job then

1. passes all specifications (see Sect. 9.1) directly to the FORMAL_CARDS file;

2. assembles the atomic data which are needed for synthesizing the requested wavelength range(s) from
PoWR’s wrdata-archive, which contains the files FORMAL_CARDS.<ion>).

9.1. Specifications for the formal integral

ABS WAVE
an absolute wavelength scale is used for the output spectrum (default). The alternative is to plot the
spectrum versus ∆λ with the first specified line as reference (cf.→REL WAVE).

ALLBROADENING
turns on line broadening for all lines, acoounting for radiation damping as well as pressure broadening.
For hydrogen and helium lines, line broadening requires the presence of corresponding files with the
broadening data (→PATH_LEMKE_DAT,→PATH_VCSSB).

BWESEX x.x
sets the half bandwith of the electron redistribution integral in units of the electon doppler velocity
(default is 1.0)

CALIB [option]
generates, in addition to the plot of the normalized spectrum, the corresponding spectrum in absolute
fluxes. Different units can be selected by the option:

• FLAM10PC (default): physical flux fλ at 10pc distance note: not as logarithm, in contrast to the
SED plot!

• LOGFLAM log of astrophysical flux per Angstroem, Fλ, through a surface element at stellar radius

• LOGFNUE log of astrophysical flux per Hertz, Fν, through a surface element at stellar radius (this is
used internally in the code)

• MV flux in magnitudes, with same calibration constant as MV

Once the flux units have been chosen, they remain in effect until they are overwritten.

CALIB is turned off by→NOCALIB.
CONT [option]

generates a further plot of the emergent spectrum, but without the lines. The options are the same as for
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CALIB and specify the flux units. Actually the same units are used for the calibrated spectrum and the
continuum, disregarding on which line this is specified.

DXMAX X.X
stepwidth, i.e. resolution of the calculated spectrum in Doppler units (cf. Sect. 15.1). Default is 0.3

IDENT [OSMIN=x.x]
demands that line-identifications are written to the formal.plot file in WRplot format (\IDENT ...).
This option is switched on by default, but can be switched off by option→ NOIDENT
The \IDENT ... lines in the plot file are commented out for all lines with an oscillator strength ( f -
value) less than OSMIN. With the optional parameter OSMIN=x.x this threshold value can be set. Default
is OSMIN=0.05 However, identifications for lines of hydrogen and helium are never commented, irre-
spective of their oscillator strength (program version since end of 2020).

IRONLINES
the iron lines are taken into account. Counterpart of options→NO-IRONLINES.

IRONVAC
usually, iron lines are calculated for vacuum only. If for the formal iron lines lie in the optical range,
i.e. referring to the middle of the range of the current blend block, the vacuum wavelengths of the iron
lines are converted to air wavelengths following Morton (1991). This is the default for every new blend
block.
By setting the keyword IRONVAC before the corresponding blend block, the vacuum wavelengths are not
converted to air wavelengths.

IVERSION TAU | Z
determines the integration version. Default is the TAU version, which now combines the laser resistance
of the Z version with the correct line emissions of the TAU version.

JPFIRST first-p-point

JPLAST last-p-point
restricting the impact-parameter range for the flux integral to the index range (jpfirst, jplast) with
the obvious defaults JPFIRST=1 and JPLAST=NP.

In the special case that one requests the same index for JPFIRST and JPLAST, no integration weight
is applied, and the output gives in fact not a flux, but the emergent intensity for the ray with impact
parameter pJFIRST.

Note: the grid of p points is constructed from the radius grid as

p(1)=0 (central ray)
. . . equidistant values till p(NP-ND)=1.
. . . as radial points, but inversely sorted p(NP) = RMAX

The radius grid (and thus the p grid has been established in wrstart (see wrstart.out), but is updated
in the course of iteration. The actual grid can be extracted from the MODEL file by, e.g.,
msread P

LIMBDARKENING <parameters> <output options>
(or any keyword starting with LIMB): produces plots of intensity Iν versus impact parameter p for all
subsequent spectral ranges (RANGE or BLEND-block) and adds these plots to formal.plot. Additional
listings or output-files are no longer provided.

One out of the three following parameters is mandatory:

LAM x.x
intensity taken at the specified wavelength LAM (in Å);
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RANGE x.x y.y
intensity averaged over the specified wavelength interval (in Å);

BAND= <filtername>
with filter being one of: U, B, V (Johnson)
u, b, v, y (Stroemgren)
J_2MASS, H_2MASS, Ks_2MASS,
Gaia_Gbp, Gaia_Grp, Gaia_G

Note that the wavelengths or the filter band must be entirely covered by the actual spectral RANGE
(BLEND-block). Otherwise, limb-darkening is skipped for this range with a corresponding warning in
the cpr-file.

OFF
as first parameters: no limb-darkening computation for any subsequent spectral ranges.

Output options:

PCUT=y.y
While per default Iν is plotted versus impact parameter between 0 and RMAX (in R∗), this option
restricts the p range to a maximum of y.y

MIN=y.y
While per default Iν is plotted versus all impact parameters out to RMAX, this option cuts the p
range when the intensity I(p) drops below x.x times the value at the disk center.

MU
the plot is versus µ = cosϑ =

√
1 − p2 instead over impact parameter; clearly, p is restricted here

to ≤ 1, i.e. the stellar disk.

NORMALIZED
(or any keyword starting with NORM: while by default the intensities Iν are plotted in absolute units
(erg cm−2 s−1 Hz−1 sterad−1), with this option Iν is plotted in units of Iν(p = 0), i.e. the intensity at
the center of the stellar disk.

FILE=<filename>
writes the limb-darkening profiles as ASCII table into a file – either in the temporary directory
of the formal job, i.e. $HOME/work/scratch/formal$kn, or anywhere else depending on the
specified filename that may contain a relative or absolute path. Note that filenames need to be
enclosed in quotation marks "..." when containing delimiters like "/".

Example:
LIMB DARKENING BAND=V MIN=0.01 NORMALISED MU

LISTONLY
request to only print the recognized lines and multiplets as requested in FORMAL_CARDS, but the radiative
transfer calculations are not performed.

LPHISTA = m

LPHIEND = n
These options are only valid in case of wind rotation (VSINI option in use). For test purposes, the index
range of the φ integration loop can be restricted to the range between LPHISTA and LPHIEND. By default,
the integration is between φ = 0 and π, corresponding to LPHISTA=1 and LPHIEND=nφ, where the latter
depends on the impact parameter. Note that input values for LPHISTA and LPHIEND are automatically
changed to lie in the range of existing values. For instance, one may request any high number to address
the largest existing indices (i.e. φ = π) at any impact parameter.

Note that the range of impact-parameter points can also be restricted for test purposes with the options
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→ JPFIRST and→ JPLAST.
The grid of impact-paramer and angle points is visualized in the plot
$USER/work/scratch/formal<n>/windgrid.plot
that is always written in case of wind-rotation calculations.

MACROCLUMP [CLUMP_SEP=L0] [TAU1=τ1 TAU2=τ2] | [VELO1=v1 VELO2=v2]
enable the macroclumping formalism (optical thick clumps in the formal integral, Oskinova et al. 2007).
Parameters are: L0 (Eq. 12) in Oskinova et al. (2007), the average clump separation L(r) is

L(r) = L0
3
√

r2w(r) with w(r) = v(r)/v∞ (39)

Examples:

MACROCLUMP CLUMP_SEP = 0.2 VELO1=5. VELO2=20.
MACROCLUMP CLUMP_SEP = 0.5 TAU1=0.1 TAU2=0.667

NOBROADENING
switches off all line broadening (except of Doppler broadening), thus cancelling ALLBROADENING as
well as overriding broadening settings at individual lines (VOIGT).

NOIDENT
inhibits that line-identifications are written to the formal.plot file. Default is→ IDENT

NO-IRONLINES
the iron lines are not taken into account, a warning is written. This option is active until option
→IRONLINES appears.

NOREDIS
Thomson scattering is assumed to be coherent, i.e. line photons are not redistributed in frequency due the
thermal motion of the electrons. However, since 10-Jun-2014 the continuum is always calculated with
frequency redistribution. Default is→ REDIS meaning that frequency redistribution for line photons is
taken into account.

NOWIND [VELO | RADIUS | TAU] x.x

This option allows to calculate an emergent spectrum as if the stellar wind is cut off from some point
that can be specified.

The point from which on the outer part of the atmosphere is disregarded in the formal integral can be
specified in terms of velocity (VELO), radius (RADIUS), or Rosseland-mean continuum optical depth
(TAU). Examples:

NOWIND VELO = x.x
NOWIND RADIUS = x.x
NOWIND TAU = x.x

For VELO, the numerical value x.x might be replaced by the keywords SONIC (sound speed) or VDOP
(Doppler-broadening velocity as used in the MODEL iteration).

For compatibility with the previous syntax, the keyword VELO can be omitted; for the same reason,
NOWIND without any parameters means that the wind is cut off from RCON, i.e. the point where the
quasi-hydrostatic part of the atmosphere is connected with the wind-velocity law.

In case of using a SECONDMODEL, all NOWIND specifications refer the first (main) model.

If a NOWIND option has been set, it stays in effect for all following BLEND blocks (“RANGEs”), untill it
is overwritten by another NOWIND line, or it is cancelled by
NOWIND OFF

The use of the NOWIND option is reflected in the formal.out and formal.cpr files.
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NPHI number-of-phi-points: this option is obsolete!
The purpose of this option was to refine the angle integral in case of wind rotation. This is now achieved
with the DX parameter in the VSINI line
cf. →VSINI,→LPHISTA,→LPHIEND
marke

PATH_LEMKE_DAT = path
set an alternative path for the file LEMKE_HI.DAT, which contains the broadening tables for H i
Default is /home/corona/wrh/work/wrdata/.

PATH_VCSSB = path
set an alternative path to the file which contains the tables of Schöning and Butler (Vidal-Cooper-Smith-
Schoening-Butler), VCSSB.DAT for He ii.
Default is /home/corona/wrh/work/wrdata. The file has an appoximate size of 0.7 MB and contains
coefficients for the pressure broadening of He ii lines with main quantum numbers: 2 - 3, 3 - 4 . . . 3 - 10,
4 - 5 . . . 4 - 15.

PLOT VDOP VELO | TAU | R]

This command must stand before the BLEND-block and will produce a plot of the (depth dependent)
→VDOP in formal.plot, following after the plot of corresponding spectrum. If VDOP differs for the
different elements, the plot will display all corresponding curves.

With the option, a different x-axis can be chosen:
VELO versus wind velocity
TAU versus Rosseland depth
R versus radius.
If no option is given the x-axis will correspond to the way how the depth-dependence had been specified.

PRINT OPAL [n]
will print to formal.out tables with line opacities, emissivity, source function, etcetera. The table
columns are:
LINE INDEX |DEPTH INDEX |OPA |LINE/CONT. | TAU | R(TAU=1) |S(LINE) |S(TOTAL)
where source functions S are given as brightness temperature.
This command must stand before the BLEND-block and will produce one such table for each (!) line
or subline in the BLEND-block. Hence it should only be used with one or very few lines included,
otherwise the output will be overwhelmingly long.

For each line, the depth index runs from 1 ... ND. If the optional number n is specified, the output is
reduced to depth indices 1, 1+n, 1+2n, ..., ND.

RANGE λ1 λ2
Stands before the BLEND block and limits the range of the following block. Wavelengths in Å.

RCOROT RSTAR r.r | VELOKMS v.v | TAU t.t
specifies the corotation radius. The keyword indicates the way how this radius is specified. Allowed
keywords are:
RCOROT RSTAR x.x (radius in units of RSTAR)
RCOROT VELOKMS x.x (radial wind velocity at corotation radius in km/s)
RCOROT TAUROSS x.x (continuum Rosseland optical depth at corotation radius)

Default is COROT RSTAR 1.0 Specifying RCOROT without VSINI leads to an error.
cf. →VSINI

REDIS
requests that the frequency redistribution of photons by electron scattering is taken into account, apply-
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ing the angle-averaged redistribution function R for calculating the emissivity:

ηTh = κTh

∫
J(ν′) R(ν − ν′) dν′ (40)

The option is default, but can be switched off with→NOREDIS.
REL WAVE

requests that a relative wavelength scale, ∆λ, will be used for the output spectrum. The reference
wavelength is the first line appearing in the subsequent data. Default is to plot the spectrum over the
wavelength λ (cf.→ABS WAVE).

SECONDMODEL <options>

If specified, the formal integral combines two models – the MODEL of the current chain in wrdatan,
and a previously calculated model that has been saved in the directory PATH to be specified. The second-
model domain can be a double-cone or an embedded sphere, as defined in the options (see Sect. 15.7 for
details of the geometries).

The second model must have been calculated with an identical atomic-data file DATOM as the current
model. Apart from this requirement, the model parameters can differ arbitrarily.

The options are:

PATH = path to te second model (mandatory)

SHAPE = CONE or SPHERE

Mandatory parameters if SHAPE = CONE :

THETA = x.x
opening half-angle of the cone in degrees

CONEI = x.x
inclination angle i of the cone in degrees; if i = 0◦ the cone lies in the plane of the sky. Note that
the cone axis always lies in the (y, z) plane, i.e. it can be assumed as aligned with the rotation axis
if VSINI is activated.

Note: THETA and CONEI are not allowed to be equal; they must differ by more than 0.1 degrees.

Mandatory parameters if SHAPE = SPHERE :

ALPHA = x.x
α in degrees: angle between the direction from the origin to the sphere center and the (y, z) plane
(cf. Fig. 19);

DELTA = x.x
δ in degrees: the sphere-center’s elevation angle above the (x,z) plane (cf. Fig. 18);

Note that α and δ give the direction from the stellar center to the center of the SPHERE in spherical
coordinates with the y-axis as the polar axis, and (x, z) as the equatorial plane. Longitude α = 0
points to the observer, δ is the latitude.

RSPHERE = x.x
the sphere’s radius in units of R∗:

DSPHERE = x.x
distance of the sphere’s center from the center of the star, in units of R∗

PHI_REFINE = x.x
refinement of the resolution of the azimuthal angle; optional; the larger this value, the finer is the reso-
lution and the longer the computation time; default is PHI_REFINE = 1.
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IGNORE_DIFF
makes the program to continue, even when a difference between the atomic data (DATOM or FEDAT_FORMAL)
of the two models is detected. This will lead to a program crash or to non-sense results, since it ismanda-
tory that there is a one-to-one correspondence of the atomic levels between both models. If, however,
differences do not change the level structure, they might be ignored. Example: a corrected f-value in
DATOM, or the inclusion of ionisation stages in FEDAT_FORMAL which are not taken into account in the
current model anyhow.

OFF
switches off the second-model inclusion for the following range(s); the parameter settings are kept, for
the case that SECONDMODEL becomes activated again.

The SECONDMODEL options can be distributed over more than one input lines, all of them starting with
the keyword SECONDMODEL. The SECONDMODEL treatment is fully integrated into the range-by-range
processing of the FORMAL_CARDS. All settings remain valid, until they are overwritten.

Examples:
SECONDMODEL PATH = "~wrh/science.dir/wnlgrid.dir/models.dir/08-12/"
SECONDMODEL SHAPE=CONE THETA=40. CONEI=60.
SECONDMODEL SHAPE=SPHERE ALPHA=150. DELTA=0. RSPHERE=0.8 DSPHERE=2.

SET_POP_ZERO ”levels1” [EXCEPT ”levels2”]
Set population numbers for all levels beginning with string “levels1” to 0, thus they are not taken into
accout in the formal integral. The EXECEPT option expects a string “levels2”. Levels beginning with
string “levels2” are taken into accout in the formal integral, although they begin with string “levels1”.
This option can be reseted before every blend block.
Example:

SET_POP_ZERO G EXCEPT "G V."

(In this example, no iron line is calculated, despite those from Fe v.)
Routines: read in by DECFORM in FORMAL, used by SET_POP_ZERO.

TAUMAX x.x
set the maximum τ for the integration in →IVERSION TAU (not used in →IVERSION Z). Default is
TAUMAX=10.
Note: before 3-Jan-2023, the default was 7. Moreover, there was a bug in the code that corrupted the
emergent flux at shortest wavelengths (EUV, X-rays), The workaround by setting TAUMAX to very high
values is now obsolete.

TAUBROAD x.x
sets the minimum optical depth from which on the line wings are truncated for efficiency. Moreover,
lines with lower optical depth at their center (evaluated without velocity shift) are flagged as "weak"
in the line list in formal.out, and their line identifier (IDENT in formal.plot is commented. The default
corresponds to TAUBROAD=0.0001 (since 27-Mar-2025).

TRANS DWL VELO | VELOLOG | TAUROSS | RSTAR | RSTARLOG]
this option works only for one single (!) line and creates a plot with the normalized ξ from Hillier
(Hillier 1987) over the specified depth scale of the model file, thus gives information about the radial
depth mainly contributing to the line formation. The ξ as defined by Hillier is

ξ = Nu(r)r3
∫ +1

−1
β(µ) exp[−τc(µ)]dµ (41)

being the line emission per radius and thus makes sense only for emission lines. The energy emitted in
the line is of course E ∼

∫ ∞
Rcore
ξd(log r).
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Following x-axes can be choosen:
TRANS DWL (log(electron density) - this is default)
TRANS DWL VELO (v(r) in km/s)
TRANS DWL VELOLOG (log v(r) in km/s)
TRANS DWL TAUROSS (tau_Ross)
TRANS DWL RSTAR (r/RSTAR)
TRANS DWL RSTARLOG (log (r/RSTAR))

The last version is in fact most sensible, because the emitted line luminosity is proportional to the
integral over ξ · d(log r).

VDOP = x.x MAX=y.y [[VELO1=v.v VELO2=w.w] | [TAU1=t1 TAU2=t2] | [R1=r1 R2=r2]]] |
[VELOFRAC [=y.y]]
setting the velocity parameter vD for the Doppler broadening of the line opacities and emissivities. Note
that the same vD is applied for all elements, irrespective of their different thermal velocities. This is
clearly less physical than setting VMIC (see below), and may rather serve for test purposes, e.g. to
compare with results from the previous code version.

If neither VDOP nor VMIC are specified in FORMAL_CARDS, the value of vD is taken from the
MODEL file, i.e. as originally specified in the CARDS file.

The options on the VDOP line allow to specify a depth-dependence of vD. Their meaning is the same as
described for→VMIC, but setting here vD(r).

The wavelength resolution in formal is determined from the lowest value of VDOP that is encountered
among all elements and depth points. This minimum value is now reported as VDOP in formal.out.
Note that small Doppler broadening may lead to much longer computing times!

If the model contains iron-group elements, and if these lines are not suppressed in FORMAL_CARDS by
the option→NO-IRONLINES, and if the iron data (FEDAT_FORMAL) have been generated with a smaller
VDOP than the minimum VDOP occuring here, the formal integral is calculated on the finer wavelength
grid in order to guarantee that the iron lines are well resolved.

Examples:
VDOP=110.
VDOP = 50. MAX=100.
VDOP = 50. VELOFRAC=0.1
VDOP = 50. MAX=100. VELO1=10. VELO2=500.
VDOP = 50. MAX=100. TAU1=1. TAU2=5.
VDOP = 50. MAX=100. R1=1.3 R2=1.5

For checking the effect of VDOP settings, there is a plot option→PLOT VDOP.
VMIC = x.x MAX=y.y [[VELO1=v.v VELO2=w.w] | [TAU1=t1 TAU2=t2] | [R1=r1 R2=r2]]] |

[VELOFRAC [=y.y]]

specifies the microturbulence velocity vmic. The Doppler-broadening velocity vD is then calculated indi-
vidually for each element with atomic mass m via the equation

v2D(r,m) = v2therm(r,m) + v2mic(r) =
2kT (r)

m
+ v2mic(r), (42)

See also the description for the VDOP command for further notes.

VMIC= x.x without any further option sets vmic to x.x km/s.

The further options on the VMIC line allow to specity a depth-dependence of the mictroturbulence
velocity vmic(r):

VMIC = x.x MAX=y.y
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VMIC starts with x.x at the inner boundary and grows to y.y at the outer boundary. VMIC grows
proportinal the wind velocity, but from a minimal value x.x

VMIC = x.x VELOFRAC=f.f
VMIC is a fraction f.f of the wind velocity, but with a minimal value x.x. Default for f.f is 0.05

VMIC = x.x MAX=y.y VELO1=v.v VELO2=w.w
VMIC starts with x.x at the inner boundary. Between wind velocities v.v and w.w it switches to
the value y.y

VMIC = x.x MAX=y.y. TAU1=t1 TAU2=t2
VMIC starts with x.x at the inner boundary. Between Rosseland optical depths t1 and t2 it switches
to the value y.y

VMIC = x.x MAX=y.y. R1=r1 R2=r2
VMIC starts with x.x at the inner boundary. Between the radii r1 and r2 (in stellar radii) it switches
to the value y.y

Examples:
VMIC = 50.
VMIC = 50. MAX=100.
VMIC = 50. VELOFRAC=0.1
VMIC = 50. MAX=100. VELO1=10. VELO2=500.
VMIC = 50. MAX=100. TAU1=1. TAU2=5.
VMIC = 50. MAX=100. R1=1.3 R2=1.5

E.g. for an O-star model:
VMIC=20. MAX=100. VELO1=10. VELO2=500.

For checking the effect of VMIC settings, there is a plot option→PLOT VDOP.
VSINI x.x [RSTAR | RCOROT] [DX=x.x]

gives the projected equatorial rotation velocity 3 sin i in km/s. Default is VSINI=0., i.e. no rotation.
Optional parameters:
RSTAR or RCOROT specifies whether the given value for 3 sin i refers to the stellar radius or to the co-
rotation radius. By default, this velocity refers to the co-rotation radius RCOROT, which might be speci-
fied to differ from RSTAR!

With VSINI being specified, the program FORMAL performs the flux integral not only over the impact
parameter p, but also over the azimuthal angle φ. Moreover, the formal integral might refine the grid of
impact parameters that fall onto the stellar disk (i.e. with p < 1). The larger number of rays for which
the emergent intensity has to be calculated leads to much longer CPU time.

DX=x.x affects the number of grid points (angle as well as impact parameter points). x.x denotes a kind of
resolution in Doppler units. If DX is too large, the emergent profiles of wind lines might display artificial
wavy patterns, while a small DX value might unneccessarily waste CPU. Default is DX=1.0.

cf. also→RCOROT,→LPHISTART
WAVELENGTH = AIR | VACUUM

defines whether for the given range the iron line wavelengths shall be converted to air wavelength.
Default is AIR for ranges with 3000 Å < (λmax − λmin)/2 < 10000 Å, and VACUUM else.

XMAX X.X
width of the opacity-profile accounted for the calculation of each individual line profile, in Doppler units
that refer to the smallest 3D occuring in any line anywhere in this model atmosphere (cf. Sect. 15.1).
Default is 3.5. In case of BROADENING being active, XMAX is automatically increased by the subroutine
BANDWIDTH to the needed value.
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XUNIT = MICROMETER | ANGSTROEM
the following wavelengths are given in µm instead of Å (default). The given unit is used until next
XUNIT statement. This unit is also used for the output (formal.plot).

9.2. FORMAL_CARDS atomic data syntax

The atomic data parts in the FORMAL_CARDS file are usually assembled from the wrdata-archive by submit-
ting the job newformal_cards (see Sect. 6.2). The data which describe the lines and multiplets which fall
into the wavelength range to be synthesized are bracketed by the lines

BLEND

...

-BLEND

The wrdata-archive contains separate FORMAL_CARDS files for each individual ion, e.g. FORMAL_CARDS.HE_II
for ionized helium. In the following, the syntax of these data is documented.

LINE
setting line card for calculation of a line in the formal program, e.g.:

LINE ??? 3888.6
UPPERLEVEL=HEI 3P3..8 LOWERLEVEL=HEI 2S3..2

+LINE ??? 5015.7
UPPERLEVEL=HEI 3P1.11 LOWERLEVEL=HEI 2S1..3

the second argument is optional and gives wavelengthe for the line transition in Å.
By setting the optional keyword VOIGT [γ] with the optional argument γ (radiative decay rate = 1/τ),
natuaral broadening for this line is enabled.
The next line must contain the designation of the upper and the lower level exactly written as in DATOM.
For the first line in a blend the + can be omitted, further lines must begin with a +.The oscilator strenght
is read from DATOM

MULTIPLET
setting multiplet card with information how to split levels for substructures of lines (e.g. doublets),
which are not already given with LINE. Example:

+MULTIPLET ???
UPPERLEVEL=C 22P32P15 LOWERLEVEL=C 23D2D..9
/UPPERLEVEL C 2P32P1/2 2 168729.96
/UPPERLEVEL C 2P32P3/2 4 168748.73
/LOWERLEVEL C 23D2D3/2 4 145549.70
/LOWERLEVEL C 23D2D5/2 6 145551.13
/SUBLINE C 2P32P1/2 C 23D2D3/2 1.79E5 4312.71
/SUBLINE C 2P32P3/2 C 23D2D3/2 1.79E4 4309.21
/SUBLINE C 2P32P3/2 C 23D2D5/2 1.61E5 4309.51
-MULTIPLET

In the second line the upper and lower level to be splitted must be called by their names as in DATOM.
In the following lines the command UPPERLEVEL an LOWERLEVEL respectively give the detailed infor-
mation about the levels. First argument given is an arbitrary but unambigous name for the new level, its
statistical weight and the level energy. The list must be complete, i.e. the sum of the statistical weights
for the upperlevels must be same as given for the unsplitted level in DATOM. Eventually the remaining
levels (statistical weights) can be summarized in a “REST” level, not used for line calculation.
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The command SUBLINE needs name of the lower and upperlevel created by the commands before. The
third argument is the oscilator strength (negative value ≈ 1) or Einstein coefficient (positive value ≈
1E5) of the line transition. Optionally a precise wavelength can be added as fourth argument.
By setting the optional keyword VOIGT [γ] with the optional argument γ (radiative decay rate = 1/τ),
natuaral broadening for this line is enabled.

The splitting is performed with LTE approximation via Boltzmann formula, i.e.

ni

n j
=
gi

g j
exp

(
−Ei − E j

kT

)
(43)

Since 030909 it is possible to have a line transition within the same level, e.g.:

** C III, Multiplet 255 at 21080.59 Ang
+MULTIPLET ???
UPPERLEVEL=C 35L1L.35 LOWERLEVEL=C 35L1L.35
/UPPERLEVEL C 3 5s 1S 1 338514.33
/UPPERLEVEL C 3 5p 1P 3 343258.03
/UPPERLEVEL C 3 5d 1D 5 346658.34
/UPPERLEVEL C 3 5f 1F 7 348859.99
/UPPERLEVEL C 3 5g 1G 9 348859.99 (Energy guessed)
/SUBLINE C 3 5p 1P C 3 5s 1S -1.15
-MULTIPLET

Upper and lower level in the second line are the same, therefore it is only necessary to split one of them
via UPPERLEVEL

WARNING! As line splitting is done in LTE approximation, the case upper and lower level being the
same also means, that one gets only an LTE source function without overpopulation of the upper level.

DRTANSIT
handling of dielectronic transitions that lead to visible spectral lines. This mechanism is independent
of the occurrence of DRTRANSIT cards in the the DATOM file, but works analogously, i.e. autoionziation
levels are taken into account. So far, there exist only entries for C ii, e.g.:

** C II 4960 A (MULT.NO. 25)
DRTRANSIT ???
UPPERLEVEL=C 32S1S..1 LOWERLEVEL=C 23P2PP24
/AUTONIVEAU C23D2PP1/2 2 202204.95
/AUTONIVEAU C23D2PP3/2 4 202180.28
/LOWERLEVEL C23P2PP1/2 2 182023.86
/LOWERLEVEL C23P2PP3/2 4 182043.41
/ADDLINE C23D2PP1/2 C23P2PP1/2 -0.1468 4953.85
/ADDLINE C23D2PP1/2 C23P2PP3/2 -0.0367 4958.67
/ADDLINE C23D2PP3/2 C23P2PP1/2 -0.0734 4959.92
/ADDLINE C23D2PP3/2 C23P2PP3/2 -0.1835 4964.73
-DRTRANSIT
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10. Overview on the model atmosphere theory

10.0.1. wrstart

The job wrstart will execute consecutively the following programs:

wrstart

• read in model parameter (decste.f, decstar.f)

• read in atomic data (datom.f)

• calculate missing quantity from L = 4πR2∗σSBT 4

• get hydrostatic scale height from mass or log(geff)

• perform TAU-iteration (τRoss): vmin → geomesh→ T, κ, n⃗, τ,
adjust vmin until τ = TAUMAX (usually TAUMAX=20.) is reached at innermost depth point, the photosphere
or bottom of the atmosphere

• determine 1st approximation of Jν (see LTESTART, JSTART, OLDSTART

steal→called if

• LTESTART, JSTART, or LEVEL option is set, to calculate population numbers from initial Jν
• write population numbers to wrstart.plot

adapter→called if

• OLDSTART option given to copy population numbers from old MODEL file in wrdata$kn, renormalize
them to new temperature stratification

• OLD TEMP option set to copy the temperature stratification from old MODEL file in wrdata$kn

10.1. Job: wruniq

The main work to solve the non-LTE CMF-radiative transfer problem is done by the coli (radiative transfer)
the steal (rate equations) program.

Due to coherent scattering on free electrons the specific emissivity has the form

ην = η
true
ν +

1
4π

∮
κThIνdΩ (44)

with the Thomson opacity

κTh = ne
8π
3

r0 = ne
8π
3

(
e2

4πmec2

)2

which transforms the radiative transfer equation from a simple differential equation to an integro-differential
equation. To overcome this problem, the RTE is integrated over dµ and becomes the 0th moment equation
(ME). By integrating over µndµ one gets the nth ME. These MEs can be used to eliminate the coherent
scattering. The system is then closed by the Eddington factors g, f , and h, which have to be recalculated every
n-th iteration. To get started, the wrcont solves the angle dependent RTE for the continuum (like static case),
i.e. gets specific intensity Iν, which is used for the ME, calculated by the como. Actually this is only needed
for the start approximation, but redone after every nth iteration, where n is given via NEWWRC=n.
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10. Overview on the model atmosphere theory

10.1.1. Programs

10.1.1.1. extrap

• if NO EXTRAP is not given in CARDS file, extrap will extrapolate population numbers and temperature
T (r) from last three iterations for acceleration of convergence

10.1.1.2. wrcont

• solve angle-dependent radiative transfer equation (Iν) for for continuum (this is like in static case) with
only ≈ 500 frequency points

• consistent treatment of Thomson scattering (angle dependent)

• →actually only necessary at begin of model iteration

10.1.1.3. como

• solve the moment equations with given Eddington-factors (from file EDDI, updated by program coli)for
the continuum (formal solution from given population numbers)

• advantage: scattering term κTh cancels out

κν(S ν − Jν) = ην − κνJν = ηtrue
ν + κThJν − (κtrue

ν + κTh)Jν = ηtrue
ν − κtrue

ν Jν

• main result: Jν, needed from coli for Thomson emissivity κThJν
• →actually only necessary at begin of model iteration

10.1.1.4. coli

• radiation transfer in the comoving frame (CMF) for continua and lines (formal solution from given
population numbers)

• needs pre-calculated Thomson emissivity κThJν from como when called at begin of model iteration

• calculates Eddington-factors (storage in file EDDI)

10.2. The aim: emergent spectrum

The aim is to calculate the emergent flux spectrum from the atmosphere, F+ν . With µ = cosϑ, the flux integral
is

F+ν = 2
∫ 1

0
I+ν µ dµ (45)

In spherical geometry, the flux integral can be taken over the impact parameter p.

F+ν = R−2
∗

∫ rmax

0
I+ν p dp (46)

Note that we define p and r in units of the inner-boundary radius R∗, and hence the flux refers to the same
reference surface.

The emergent intensity I+ν (p) can be obtained by a formal intergral along the ray,

I+ν (p) =
∫ zmax

zmin

S ν(r) e−τdτ (47)
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10.3. The way: model atmosphere

with the optical depth τ starting with τ(z) = 0 at z = zmax and

dτ = − κ(ν) dz (48)

This integration is carried out in the observer’s frame, i.e. all emissivities and opacities have to be evaluated
after applying the appropriate Doppler shift for the velocity projection on the ray.

S ν is the non-LTE source function,
S ν =

∑
ην

/∑
κν (49)

where the sums go over all non-LTE emissivities ην and all opacities κν involved.

The non-LTE emissivities and opacities ην and κν are functions of the local population numbers, ni(r). To
establish these population numbers, the model atmosphere must be calculated first.

10.3. The way: model atmosphere

The non-LTE problem implies the consistent solution of two sets of equations, the radiation transfer, symbol-
ically written as a linear mapping Λ : S→ J,

J = ΛS (50)

and the equations of statistical equilibrium, which can be written as a system of algebraic equations for each
spatial point,

n⃗ ◦ P(J) = [0, ..., 0, 1] (51)

The following sections shortly summarize the radiative transfer, the rate equations, and the method of finding
a consistent solution.
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11. WRSTART: Setting up a model

11. WRSTART: Setting up a model

11.1. Radius grid

One of the basic things that has to be established is the generation of the grids as most of the other routines do
calculations basend on the them. The GEOMESH routine summarizes the generation of the radius (SUBROUTINE
RGRID), the impact parameters (SUBROUTINE PGRID) and the z values. The most complex part is the genera-
tion of the radius grid.

Since the revised version, the subroutine RGRID decodes all the required information from the CARDS file
itself apart from the outer boundary RMAX as this value is specified in the velocity field information. It returns
the number of depth points ND, the array R containing radius points in stellar radii - usually called RADIUS in
other routines - as well as a string array INCRIT containing the criterion that has been used for each depth
point.

At first the three CARDS lines (RPAR, SPECIAL_INNER_POINTS and SPECIAL_OUTER_POINTS) are decoded.
Only the first one is mandatory. If no information about the special points is found, four inner special points
and no outer special points are used. The total number of depth points must not be greater than the hardcoded
maximum value NDDIM which is currently set to 89.

The setup of the radius grid starts with the τ-criterion, meaning that the depth points for this criterion are
equally spaced in log τ between the outer boundary RMAX and the inner boundary RSTAR. The radius values
are scaled to RSTAR, so the inner boundary is equal to 1. In a first step, a fine grid of 1000 points is generated,
consisting of an outer part with 800 and an inner part with 200 points. The outer part is calulated with the
formula

Rfine,i = R
800−i
799

max . (52)

The inner part is handled explicitly to achieve a much finer spacing. For i ≥ 800 the formula

Rfine,i = R
1000−i

201
799 (53)

is used. Together with this radius fine grid a first approximation of τ is done, using the density obtained from
the equation of continuity via

ρi =
Ṁ
4π

1
R2

i v(Ri)
. (54)

However, the factor Ṁ
4π is constant and is therefore neglected in the code. The optical depth is calculated by

a numerical integration. For τ the relation τ =
∫
κ̃ρdr is used with the assumption of a constant κ̃ = 1. The

numerical version is therefore written

τi = τi−1 +
1
2

(Ri − Ri−1) (ρi−1 + ρi) (55)

The final value τ1000 is used for scaling the τ-spacing afterwards. The calculated τ-values are not physical
correct values as we have neglegted constant factors like Ṁ

4π in this calculation. However, RGRID should just
provide radius values and the scaling with τ1000 ensures that all constant factors will eventually cancel out.
The number of depth points placed by the τ criterion is called ND1. One Point is always subtracted for the
outer boundary, for the rest their τ value is obtained from the relation

τL = τ100010(DLOGTAU( L−2
ND1−2−1).) (56)
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11.1. Radius grid

R(L) is then determined by R f ine(τL) which is done by linear interpolation of the tau values over the radius
fine grid.

After the generation of the τ-spaced points the radius grid already covers the whole range between the bound-
aries. The other criteria now insert points in between the existing ones to cover areas where certain values like
density or velocity would chance to drastically between two τ-spaced depth points.

The first additional points ND2 are calculated by the velocity criterion. The criterion checks if the density
increasement increases inwards. If not and no larger increasement is found afterwards in the inner part, a new
grid point is inserted at half way (on radius scale) between the point with the largest density incresement and
the point right before. To give an example, let ρi – here again calculated with the neglection of Ṁ

4π – be the
density at the radius grid point i. The density loop now checks for every grid point except the outmost one if

ρi

ρi−1
≥ Q (57)

with Q usually being the ratio of ρi−1 and ρi−2. However, if the condition is not met, Q is not updated and in
the next cycle the ratio of ρi+1 and ρi is compared to Q which would still be the ratio of ρi−1 and ρi−2. If none
of the ratios would be greater or equal to Q, a new depth point would be inserted between i and i− 1. If finally
another ratio is greater than the current value of Q, Q would be updated and no depth point would be inserted
here. Instead, if the depth increasement is constantly increasing inwards, the depth criterion grid points would
be finally added right before the last depth point that marks the inner boundary.

In the next step, the points from the velocity criterion (ND3) are inserted. The method is roughtly the same
as for the density criterion, but now the velocity differences (instead of the ratios) are compared. As long as
the velocity difference is increasing inwards no point is inserted. If the velocity difference decreases and does
not increase again afterwards, an additional depth point is set in the middle (on the radius scale) of this largest
difference.

After the usual criteria special inner and outer points are set, starting with the inner ones. These points are
simply inserted right before the inner (or outer) one and the next grid point. The points are set iteratively and
the spacing can be specified in fractions of the distance between the boundary and the next grid point. That
means, if one special inner point with a spacing of 3 it will be set at one third of the distance between R∗ and
the next grid point, starting from R∗. If two special points are requested, the first one would be set at 1

3 while
the second one is at 1

9 . The same is exactly the same for the outer special bound, apart from the fact that the
distances are calculated inwards from the outer boundary here. If no cards lines for special points are set, the
default number of special outer points is zero while the number of special inner points is four. The default
spacing is 2 in both cases which means that the first point is inserted right in the middle. Note that even if
these points are referred as “special” they are part of the total number of depth points ND and therefore reduce
the number of points set via the τ criterion if ND is not increased itself.

After complete insertion an additional smoothin is done for all grid points except the boundaries and the special
points to achieve a more equally spaced grid on a logarithmic scale. The smoothing relation is as follows:

log Ri,smooth =
1
4

(
log Ri−1 + log Ri+1 + 2 log Ri

)
(58)

The generation of the impact parameter grid is straight forward. The number of impact parameters ND is equal
to the number of depth points plus a hardcoded number of core rays (currently NC= 4). The resulting array
P contains the equally spaced core rays first, followed by the ones corresponding to a depth point in reversed
order. Therefore the array index in P starts at the inner part in contrast to the radius grid indices starting at the
outer boundary. The z values are calculated from radius and impact parameters via pythagoras.
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11. WRSTART: Setting up a model

11.2. Velocity field

The velocity field is defined in WRSTART before the geometrical mesh has been established. First, SUBROUTINE
INITVEL is called in order to provide a couple of parameters. If requested, these parameters are improved by
the SUBROUTINE VELTHIN. With these parameters, which are transported via the block COMMON /VELPAR/,
the FUNCTION WRVEL(R) gives the velocities. After the radius mesh has been defined, this function is called
to calculate the velocities at each radius point, which are stored in the vector VELO. Only this vector is written
to the MODEL file. The FUNCTION WRVEL is only available in the WRSTART and the STEAL program.

Input parameters for defining the velocity field are the velocity at the inner boundary, v(r = R∗) = vmin, and at
the outer boundary, v(r = Rmax) = v∞.

Note that the velocity field may be re-calculated in WRSTART iteratively if a specific TAUMAX (optical depth
of the inner boundary) is requested by the corresponding option. Moreover, if the user asks to maintain this
TAUMAX fixed (see TAUMAX FIX), the velocity field is re-calculated within the model iteration (program
STEAL).

The velocity field consists of two parts. In the inner part, a hydrostatic density stratification is assumed, while
for the outer part a beta law is adopted. The connection point between both domains, rcon, is determined from
the conditions that the velocity field and its gradient must be continuous. For thicker winds, the hydrostatic
domain may not exist

11.2.1. Hydrostatic domain

According to the continuity equation, a hydrostatic density stratification implies a corresponding velocity field.
In the standard described now first, a few simplifications are made. The more accurate integration is requested
by the CARDS line HYDROSTATIC INTEGRATION and will be described in Sect. 11.2.1.2.

11.2.1.1. Simple approach: the barometric formula In a simplified approach (subroutine INITVEL, the
barometric formula is adopted, which implies:

1. constant temperature T ≡ Teff;

2. constant effective gravity log geff (neglecting spherical extension);

3. constant mean particle mass µ; in WRSTART µ is calculated from the “typical ionization stage” of each
element as given in the atomic date file DATOM, while later this number is from the real ionization balance
at the innermost depth point.

Under these assumptions, the scale height (in units of the stellar radius) becomes

H0 =
a2 + v2mic

geff

/
R∗ (59)

where a =
√

kT/(µmH) is the isothermal sound speed and vmic the turbulent velocity which might be specified
by a corresponding line in the CARDS file. (Note: for historical reasons, in the MODEL file we store the
variable VTURB which is VMIC*

√
2.)

With 3min being the velocity at the inner boundary r = 1 (in units of R∗), the velocity field becomes

v(r) = 3min exp
r − 1
H0

(60)

Note: One of the main technical advantages of the static approach is that it works without any grid. This is
important for the subroutine RGRID that uses the static results of INITVEL to setup the radius grid. In contrast,
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11.2. Velocity field

the solution via hydrostatic integration requires an already existing grid, so the static results are needed in
order to have a start approximation.

11.2.1.2. Full hydrostatic integration For WR stars, this hydrostatic domain is of no importance; often
it may not even be reached within the calculated range of optical depths. For stars with mainly photospheric
spectrum, however, one should consider a more accurate treatment, including an iterative update of the tem-
perature stratification. Especially the mean atomic mass should be updated acording to the actual ionization
stratification.

A numerical integration of the hydrostatic equation accounting for the temperature equation is done in the
SUBROUTINE VELTHIN. This can be optionally chosen by adding the CARDS-option HYDROSTATIC INTEGRATION.

To obtain the velocity field v(r) we start from the hydrostatic equation

dp
dr
= − p(r)

H(r)
(61)

where the scale height H(r) now depends on r,

H(r) =
v̄2th(r) + v2turb

geff(r)

/
R∗ (62)

Note that none of the simplifications implied by the berometric formula are kept. Instead of constant gravity
we now write

geff(r) = geff
1
r2 (63)

To solve Eq. (61) we use the ansatz

p(r) = p0 exp
(
−r − 1

H0
+ b(r)

)
(64)

where H0 is the scale height from the barometric formula, and b(r) an arbitary function which accounts for the
deviations from that formula. The derivative of the previous equation gives

dp
dr
= p

d
dr

(
−r − 1

H0
+ b(r)

)
= p

(
− 1

H0
+

db
dr

)
(65)

The difference between this equation and Eq. (61) is

db
dr
=

1
H0
− 1

H(r)
(66)

Eq. (66) can be solved numerically by integration from the inner boundary with the boundary value bND =

b(R∗) = 0:

bi = bi+1 + ∆r
[

1
H0
− 1

H(ri+1)

]
(67)

To obtain the velocity v(r) we employ the equation-of-state,

(v̄2th(r) + v2turb) ρ(r) = p(r) and the continuity equation v(r) ∝ 1
ρ(r) r2 (68)
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11. WRSTART: Setting up a model

to obtain the velocity law

v(r) ∝ (v̄2th(r) + v2turb) r−2 exp
(
r − 1
H0
− b(r)

)
(69)

The proportionality constant is obtained via the inner boundary v(R∗) = vmin. The final formula for the
hydrostatic domain is therefore

v(R) = vmin
v̄2th(r) + v2turb

v̄2th(r = 1) + v2turb

r−2 exp
(
r − 1
H0
− b(r)

)
(70)

11.2.2. Wind domain

11.2.2.1. beta-law For the outer part of the atmosphere, i.e. for the stellar wind, we adopt the beta-law for
the velocity field, which we write in the form

v(r) = p1

(
1 − 1

r + p2

)β
(71)

Note: There is an alternative, slightly different version of the beta-law:

v(r) = p1

(
1 − p2

r

)|β|
(72)

This alternative version can be selected by setting β negative, where only the absolute value will be used as
exponent and the minus sign is the switch. The rest of this subsection refers only to the first version Eq. (71).

The two parameters p1 and p2 are fixed by the two boundary values,

v(rmax) = v∞ and v(rcon) = vcon (73)

Inserting these conditions in the above law, we obtain

vcon = p1

(
1 − 1

rcon + p2

)β
(74)

and

v∞ = p1

(
1 − 1

rmax + p2

)β
(75)

The parameter p1 can be eliminated by dividing the first by the second condition. With the definition

Q =
(
vcon

v∞

)1/β

(76)

this yields

Q =
1 − 1

rcon+p2

1 − 1
rmax+p2

(77)

Now comes some algebra till we obtain a quadratic equation for p2:

Q − Q
rmax + p2

= 1 − 1
rcon + p2

(78)
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11.2. Velocity field

1
rcon + p2

− Q
rmax + p2

= 1 − Q (79)

Now we multiply with the denominators:

rmax + p2 − Qrcon − Qp2 = (1 − Q) (rmax + p2) (rcon + p2) (80)

or
(1 − Q) p2 + rmax − Qrcon = (1 − Q) (rmax + p2) (rcon + p2) (81)

This allows to divide by (1 − Q)

p2 +
rmax − Qrcon

1 − Q
= (rmax + p2) (rcon + p2) (82)

which finally provides the quadratic equation in its normal form:

p2
2 + p2 (rmax + rcon − 1) + rmax rcon − rmax − Qrcon

1 − Q
= 0 (83)

Thus the equation has the form
x2 + 2S x − T = 0 (84)

with the coefficients

S =
1
2

(rmax + rcon − 1) (85)

and

T =
rmax − Qrcon

1 − Q
− rmax rcon (86)

and the (positive) solution

p2 = −S +
√

S 2 + T (87)

The other parameter, p1, is now easily obtained from the β-law at the outer boundary (Eq. 75), which gives

p1 = v∞
/(

1 − 1
rmax + p2

)β
(88)

11.2.2.2. Two-beta-law Optionally the velocity in the wind domain can be the sum of two beta-law terms
with different exponents β and β2, i.e.

v(r) = p1

(
1 − 1

r + p2

)β
+ p1−2

(
1 − 1

r + p2−2

)β2

(89)

The mixture is defined by the input parameter fβ2 (in the code: BETA2FRACTION); at rmax the contribution
of the second beta-term to the total velocity is fβ2 v∞. Hence, we must replace v∞ by (1 − fβ2) v∞ for the
calculation of the parameters p1 and p2 of the first beta-term in Eqs. (76) and (88).

For the corresponding parameters of the second beta-term, we have the condition

fβ2 v∞ = p1−2

(
1 − 1

rmax + p2−2

)β2

(90)
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11. WRSTART: Setting up a model

As the second condition we demand that the second beta-term vanished at the connection point rcon, i.e.

0 = p1−2

(
1 − 1

rcon + p2−2

)β2

(91)

which leads immediately to
p2−2 = 1 − rcon (92)

and

p1−2 = fβ2 v∞
/(

1 − 1
rmax + p2−2

)β2

(93)

11.2.3. Connection point

The connection point rcon between the hydrostatic and the wind domain is now determined from the condition
that in this point also the velocity gradients connect continuously. The gradients are

v′stat(r) = 3min exp
r − 1

H

/
H (94)

and

v′wind(r) =
βp1

(r + p2)2

(
1 − 1

r + p2

)β−1

(95)

for the (simple) hydrostatic and the wind domain, respectively. If the full hydrostatic integration is done,
there is no analytical solution and the inner gradient is obtained by using spline interpolation (SUBROUTINE
SPLINPOX) on the hydrostatic velocity field. In the wind part we have omitted the contribution from the second
beta-term (if present), because its gradient is zero at the connection point anyhow. This holds only for beta-law
exponents larger than unity; therefore we allow only β2 > 1.

We define a FUNCTION DELTAGR (or DELTAGRTHIN in the case of full hydrostatic integration) as the difference
between the two gradients v′wind − v′stat. We then use a regula falsi to find rcon where this function (DELTAGR
or DELTAGRTHIN respectively) vanishes. In the latter case, the regula falsi is directly implemented in the
SUBROUTINE VELTHIN due to the variety of required parameters. In the static approach the function DELTAGR
is handed as formal parameter into our standard SUBROUTINE REGULA. With this new value of rcon, the pa-
rameters of the beta law (p1, ...) are updated, and this is iterated till convergence of rcon. This is done to ensure
vwind(rcon) = vstat(rcon) .
The regula falsi requires two initial values which enclose the root. In order to chose this interval, a closer
discussion of the velocity gradients is necessary:

The run of the beta-law gradient (Eq. 95) is qualitatively different depending on β. For β < 1 the gradient is
+∞ at r = 1− p2 and is monitonically falling with increasing radius. For β = 1 it is also monotonically falling,
but starting from a finite value (v′(1 − p2) = p1). The gradient of the static part is exponentially growing.
Therefore, an intersection point is granted (see Fig. 2).

In the case of β > 1, the velocity v(r) has a turning point, i.e. the gradient has a maximum. The radius where
this maximum is located, rgradmax, can be obtained from setting the second derivative of the velocity to zero:

The first derivative Eq. (95) can be written as

v′wind(r) = β v(r)
/[

(r + p2)2
(
1 − 1

r + p2

)]
= β v(r)

/[
(r + p2)2 − (r + p2)

]
(96)

Differencing with the quotient rule yields

v′′wind(r) =
β v′ [...] − β v [...]′

[...]2 (97)
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11.2. Velocity field

with [...] being the bracket from the previous equation. The derivative of the bracket is

[(r + p2)2 − (r + p2)]′ = 2r + 2p2 − 1 (98)

Setting now v′′ = 0 and expressing v′ with Eq. (96) yields

β2v = βv[2rgradmax + 2p2 − 1] (99)

and, after cancelling βv, finally

rgradmax = 1 − p2 +
β − 1

2
(100)

The gradient of the static law will have two intersection points with the wind law (see Fig. 3). We want to
select always the larger of the two solutions. Therefore we search, by increasing r from max(1, 1 − p2 + ϵ) in
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Figure 2: Sketch of the velocity gradient of the hydrostatic law and a beta-law with β ≤ 1. In this case, there
is certainly one intersection point (encircled).
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Figure 3: Sketch of the velocity gradient of the hydrostatic law and a beta-law with β > 1. We are searching
for the second intersection point (encircled).
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11. WRSTART: Setting up a model

small steps of 0.1 hydrostatic scaleheights (0.1H), for the first value where v′wind > v
′
stat. For β ≤ 1 this will

be encountered immediately with the smallest value of r. For β > 1 this will be encountered after the first
intersection point. By starting the search interval from here, we make sure that we will find only the second
intersection point. If v′wind > v

′
stat is never encountered below rgradmax, there are apparently no intersection

points, and INITVEL stops with an error message – but this never happened so far. For finding the upper end
of the search interval, we step further through r till v′wind < v

′
stat is encountered. If this never happens till rmax

is reached, the model has no wind domain.

All this is coded in SUBROUTINE INITVEL and SUBROUTINE VELTHIN.

11.2.3.1. Tabulated wind-velocity field Alternatively, the wind velocity field can be provided via an input
file TABLE. In this case, the subroutines INITVEL and VELTHIN call a SUBROUTINE CONNECT_VELOTABLE
which has the following tasks to (a) define the connection radius RCON, and (b) rescale the tabulated wind-
velocity field. As the result, both, velocity and velocity-gradient, are continuous at RCON

Below RCON, v(r) is calculated as requested (barometric formula, or from HYDROSTATIC INTEGRATION).

The connection point is placed such that the velocity there is VSOUND * FSONICTA, where the latter factor
can be defined by the user in the CARDS input file on the VELOTABLE line as the value of the optional parameter
VSONIC=x.x. However, FSONICTA is automatically reduced if necessary such that the gradient at the con-
nection point is not steeper than half of the maximum gradient that is present in the tabulated wind velocity
field.

The second part of this subroutine is to re-scale the tabulated velocity field such that the connection-point
conditions are met.

The velocity gradient is required to be continuous at the connection point; since the gradient from the hydro-
static part is given, the tabulated wind field is re-scaled in radius such then the point with the same gradient
is met at RCON. The connection point RCON is a virtual point that must not coincide with a depth point of the
radius grid. The radius vaules are linearly re-scaled such that RMAX is kept at its place.

In a second step, the the velocity points are linearly re-scaled such that the velocity at RCON meets the value
from the quasi-hydrostatic (photospheric) domain, but the velocity at RMAX stays VFINAL.

Since gradients are changing when the VELOTABLE is re-scaled, the whole algorithm requires an internal
iteration.

11.3. The coarse frequency grid

A coarse frequency grid which is used in several cases where a frequency-dependent quantity has to be handled
outside of the CMF radiative transfer program. This grid is defined at the start of a model in the FGRID routine.
Various criteria are used to provide a sufficient frequency-space coverage. The frequency points are coming
from two branches: The majority of points is automatically generated via several criteria described below. On
top, additional points can be specified manually, most notably the blue-most frequency point.

11.3.1. User-defined frequency points

The FGRID file can be used to define frequency points manually. Each non-comment line must contain only
one number, namely the wavelength of the frequency in Angstroem as a float number. Comment lines must
be marked by an asterisk (*) as the first character. The FGRID file should contain at least one wavelength to
define the blue-most point of the frequency grid.

On top of defining frequency points, there is one special line which can be given in the FGRID file. Via the line
TREF = x.x you can specify a reference temperature Tref which will be used during the automatic frequency
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point generation. If this line is not given - which is the standard case - Tref = T∗ will be used.

Alternatively, the CARDS option OLD FGRID can be used to take all user-defined frequencies - i.e. those
which are not generated by one of the automatically used criteria - from an old model. These points can be
identified from the frequency-listing in wrstart.out as they are the only ones which do not have a keyword
in the KEY column. The OLD FGRID option extracts only these frequency points from an old model for using
them in the new one. If OLD FGRID is set, any current FGRID file is ignored.

The reading of both the FGRID file and the readout from an old model via OLD FGRID are performed in the
DECFREQ subroutine.

11.3.2. Criteria-based frequency points

The majority of coarse-grid frequency points are set by automatic criteria, described in the following para-
graphs. The order of the paragraphs reflects the order of insertion in the FGRID routine. The manually defined
frequency points are read first, then the automatic criteria are used.

11.3.2.1. Red-most line frequency point To ensure that the frequency grid extends to a wavelength
regime large enough to cover the red-most line frequency, the first automatically inserted point is calculated
from this criterion. A loop over all line transitions (including iron) is performed to determine the transition
with the largest wavelength λredmost. To include also the line wings, the true redmost wavelength λmax is then
calculated by

λmax = λredmost ·
(
1. +

v∞
106 km/s

)
. (101)

Regardless of the actual calculated value, it is ensured that λmax is never lower than 10 µm. The keyword in
the coarse-grid listing (KEY vector in the MODEL file) depends on some details. If the limit had to be raised
to 10 µm, the point is marked as REDMIN. Otherwise it is indicated by the transition index (IND), preceeded
by either LINE or RUD, reflecting whether the Einstein coefficient for the transition is known or not.

11.3.2.2. Insertion of continuum edges To cover all photoionization edges, frequency points are inserted
on both sides close to the edges. If the edge wavelength is given by λkon, the inserted two wavelengths λ± are

λ± = (1 ± w) · λkon (102)

with

w :=
10
3
vd
c

. (103)

Before an update in 2015, w was not coupled to the Doppler velocity vd, but instead fixed to 0.0001.

Frequency points inserted due to continuum edges are marked with EDGE- or EDGE+ followed by the cor-
responding element and the ionization stage. For K-shell ionization edges, the same procedure is performed
after the “normal” continuum transitions. Instead of EDGE, here K-ED is used as the keyword indicator.

11.3.2.3. Small relative contributions The so far existing frequency grid usually covers already a wide
span of wavelengths. However, it is so far not guaranteed that their spacing is sufficient for all purposes where
it is used.

For the next criterion the relative contribution of a particular interval to the Planck function is checked. For
each wavelength interval λk . . . λk+1 the corresponding frequency difference ∆ν is calculated. Then the relative
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contributions rB to the Planck function are calculated via

rB =
1
2
∆ν

Bν(λk,T ) + Bν(λk+1,T )
B(T )

(104)

for T = Tref and T = 2 ∗ Tref. If rB is larger than 2.5% for any of the cases, an additional frequency point is
inserted at

λadd =
1
2

(λk + λk+1) . (105)

The keyword for frequencies added due to large relative contributions is ADD. The whole relative contributions
check is started again and again as long as wavelengths have to be inserted due to this criterion.

11.3.2.4. Small relative wavelength steps The final insertion criterion checks the step sized of the so far
existing grid. An additional point is inserted between λk and λk+1 at λmid if

λk+1 − λk

λmid
> ϵ with λmid :=

1
2

(λk + λk+1) . (106)

The value of ϵ depends strongly on the wavelength regime:

λ < 20 Å ϵ = 0.1 (107)

20 Å < λ < 227.83774 Å ϵ = 0.1 f −1
2 (108)

227.83774 Å ≤ λ ≤ 300 Å ϵ = 0.1 f −1
2 f −1

3 (109)

300,Å < λ < 504.259 Å ϵ = 0.1 f −1
3 (110)

504.259 Å ≤ λ < 2000 Å ϵ = 0.1 (111)

2000 Å ≤ λ < 15 µm ϵ = 0.01 (112)

λ ≥ 15 µm ϵ = 1.0 (113)

The special factors f2 and f3 are calculated via

f2 =
(
λ − 20 Å

126.1166 Å

)8

+ 1 (114)

f3 =
(
λ − 300 Å

126.1166 Å

)8

+ 10 (115)

All frequencies added due to the wavelength step criterion are marked with the ADD_DL keyword.

11.3.3. Removal of extremely small grid steps

After passing all frequency insertion criteria, some points might be spaced extremely closed to one another.
This can cause numerical issues in some of the calculations and thus a point at λk is removed from the coarse
grid, if

λk < λk−1 ·
(
1. + 5 · 10−5

)
. (116)

This usually affects only points inserted by the edge covering criterion. In some cases elements provide several
transitions with edges very close to one another, e.g. neon, or some ionization edges of one element are close
to those of another one already considered in the model. The removal of extremely small steps thus happens
more often if more elements are used in a model.
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11.3. The coarse frequency grid

11.3.4. Calculation of integration weights

As a last step of the coarse-frequency grid setup, a vector integration weights is calculated which is afterwards
used for the discretization of dν in all frequency integrals over the coarse grid. The weights wν,k are calculated
via trapezoidal rule, i.e.

wν,k =
c
2

(
1
λk+1

− 1
λk+1

)
. (117)

The first and the last weight have to be calculated with one-sided step, namely:

wν,1 =
c
2

(
1
λ1
− 1
λ2

)
(118)

wν,nf =
c
2

(
1
λnf−1

− 1
λnf

)
(119)

Finally the newly calculated integration weights are renormalized to retain the exact integral sum of Planck’s
function using the reference temperature Tref:

wk,norm = wk
B(Tref)∑nf

l=1 wlBν(λl,Tref)
(120)

The normalization factor is usually very close to unity with differences on the order of 10−5 or lower.
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12. Radiative transfer in the co-moving frame

12.1. “Ray-by-ray”: the angle-dependent transfer equation

Note that the statistical equations contain radiative rates of the form

Rlu =

∫
4π
hν
σlu(ν) Jν dν (121)

Here Jν is the angle-averaged radiation field

Jνcmf =
1
2

∫ 1

−1
Iνcmf(µ) dµ (122)

Obviously, this angle integral must be taken in the co-moving frame (CMF) of the considered fluid element,
i.e. the frequencies in the above equation are co-moving frame frequencies. This is one of the reasons that the
whole radiative transfer is calculated in the CMF. This means:

• frequencies νcmf are measured in the local, co-moving frame-of-reference (CMF);

• all points are differentially moving (receding);

• propagating photons continuously change their frequency.

The transfer equation becomes a partial differential equation for the intensity

±∂I
±
ν

∂z
− ν

c
d(µ3)

dz
∂I±ν
∂ν
= ην − κ I±ν (123)

where the different signs holds for rays in +z and −z-direction, respectively.

Now we introduce a dimensionless frequency x in Doppler units referring to a reference velocity vD as

ν = ν0

(
1 +
3D

c

)x
(124)

or, equivalently,
ln ν = ln ν0 + ln(1 +

3D

c
) x . (125)

Since 3D ≪ c, we have ln(1 + 3Dc ) ≈ 3Dc . Therefore,

d(ln ν) =
3D

c
dx or dν = ν

3D

c
dx . (126)

∆v
(Projection)

Figure 4: In a differentially expanding atmosphere, any two volume elements are moving with different veloc-
ities. A photon travelling from one to the other volume element experieces a Doppler shift according
to the veloctity difference, projected on the ray’s direction.
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ϑ
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p
rmax

r = 1

I
+

Figure 5: Coordinates are either spherical, with radius r and angle ϑ, or cartesian with impact parameter p and
z in the direction to the observer. The atmosphere is calculated between the inner boundary at r = 1
and the outer boundary at r = Rmax.

The dimensionless velocity V is measured in the same Doppler units,

V(r) = v(r)/vD (127)

With these dimensionless units, the transfer equation Eq. (123) becomes

±∂I
±
ν

∂z
− P(p, z)

∂I±ν
∂x
= ην − κ I±ν (128)

P(p, z) is the projected velocity gradient in dimensionless units,

P(p, z) =
d(µV)

dz
= µ

dV
dz
+ V

dµ
dz
= µ2 dV

dr
+ (1 − µ2)

V
r

(129)

In principle, we can solve this radiative-transfer Eq. (128) for all frequencies and impact parameters, and
then perform the angle-averaging and evaluate the radiativ rates. However, note that we need about 200 000
frequency points, 60 impact-parameters and 50 radial points, i.e. the total number of intensities to be calculated
in each iteration is about 109.

Another problem with the ray-by-ray solution is the Thomson-scattering contribution to the emissivity. It
contains scattered photons from all directions, and thus must be taken from the previous iteration when solving
the radiative transfer ray-by-ray.

For these two reasons, it is more efficient to solve the moment equations; they have one dimension less, and
the Thomson term cancels out (see Sect. 12.5).

Nevertheless, we will see below that the Moment Equations need supply with so-called Eddington factors, and
these can only be obtained from solving the angle-dependent transfer Eq. (128), which will be described in the
following subsection.

12.2. Short-characteristic integration

SUBROUTINE SHORTCHAR

As we will see below, we need a method which assures that the solution, i.e. the radiation field, is always
strictly positive irrespective of any numerical errors.
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Figure 6: Angle-averaged intensity profile obtained with the short-characteristic intergration, compared to the
result from the differencing scheme

The standard method which we tried first is a differencing scheme. According to Feautrier’s method, one
introduces the Feautrier intensity u and flux v as

u :=
1
2

(I+ + I−) v :=
1
2

(I+ − I−) (130)

In the static case, a second-order equation for u is easily obtained, for which one can write a tridiagonal
differencing scheme. The expanding case is somewhat more tricky, since v can only be eliminated from the
equation after differencing. This method will not be described here further.

Practically, we encountered that the radiation intensity – even after angle-averaging – often became negative at
some frequencies and depth points. An example is shown in Fig. 6. This is a fatal problem for the subsequent
use of the moment equations, as the Eddington factor f becomes singular (see Sect. 12.4). Therefore we
introduced a solution of Eq. (128) by integration along short characteristics (Koesterke, Hamann & Gräfener
2002).

The characteristics of the partial differential equation Eq. 128 are formally obtained by integration of the
differential equation

dx = ∓P(p, z) dz . (131)

They simply describe the redshift of the traveling photons in their CMF frequency. The run of the characteris-
tics is sketched in Fig. 7). As P(p, z) > 0 for a monotinically expanding atmosphere, the characteristics always
go from blue to red frequencies.

A partial differential equation (PDE) becomes an ordinary differential equation (ODE) along the characteris-
tic. For the coordinate along the characteristic we just take the z coordinate. Then the ODE is just the usual
transfer equation, i.e. we have transformed the CMF equation back into the observer’s frame.

The concept of the short characteristic method is now, that the characteristics are only intergated across one
grid cell. The incoming radiation provides the boundary condition at the walls of the cell and is obtained by
interpolation between the grid points.

Details of our models can be seen from the sketch in Fig. 8. Assume that we need to calculate I+l,k, i.e. the
intensity in +z direction at spatial point zl and frequency xk.
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Figure 7: Characteristics of the CMF transfer equation for a monotonic velocity field

Integration the transfer equation yields the well-known solution

I+l,k =
∫ τ̂

τ=0
S (τ) e−τdτ + Î+e−τ̂ . (132)

The variables with “hat” refer to the boundary where the short characteristic enters the cell.
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Figure 8: Short characteristics in one cell
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We assume that the short characteristic is linear within the cell. Its slope is given by −P−1
l,k . The point where

short characteristic enters the cell is termed the “hat” point, and all quantities referring to that point are notated
with a “hat”. We must now distinguish whether the “hat” point lies on the frequency boundary (case 1) or the
spatial boundary (case 2) of the cell. This follows from:

if Pl,k ∆z > ∆x than case 1 else case 2 (133)

The “hat” point divides its cell wall in fractions p and q as shown in the sketch (p + q = 1). In our standard
version, we simply assume that the characteristics are linear with the slope −P−1

l,k . Then we define

PPDZ =
∆z Pl,k

∆x
(134)

and obtain
for case 1: q = PPDZ−1 and for case 2: q = PPDZ (135)

Alternatively, one may find the “hat” point as the intersection point of the characteristic with the cell bound-
aries from the corresponding conditions and the (linearly interpolated) velocity field. This version has also
been coded (SUBROUTINE SHORTRAY in libcr_shortray-test), but I cannot remember the outcome of the tests.

Opacity and source function at the “hat” point are obtained by linear interpolation (see Table 12.2). The optical
depth τ between the corner point (xk, zl) and the “hat” point is calculated with the trapeziodal rule.

For the interpolation of I, a higher order than linear turned out to be essential for the case 1. However, the
interpolation must be monotonic, meaning that the interpolated value is never outside the range between the
two values at the cell corners. Only this guaranties that the resulting intensitieds are always positive, as long
as the opacities and the source function are positive. See Appendix C for details of the spline-interpolation
formalism.

In the frequency coordinate linear interpolation is sufficient (case 2). This reflects the fact that the spatial
resolution of the grid is much coarser than the frequency resolution.

Table 1: Short-characteristic integration: calculation of the “hat” quantities at the cell boundary
Case 1 Case 2
κ̂ = p κl,k−1 + q κl+1,k−1 κ̂ = p κl+1,k + q κl+1,k−1
Ŝ = p S l,k−1 + q S l+1,k−1 Ŝ = p S l+1,k + q S l+1,k−1

τ̂ = 1
2 (κl,k + κ̂)q∆z τ̂ = 1

2 (κl,k + κ̂)∆z
Î = spline interpol. along xk−1 Î = p Il+1,k + q Il+1,k−1

Having prepared τ and Ŝ , the integration of the transfer equation Eq. (132) is performed as a quadrature sum
with only two points,

I+l,k = w0S l,k + ŵŜ + Î+e−τ̂ (136)

The quadrature weights w0 and ŵ incorporate the kernel function of the integral, e−τ,

w0 = 1 − 1 − e−τ̂

τ̂
ŵ = 1 − w0 − e−τ̂ (137)

See Appendix B.6 for the construction of these quadrature weights.

The short-characteristic integration for an inward ray (I−) is completely in analogy. Note that the short-
characteristic integration of Il,k requires that the intensities at the other three corners of the cell are already
known. We start at the bluemost frequency x1, where the intensity must be specified as blue-wing boundary
condition. At the next frequency, the loop stars at the outermost cell with the inward ray. I− is specified by the
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12.2. Short-characteristic integration

outer boundary condition is space (see below). Calculating cell by cell, we arrive either at the stellar core, or
at the plane of symmetry. In the first case, we start with the integration of I+ with I+core as boundary condition
in space. In the latter case, the boundary value of I+ is given by I− at the symmetry plane from the inward
integration. The integration of I+ proceeds cell by cell outwards until the outer boundary is reached.

Boundary conditions: outer boundary
The standard assumption would be I−ν = 0 at the outer boundary (the subscript ν is omitted for brevity through-
out this section). However, strong lines and continua are often not yet optically thin at R (in the following short
for Rmax). Assuming I− = 0 at the boundary then produces quite a discontinuity in the radiation field, leading
to strong gradients in the population numbers which can hamper the convergence. Therefore it is desirable to
choose I− at R such that steep gradients are avoided. We did not find yet an ideal solution to this problem.
The PoWR code provides different versions for the outer boundary condition which can be selected by the
OB_VERS option (cf. Sect. ??).

Since the region outside R is not calculated, approximations can only be based on extrapolations. For the
opacity between R and infinity we assume that it dilutes from its value at the boundary (κ1) with r−2 like the
density (for constant v). The radial optical depth between R and r then becomes

τ(r) =
∫ r

R
κ1

( R
r′

)2
dr′ = κ1 R2

(
1
R
− 1

r

)
(138)

The radial optical depth from the boundary at radius R to infinity is

τB = κ1 R (139)

Note that with this optical depth any velocity gradients are neglected, i.e. it holds if the velocity outside of
R stays constant. Moreover, we will take the radial optical depth also for the non-radial rays (which slightly
under-estimates their optical depth), making I− independent of the impact parameter.

Different assumptions can be chosen for the source function S ν:

In OB-VERS 1 the source function stays constant at its value at the boundary, S 1. Then, I− = S 1 (1 − e−τR)

In OB-VERS 2 it is assumed that the source function decreases with r−2, which would hold if the emission
scales with density-squared. Since S = η/κ, this implies that the emissivity scales as η = η1 (R/r)4. The
transfer equation can be integrated analytically:

I− =
∫ ∞

R
S (r) e−τ(r) κ(r) dr

= η1 R4
∫ ∞

R
r−4 e−κ1R2( 1

R− 1
r ) dr (140)

= η1 R4 e−κ1R
∫ ∞

R
r−4 eκ1R2/rdr

Now we make a substitution: x := κ1 R2/r, which implies dx = −κ1 R2/r2 dr. The upper boundary of the
integral (r = ∞) transforms to x = 0, and the lower boundary (r = R) to x = κ1R = τB. The boundaries are
swapped to compensate for the minus sign. Thus,

I− =
η1

κ1
R2e−κ1R

∫ τB

0
r−2 ex dx

= S 1 R−2 κ−2
1 e−κ1R

∫ τB

0
x2 ex dx (141)

= S 1 τ
−2
B e−τB

∫ τB

0
x2 ex dx
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Bronstein (1981, p. 113) gives ∫
x2 ex dx = ex (x2 − 2x + 2) (142)

With the boundaries [0, τB] this gives eτB(τ2B − 2τB + 2) − 2. Inserting this for the integral, the exponential
terms cancel except for the lower-boundary term, and we finally obtain

I− = S 1
[
τ−2

B (τ2B − 2τB + 2) − τ−2
B e−τB · 2

]

= S 1

1 − 2
τB
+

2
τ2B
− 2e−τB

τ2B



= S 1

1 − 2
τB
+

2
τ2B

(1 − e−τB)
 (143)

Two final modifications are applied to this results, for very thick and for very thin opti depths, respectively. For
very large τB, the formalism yields I− ≈ S 1; Götz found that this can lead to a slow runaway of the boundary
value and therefore introduced an upper limit as I− ≤ 0.9999 S 1.

For very small τB, Eq. (143) can produce a floating exception (division by zero). To avoid this, the exponential

function can be expanded in a Taylor series: e−τB ≈ 1 − τB + τ
2
B
2 −

τ3B
6 (third order is needed!). The last line of

Eq. (143) then becomes

I− = S 1

1 −
2
τB
+

2
τ2B

τB −
τ2B
2
+
τ3B
6




= S 1

[
1 − 2
τB
+

(
2
τB
− 1 +

τB
3

)]

= S 1
τB
3

(144)

Summarizing, the outer boundary condition (version 2) is

I− =



S 1
τB
3

: τB < 10−3

S 1 min

1 − 2

τB
+

2
τ2B
− 2
τ2B

e−τB
 , 0.9999

 : τB ≥ 10−3

OB-VERS 4 is similar to OB-VERS 2, but instead of the source function S 1 at the boundary we employ a
value S B which is obtained by a complicate procedure (again, to avoid a too strong feedback which can result
in a runaway), namely a least-square fit to the source function as function of radius. This polynomial fit
is prepared in subroutine sfit. For the outermost mbound (presently set to 30) radius points, the following
vectors are prepared: xℓ = log ntot

ℓ
− ntot

1 (log of the total number density, in difference to its value at the
boundary), yℓ = Trad(S ℓ) (radiation temperature of the source function), wℓ = xℓ+1 − xℓ−1 (weight according
to the separation of the x points. Then subroutine polyfit performs a weighted least-square fit with a cubic
function (other polynomial degrees are presently disabled; in the CRAY branch, the NAG subroutine E02ADF
was used instead of polyfit which allowed for arbitrary polynomial degrees). The origin of the algorithm in
polyfit is not documented (numerical recipes?). The proper functioning of this artwork can be checked with
the help of a test-plot facility that can be activated in the code of SFIT.

The polyfit routine returns the coefficients for the fit polynomial

f (x) = a4 + a3x + a2x2 + a1x3 (145)

(note the falling numbering of the indices); since x = 0 for the boundary, the lowest coefficient a4 gives the
value at the boundary.
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Sometimes, the fit polynom shows a minimum and then rises towards the boundary again. This also can lead
to a slow runaway of the boundary value with the iteration. Thefore, we check the polynomial function for a
possible minimum and, if existing, take the minimum value instead of the value at the boundary.

This needs some more algebra. The first two derivatives of the polynomial function are

f ′(x) = a3 + 2a2x + 3a1x2 (146)

and
f ′′(x) = 2a2 + 6a1x (147)

An extrema requires the first derivatiove to vanish. Thus we solve the quadratic equation

x2 +
2a2

3a1
x +

a3

3a1
= 0 (148)

which has the standard form x2 + px + q = 0. First we check if real solutions exist, i.e. if ( p
2 )2 > q. If so, we

calculate the solutions

x1,2 = − p
2
±

√
p
2

)2 − q (149)

and check each of them if they lie in the consired range of x-values (x1, xMBOUND). If so, we evaluate the
second derivative and check for a minimum, i.e. if f ′′ > 0. If so, we evaluate the polynomial at this x1 or x2,
respectively, and convert this radiation temperature back into an intensity which serves then as the boundary
value S B instead of S 1 in Eq. (143). Uff!

OB-VERS 5 is analog to version 4, but works only with the continuum opacities.

Boundary conditions: inner boundary

For the incident radiation I+ at the inner boundary (r = 1) we assume LTE and the diffusion approximation.
This means,

I+ν (µ) = Bν + µ
dBν
dτ
= Bν − µ dBν

dr

/
κ (150)

While this is also done in SUBROUTINE SHORTCHAR, the terms Bν and dBν
dr are prepared in SUBROUTINE

CLDIFFUS. Bν is just the Planck function for TND. dBν
dr is written with the chain rule as dBν

dT
dT
dr . The ana-

lytic expression for dBν
dT is coded in the FUNCTION DBNUEDT.

dT
dr is read from the model file and has been prepared in the STEAL program with the details being described
further down.

The flux at the inner boundary Hν,nd is not necessarily identical to the diffusion flux

Hν,diff = − 1
3κν

∂Bν
∂r
=

1
3κν

∂Bν
∂T

∣∣∣∣∣
dT
dr

∣∣∣∣∣
r=R∗

(151)

since this would require that also I−ν could be described by the diffusion approximation (150). A more precise
calculation of the inner boundary flux which can account for deviations from the diffusion approximation is
instead obtained by the following procedure. First, we introduce a special quantity

Hν,spec :=
1
2

1∫

0

(
I+ν + I−ν

)
µdµ. (152)
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12. Radiative transfer in the co-moving frame

Note that this quantiy has a flux-like integral weigth, but an intensity-like core. This quantity is calculated in
the SUBROUTINE SHORTCHAR, together with the regular quantity Jν,nd. This allows the calculation of a special
Eddington factor

hν,in :=
Hν,spec

Jν,ray,1
=

1∫

0

(
I+ν + I−ν

)
µdµ

1∫

0

(
I+ν + I−ν

)
dµ

. (153)

The such defined hν,in can then be used to remove I−ν from the calculation of the total flux at the inner boundary.
Summing Hν,spec and the ordinary defintion of Hν,nd yields:

Hν,nd + Hν,spec =

1∫

0

I+ν µdµ (154)

Hν,nd + hν,inJν,nd =
1
2

Bν − 1
3κν

∂Bν
∂r

(155)

⇒ Hν,nd =Hν,diff +
1
2

Bν − hν,inJν,nd (156)

The correct flux at the inner boundary Hν,nd is thus obtained via Eq. (156), which illustrates that the pure
diffusion term has to be corrected for deviations from Jν = Bν.

In the SUBROUTINE FREQUINT, the total flux at the inner boundary and the flux resulting only from the cor-
rection terms are integrated over the whole frequency range, yielding the two following quantities:

Hnd =

∞∫

0

(
Hν,diff +

1
2

Bν − hν,inJν,nd

)
dν (157)

Hnd,cor =

∞∫

0

(
1
2

Bν − hν,inJν,nd

)
dν (158)

Usually Hnd,cor should only be a small fraction of Hnd.

The diffusion term Hν,diff requires the temperature gradient at the inner boundary (see Eq. 151), which is either
given as a precalculated quantity from the STEAL SUBROUTINE TEMPCORR, or – if the TDIFFUS option is
set in the CARDS file – from assuming that the proper gradient should arise from pure diffusion, i.e. Hdiff =∫

Hν,diff dν !
= H0. The latter is done in the SUBROUTINE DIFDTDR and leads to the following simple formula

which only requires the Rosseland optical depth and the current electron temperature Tnd at the inner boundary
to be given:
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12.2. Short-characteristic integration

∞∫

0

Hν,diff dν = H0 (159)

∞∫

0

1
3κν,nd

∂Bν
∂T

∣∣∣∣∣
dT
dr

∣∣∣∣∣
r=R∗

dν =
σSB

4π
T 4
∗ (160)

1
3κRoss,nd

∂B
∂T

∣∣∣∣∣
dT
dr

∣∣∣∣∣
r=R∗
=
σSB

4π
T 4
∗ (161)

4
3κRoss,nd

σSB

π
T 3
nd

∣∣∣∣∣
dT
dr

∣∣∣∣∣
r=R∗
=
σSB

4π
T 4
∗ (162)

∣∣∣∣∣
dT
dr

∣∣∣∣∣
r=R∗
=

3
16
κRoss,nd

T 4∗
T 3
nd

(163)

The TDIFFUS option further implies that the innermost temperature point is calculated by enforcing the gra-
dient from Eq. (163) between the innermost two radius points. This is performed in the STEAL SUBROUTINE
TDIFFUS.

Without the TDIFFUS option, the innermost temperature is calculated similar to all other ones, i.e. from the
Usöld-Lucy method performed in the SUBROUTINE TEMPCORR. In the same routine, a “special” temperature
gradient at the inner boundary is calculated, which is then used for obtaining Hν,diff in the COLI SUBROUTINE
CLDIFFUS. This gradient is calculated from the last electron temperature gradient, corrected with a factor

ffluxcor =
σSB

4π
T 4∗
Hnd

(164)

which ensures the correct flux at the inner boundary. The gradient is then obtained as

∣∣∣∣∣
dT
dr

∣∣∣∣∣
r=R∗
= 1 + ( ffluxcor − 1) · 0.1 · dunlu,int (165)

with dunlu,int being the damping factor for the integral term in the Usöld-Lucy correction. The additional
damping of 0.1 is done to ensure that the temperature correction at the inner boundary is prioritized compared
to the gradient correction.

Boundary conditions: frequency
As for our monotonically expanding atmosphere the (short) characteristics always proceeds towards longer
wavelengths, the integration needs a boundary condition at the bluemost frequency. Since we start with our
frequency grid at a very small wavelength, we can assume that the radiation field is zero:

I−k,l = 0 and I+k,l = 0 for k = 1 and for all l < ND (166)

This is achieved by initializing the vectors XIMINUS_OLD and XIPLUS_OLD to zero. In the loop over the
frequency, these vectors are then always replaced by the newly calculated I−k,l and I+k,l, before proceeding to the
next frequency index k.

Note that the quadrature formula cannot assure positive I when the opacities become negative. The Koesterke
et al. (2002) paper contains the remark: “Even in case of negative opacities (stimulated emission exceeds
absorption) the integral remains positive because negative source functions meet negative τ-steps.
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12. Radiative transfer in the co-moving frame

12.3. Integration of the moments

The ray-by-ray radiative transfer calculation described in the previous section proves the radiation intensities
I+ and I− at each radius point, impact-parameter point and frequency point, i.e. a huge amount of data (giga-
bytes). However, for the subsequent calculation of the radiative transfer with moment equations, described in
the subsequent section’ only the Eddington factors (i.e. rations between the moments of the radiation field, are
actually needed.

The moments of the radiation intensity are defined as

[J̃, H̃, K̃, Ñ] =
1
2

r2
∫ 1

−1
I(µ)[1, µ, µ2, µ3] dµ (167)

The r2-factor implied in the tilded quantities in convenient for the spherical geometry; the same definition
applies for the source function S̃ ν = r2S ν.

Thus the moments are integrals of the intensities. Therefore, each intensity that is calculated in the ray-by-
ray radiative transfer can be immediately added to the intergrals (i.e. quadrature sums with the appropriate
integration weights), and must not be stored any longer.

The integrals .... quadrature weights ... SUBROUTINE COLIWM ... TO BE WRITTEN!!

12.4. Moment equations

We start with the transfer equation in spherical coordinates (r, ϑ). Compared to the transfer Eq. (refeq:cmf-ray)
in cartesion coordinates (p, z), the spatial derivative now splits into two terms since along a ray not only r is
changing, but also its angle ϑ against the radius vector. Therefore the equation now also gains a term with
partial derivative with respect to µ:

µ
∂I(x, µ, r)
∂r

+
1 − µ2

r
∂I(x, µ, r)
∂µ

+ (168)
(
−µ2 dV(r)

dr
− (1 − µ2)

V(r)
r

)
∂I(x, µ, r)
∂x

= η(x, r) − κ(x, r) I(x, µ, r)

The Moment equations are obtained by performing the angle integral over the angle-dependent transfer equa-
tion. For this step we need to perform partial integration for those terms containing two µ-dependent factors:

Auxiliary calculations (partial integrations):
(1) First term of Eq. (168), integration over dµ

1
2

∫ +1

−1
µ
∂I
∂r

dµ =
1
2
∂

∂r

∫ +1

−1
µ I dµ =

∂H
∂r

Second term of Eq. (168), integration over dµ

1
2

∫ +1

−1

1 − µ2

r
∂

∂µ
I dµ =

1
2

[
1 − µ2

r
I(µ)

]+1

µ=−1
− 1

2

∫ +1

−1
(−2µ/r)I(µ) dµ

= 0 +
2H
r

both term together:
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12.4. Moment equations

∂H
∂r
+

2
r

H =
1
r2

∂(r2H)
∂r

=
1
r2

∂(H̃)
∂r

(2) Second term of Eq. (168), integration over µ dµ

∫
1 − µ2

r
∂

∂µ
I µdµ =

1
2

[
µ − µ3

r
I(µ)

]+1

µ=−1
− 1

2

∫ +1

−1

1 − 3µ
r

I(µ) dµ

= 0 +
1
r

(3K − J)

With the help of these auxiliary relations, we can integrate the above transfer Eq. (168) and obtain:

0.Moment : − ∂H̃
∂r
+

(
dV(r)

dr
− V(r)

r

)
∂K̃
∂x
+

V(r)
r
∂J̃
∂x
=

(
J̃(r) − S̃ (r)

)
κ(x, r) (169)

1.Moment :
∂(qK̃)
−q∂r

+

(
dV(r)

dr
− V(r)

r

)
∂Ñ
∂x
+

V(r)
r
∂H̃
∂x
= κ H̃ (170)

The first term of 170 had been simplified with help of the definition of an Eddington factor f = K/J and the
“sphericity factor” q by the differential equation

d
dr

(
ln(r2q)

)
=

1
r2q

d(r2q)
dr

=:
3 f − 1

r f

When chosing arbitrarily q(r = 1) = 1 as initial condition, and defining F(r) = (3 f (r) − 1)/ f (r), integration
over r′ yields

ln(r2q) =
∫ r

1
F(r′)

dr′

r′
(171)

Incrementing the integral from radial index l + 1 to index l means

ln(r2
l ql) = ln(r2

l+1ql+1) +
∫ rl

rl+1

F(r′)
dr′

r′
(172)

Replacing the integral by a quadrature sum gives

ln(r2
l ql) = ln(r2

l+1ql+1) + wl+1Fl+1 + wlFl (173)

where the weights include the inverse-r kernel function as given in the Appendix B.5, i.e.

wl+1 =
rl

rl − rl+1
ln

∣∣∣∣∣
rl

rl+1

∣∣∣∣∣ − 1 , wl = − rl+1

rl − rl+1
ln

∣∣∣∣∣
rl

rl+1

∣∣∣∣∣ + 1 (174)

Re-odering the terms gives

ln(r2
l ql) = ln(r2

l+1ql+1) + (Fl − Fl+1) + Fl+1 ln
(

rl

rl+1

) rl
rl−rl+1

+ Fl ln
(

rl

rl+1

)− rl+1
rl−rl+1

(175)

Now we can take the whole equation to the exponent,

r2
l ql = r2

l+1ql+1 eFl−Fl+1

(
rl

rl+1

) rl
rl−rl+1

Fl+1
(

rl

rl+1

)− rl+1
rl−rl+1

Fl

(176)
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12. Radiative transfer in the co-moving frame

As the two terms with exponents have the same basis, they can be assembled to

r2
l ql = r2

l+1ql+1 eFl−Fl+1

(
rl

rl+1

) rlFl+1−rl+1Fl
rl−rl+1

(177)

This formula is now easily coded in SUBROUTINE COLIMO:

C*** Sphericity factor
QLF(ND) = 1.
RRQ = 1.
RL = RADIUS(ND)
FL = 3. - 1./EDDIF(ND)
DO L=ND-1, 1, -1
RLP = RL
RL = RADIUS(L)
FLP = FL
FL = 3. - 1./EDDIF(L)
RRQ = RRQ * EXP(FL-FLP) * (RL/RLP)**((FLP*RL-FL*RLP)/(RL-RLP))
QLF(L) = RRQ / (RL*RL)

ENDDO

12.5. Cancellation of the Thomson-scattering term

The opacity consists of the true opacity and the Thomson-scattering opacity, κ = κtrue + κe. The same holds for
the emissivity, where ηe = κe J.

Therefore, the right-hand side of the 0. moment equation can be rewritten as κ (S − J) = ηtrue − κtrue J.

∂H̃ν
∂r
−

(
dV
dr
− V

r

)
∂K̃ν
∂x
− V

r
∂J̃ν
∂x
= η̃true
ν − κtrue J̃ν (178)

while the 1. moment equation remains unchanged, i.e. here the opacity involved is the full opacity κ including
the Thomson term:

∂(qK̃ν)
−q ∂r

+

(
dV
dr
− V

r

)
∂Ñν
∂x
+

V
r
∂H̃ν
∂x
= κ H̃ν (179)

12.6. Eddington factors

The moment equations can be closed by the introduction of the Eddington factors. The original suggestion by
Mihalas et al. was to use

f = K/J and g = N/H . (180)

However, there is no reason why fluxes cannot become negative at some frequencies and depths. Hence the
definition of g can become singular. Therefore we introduce a different definition,

g =
N

H + ϵJ
(181)

Different values for ϵ may be chosen at each radius point, but ϵ may not depend on x in order to avoid frequency
derivatives. Our original idea was to minimize the deviation from Mihals’ idea, as might have had the right
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intuition about the best convergence properties. Therefore we have a complicated mechanism to control the
minimal choice of ϵ in the program COLI.

In order to avoid a singularity in Eq. (181), we demand ϵ > −H/J. This should never request an ϵ > 2, since
from the definition of the moments follows that

−J < H < J . (182)

However, we will see below that we need to put a further constraint (Eq. 204) on ϵ to assure that the de-
nominator in the numerical coefficients α, β and γ (see Eqs. 198–200) is positive. Considering the Riemann
Characteristics of the coupled moment equations (see Appendix D), the same condition can be shown to assure
their hyperbolic type.

Today I think that it would be best to define simply g := N/J. This would lead to a simplification of the
equations and coefficients. However, we have not yet checked whether this would automatically avoid all
singularities in the coefficients, and if the hyperbolic type would be always guaranteed. This should be inves-
tigated!

Whatsoever, for given Eddington factors, Eqs. (169,170) provide two partial differential equations for the two
unknowns, J̃ and H̃:

0. Moment:
∂H̃ν
∂r
−

(
dV
dr
− V

r

)
∂( f J̃ν)
∂x

− V
r
∂J̃ν
∂x
= η̃true
ν − κtrue J̃ν (183)

1. Moment:
∂(q f J̃ν)
−q ∂r

+

(
dV
dr
− V

r

)
∂(gH̃ν + gϵ J̃ν)

∂x
+

V
r
∂H̃ν
∂x
= κ H̃ν (184)

12.7. Solution of the moment equation by a differencing scheme

12.7.1. Inner points

These equations are solved by a differencing scheme which is of second order in radius and first order in
frequency. We introduce radius points rl and frequency points xk. The moment J is defined at the radial
points, while the moment H (flux) is defined at the “interstices”, i.e. the midpoints between the radial points.
Interstices are denoted with half-number indices, i.e. rl+1/2. The tilde over the discretized moments J, H and
source function S is dropped in the following for simplicity.

0. Moment Equation:
Differencing Eq. (183) at (k, l) yields

Hk,l+1/2 − Hk,l−1/2

Dl
+

(
gradl −

velol

rl

)
1
∆x

(
fk−1,lJk−1,l − fk,lJk,l

)
+

velol

rl∆x
(
Jk−1,l − Jk,l

)
= (185)

κk,l(Jk,l − S k,l)

Here we have changed the notation for the velocity, because the symbol V will be needed in the following for
a different meaning. Now “grad” denotes the radial velocity gradient dV

dr , and “velo” means the dimensionless
velocity.

Note that the frequency derivative is onesided: the differences quotient is taken between xK and xk−1, but the
rest of the equation is evaluated at xk. Since the frequecies are indexed in a falling sequence, we have

∂J
∂x
= lim
∆x→0

Jk−1 − Jk

∆x
(186)
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with
∆x := xk−1 − xk . (187)

In contrast, the differencing quotient over r is centered, i.e. the difference is taken between the interstices rl−1/2

and rl+1/2. Therefore we define
Dl := rl−1/2 − rl+1/2

Since the radius grid is also indexed in a falling sequence,

∂H
∂r
= lim

Dl→0

Hk,l−1/2 − Hk,l+1/2

Dl
(188)

All signs have been inverted when going from Eq. (183) to Eq. (185).

For a shorter notation we define
Vl :=

velol

rl∆x
(189)

and

Gl :=
(
gradl −

velol

rl

)
1
∆x

(190)

and rewrite Eq. (185) to

1
Dl

(
Hk,l+1/2 − Hk,l−1/2

)
+ Gl

(
fk−1,lJk−1,l − fk,lJk,l

)
+ Vl

(
Jk−1,l − Jk,l

) − (191)

κk,l(Jk,l − S k,l) = 0

1. Moment Equation:
The aim now is to eliminate Hk,l+1/2 and Hk,l−1/2 from the previous Eq. (191). For this purpose the 1. moment
equation Eq. (184) is discretized at the “interstices” in radius, once for the radius point rl+1/2 and a second time
for rl−1/2. This will lead to a second-order differencing scheme in r.

For the term with the Eddi-mix parameter ϵ we need J at the interstice, which is achieved by taking the its
mean from the adjacent full points.

For (k, l + 1/2) we get

qk,l+1 fk,l+1Jk,l+1 − qk,l fk,lJk,l

qk,l+1/2(rl − rl+1)
+ (192)

(
gradl+1/2 −

velol+1/2

rl+1/2

)
1
∆x

(
gk−1,l+1/2Hk−1,l+1/2 − gk,l+1/2Hk,l+1/2

)
+

(
gradl+1/2 −

velol+1/2

rl+1/2

)
ϵl+1/2

2∆x
(
gk−1,l+1/2(Jk−1,l + Jk−1,l+1) − gk,l+1/2(Jk,l + Jk,l+1)

)
+

velol+1/2

rl+1/2

1
∆x

(
Hk−1,l+1/2 − Hk,l+1/2

)
=

κk,l+1/2Hk,l+1/2

In analogy to but now for the interstices, we define

Dl+1/2 = rl − rl+1 (193)

Vl+1/2 =
velol+1/2

rl+1/2∆x
(194)
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and

Gl+1/2 =

(
gradl+1/2 −

velol+1/2

rl+1/2

)
1
∆x

(195)

and obtain

1
Dl+1/2

qk,l+1 fk,l+1Jk,l+1 − qk,l fk,lJk,l

qk,l+1/2
+

Gl+1/2
(
gk−1,l+1/2Hk−1,l+1/2 − gk,l+1/2Hk,l+1/2

)
+

Gl+1/2
ϵl+1/2

2
(
gk−1,l+1/2(Jk−1,l + Jk−1,l+1) − gk,l+1/2(Jk,l + Jk,l+1)

)
+

Vl+1/2
(
Hk−1,l+1/2 − Hk,l+1/2

)
= (196)

κk,l+1/2 Hk,l+1/2

Assembling all terms with Hk,l+1/2 on the right-hand side leads to

1
Dl+1/2

qk,l+1 fk,l+1Jk,l+1 − qk,l fk,lJk,l

qk,l+1/2
+

Gl+1/2gk−1,l+1/2Hk−1,l+1/2 +

Gl+1/2
ϵl+1/2

2
(
gk−1,l+1/2(Jk−1,l + Jk−1,l+1) − gk,l+1/2(Jk,l + Jk,l+1)

)
+

Vl+1/2Hk−1,l+1/2 = (197)

(κk,l+1/2 + Gl+1/2gk,l+1/2 + Vl+1/2) Hk,l+1/2

We introduce further abbreviations by

αl+1/2 =
1

Dl+1/2

1
κk,l+1/2 + Gl+1/2gk,l+1/2 + Vl+1/2

(198)

βl+1/2 =
Gl+1/2

κk,l+1/2 + Gl+1/2gk,l+1/2 + Vl+1/2
(199)

γl+1/2 =
Vl+1/2

κk,l+1/2 + Gl+1/2gk,l+1/2 + Vl+1/2
(200)

Note that a sufficient condition for the denominaters being positive ist that κ > 0 (no Laser), and gG + V > 0.
From their definition this means

g
dv
dr
+ (1 − g) v

r
> 0 . (201)

From gG + V > 0 follows with the definition of g in Eq. (181)

GN
H + ϵJ

> −V . (202)

After having made sure already that the denominator is positive, this leads to

GN > −V (H + ϵJ) (203)

which finally leads to

ϵ > −
(GN

V
+ H

) /
J (204)
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as the second, in practice much stronger condition that must be imposed on the choice of ϵ in Subroutine COLI.

With the help of the above definitions for α, β, and γ we resolve Eq. (197) for Hk,l+1/2:

Hk,l+1/2 = αl+1/2
qk,l+1 fk,l+1Jk,l+1 − qk,l fk,lJk,l

qk,l+1/2
+

βl+1/2
ϵl+1/2

2
(
gk−1,l+1/2(Jk−1,l + Jk−1,l+1) − gk,l+1/2(Jk,l + Jk,l+1)

)
+

βl+1/2gk−1,l+1/2Hk−1,l+1/2 +

γl+1/2Hk−1,l+1/2

The analogues difference equation is also derived for the other interstice, i.e. at the radial point with index
l − 1/2 :

Hk,l−1/2 = αl−1/2
qk,l fk,lJk,l − qk,l−1 fk,l−1Jk,l−1

qk,l−1/2
+

βl−1/2
ϵl−1/2

2
(
gk−1,l−1/2(Jk−1,l−1 + Jk−1,l) − gk,l−1/2(Jk,l−1 + Jk,l)

)
+

βl−1/2gk−1,l−1/2Hk−1,l−1/2 +

γl−1/2Hk−1,l−1/2

The last two equations are now inserted in (191) for eliminating the Hk, for the price of introducing the Hk−1
with the previous frequency index into the equation, which is no problem since they are already known:

1
Dl

(
αl+1/2

qk,l+1 fk,l+1Jk,l+1 − qk,l fk,lJk,l

qk,l+1/2
+ βl+1/2gk−1,l+1/2Hk−1,l+1/2 + γl+1/2Hk−1,l+1/2

)
+ (205)

1
Dl

(
βl+1/2

ϵl+1/2

2
(
gk−1,l+1/2(Jk−1,l + Jk−1,l+1) − gk,l+1/2(Jk,l + Jk,l+1)

))
+

1
Dl

(
−αl−1/2

qk,l fk,lJk,l − qk,l−1 fk,l−1Jk,l−1

qk,l−1/2
− βl−1/2gk−1,l−1/2Hk−1,l−1/2 − γl−1/2Hk−1,l−1/2

)

− 1
Dl

(
βl−1/2

ϵl−1/2

2
(
gk−1,l−1/2(Jk−1,l−1 + Jk−1,l) − gk,l−1/2(Jk,l−1 + Jk,l)

))
+

Gl
(
fk−1,lJk−1,l − fk,lJk,l

)
+ Vl

(
Jk−1,l − Jk,l

) −
κk,l(Jk,l − S k,l) = 0

The terms of this equation are now sorted and multiplied with -1

1
Dl

(
−αl+1/2

qk,l+1 fk,l+1Jk,l+1 − qk,l fk,lJk,l

qk,l+1/2
+ αl−1/2

qk,l fk,lJk,l − qk,l−1 fk,l−1Jk,l−1

qk,l−1/2

)
(206)

+
1
Dl

(
βl+1/2

ϵl+1/2

2
gk,l+1/2(Jk,l + Jk,l+1) − βl−1/2

ϵl−1/2

2
gk,l−1/2(Jk,l−1 + Jk,l)

)

+Gl fk,lJk,l + VlJk,l + κk,lJk,l =

1
Dl

(
Hk−1,l+1/2(βl+1/2gk−1,l+1/2 + γl+1/2) − Hk−1,l−1/2(βl−1/2gk−1,l−1/2 + γl−1/2)

)

+
1
Dl

(
βl+1/2

ϵl+1/2

2
gk−1,l+1/2(Jk−1,l + Jk−1,l+1) − βl−1/2

ϵl−1/2

2
gk−1,l−1/2(Jk−1,l−1 + Jk−1,l)

)

+Gl fk−1,lJk−1,l + VlJk−1,l + κk,lS k,l (207)

(208)

We sort this equation for terms with Jl+1, Jl, Jl−1 and the left side and derive the following prefactors
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12.7. Solution of the moment equation by a differencing scheme

C = coefficient of −Jk,l+1 =

(
qk,l+1 fk,l+1

qk,l+1/2
αl+1/2 − 1

2
βl+1/2ϵl+1/2gk,l+1/2

)/
Dl (209)

B = coefficient of Jk,l =

(
qk,l fk,l
qk,l+1/2

αl+1/2 +
qk,l fk,l
qk,l−1/2

αl−1/2 +
1
2
βl+1/2ϵl+1/2gk,l+1/2 − 1

2
βl−1/2ϵl−1/2gk,l−1/2

)/
Dl (210)

+Gl fk,l + Vl + κk,l

A = coefficient of −Jk,l−1 =

(
qk,l−1 fk,l−1

qk,l−1/2
αl−1/2 +

1
2
βl−1/2ϵl−1/2gk,l−1/2

)/
Dl (211)

W = Right-hand-side =

1
Dl

(
Hk−1,l+1/2(βl+1/2gk−1,l+1/2 + γl+1/2) − Hk−1,l−1/2(βl−1/2gk−1,l−1/2 + γl−1/2)

)
(212)

+
1
Dl

(
βl+1/2

ϵl+1/2

2
gk−1,l+1/2(Jk−1,l + Jk−1,l+1) − βl−1/2

ϵl−1/2

2
gk−1,l−1/2(Jk−1,l−1 + Jk−1,l)

)

+Gl fk−1,lJk−1,l + VlJk−1,l + κk,lS k,l

12.7.2. Boundary in space

The boundary condition is based on equation (192). To get an equation in J we substitute

gH = N = nJ and H = hJ

and derive at the outer boundary (l = 1) with the spacial derivation being righthanded

qk,2 fk,2Jk,2 − qk,1 fk,1Jk,1

qk,1+1/2(r1 − r2)
+

(
grad1 −

v1
r1

)
1
∆x

(−nk,1Jk,1 + nk−1,1Jk−1,1) +

v1
r1

1
∆x

(−hk,1Jk,1 + hk−1,1Jk−1,1) = κk,1Hk,1

= κk,1(H− + hJk,1)

Again we sort for Jk,1, Jk,2 and the right-hand-side and get with the short cut D1 = r1 − r2

Jk,2 → qk,2 fk,2
qk,1+1/2D1

Jk,1 → −qk,1 fk,1
qk,1+1/2D1

−
(
grad1 −

v1
r1

)
1
∆x

(nk,1) − v1
r1

1
∆x

(hk,1) − κk,1hk,1 =

−qk,1 fk,1
qk,1+1/2D1

−G1nk,1 − V1hk,1 − κk,1hk,1
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12. Radiative transfer in the co-moving frame

R.S. → −
(
grad1 −

v1
r1

)
1
∆x

(nk−1,1Jk−1,1) − v1
r1

1
∆x

(hk−1,1Jk−1,1) + κk,1H− =

−G1(nk−1,1Jk−1,1) − V1(nk−1,1Jk−1,1) + κk,1 H−

At the inner boundary we write equation (192) with the spatial derivative being lefthanded as

qk,ND fk,NDJk,ND − qk,ND−1 fk,ND−1Jk,ND−1

qk,ND−1/2(rND−1 − rND)
+

(
gradND −

vND

rND

)
1
∆x

(−nk,NDJk,ND + nk−1,NDJk−1,ND) +

vND

rND

1
∆x

(−hk,NDJk,ND + hk−1,NDJk−1,ND) = κk,NDHk,ND

We write Eq. (156) in the form

Hk,ND =

∫
I+µdµ −

∫
uµdµ = H+ − hJND

with assuming diffusion approximation (Eq 150) for I+, yielding
∫

I+µdµ = H+ =
B
2
+

1
3κND

∂B
∂r

and the Eddington factor h

h =

∫
uµ dµ

∫
u dµ

=
Hspec

Jk,ND

with DND = rND−1 − rND we get

Jk,ND−1 → −qk,ND−1 fk,ND−1

qk,ND−1/2DND

Jk,ND → qk,ND fk,ND

qk,ND−1/2DND
−

(
gradND −

vND

rND

)
1
∆x

(nk,ND) − vND

rND

1
∆x

(hk,ND) + κk,NDhk,ND =

qk,ND fk,ND

qk,ND−1/2DND
−GNDnk,ND − VNDhk,ND + κk,NDhk,ND

R.S. → −
(
gradND −

vND

rND

)
1
∆x

(nk−1,NDJk−1,ND) − vND

rND

1
∆x

(hk−1,NDJk−1,ND) + κNDH+ =

−GND(nk−1,NDJk−1,ND) − VND(nk−1,NDJk−1,ND) + κNDH+

12.7.3. Boundary in frequency

Equation (205) is recursive to the moments Hk−1 at the previous frequency index. Thus, in order to initialize
this recursion, one needs to establish the radiation field at the bluemost frequency point. At this frequency
point, we neglect all terms with frequency derivatives. Thus. Eq. (191) simplifies to

1
Dl

(
Hk,l+1/2 − Hk,l−1/2

)
+ κk,l(Jk,l − S k,l) = 0 (213)

This is achieved in the program by setting in subroutine COLIMO the factor DNUEINV = 1. / DX = 1/∆x
to DNUEINV = 0. Then, in the coefficients (Eqs. 209-212) automatically all terms with frequency derivatives
vanish. Formally, the variables XHLMO_OLD = Hk−1 have to be initialized (in subroutine COLI_SETZERO).
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12.7. Solution of the moment equation by a differencing scheme

12.7.4. Calculation of H

H is calculated from equation (192). The same prefactors are needed as before and additionally the old ed-
dington factor g and the old flux Hk−1. Starting from this equation

qk,l+1 fk,l+1Jk,l+1 − qk,l fk,lJk,l

qk,l+1/2(rl − rl+1)
+ (214)

(
gradl+1/2 −

vl+1/2

rl+1/2

)
1
∆x

(−gk,l+1/2Hk,l+1/2 + gk−1,l+1/2Hk−1,l+1/2
)
+

vl+1/2

rl+1/2

1
∆x

(−Hk,l+1/2 + Hk−1,l+1/2
)
=

κk,d+1/2Hk,d+1/2

we yield

qk,l+1 fk,l+1Jk,l+1 − qk,l fk,lJk,l

qk,l+1/2(rl − rl+1)
+

(
gradl+1/2 −

vl+1/2

rl+1/2

)
1
∆x

(
gk−1,l+1/2Hk−1,l+1/2

)
+

vl+1/2

rl+1/2

1
∆x

(
Hk−1,l+1/2

)
=

Hk,l+1/2

[
κk,l+1/2 +

(
gradl+1/2 −

vl+1/2

rl+1/2

)
1
∆x

(
gk,l+1/2

)
+
vl+1/2

rl+1/2

1
∆x

]

With the above given abbreviations we derive

Hk,l+1/2 = αl+1/2
(q f J)k,l+1 − (q f J)k,l

qk,l+1/2
+ βl+1/2(gH)k−1,l+1/2 + γl+1/2Hk−1,l+1/2 (215)

12.7.5. The coefficients of the linear equations

We predefine the geometry in the arrays DLF, VLF2, GLF2 and DLH, VLH2, GLH2. This is done in SUB-
ROUTINE COLIMOP. The variables ending with “F” are defined at the radius points while the variables
ending with “H” are defined at the interstices. The former arrays have a length of ND while the latter ones
have the length ND-1. The index i points to the interstice between i and i + 1.

DLF, VLF and GLF at inner points are defined by

DLFi =
1
2

(ri−1 − ri+1) = −∆r

VLF2i =
vi
ri

GLF2i = −vi+1 − vi−1

2 DLFi
− vi

ri
= gradi − VLF2i

At the inner boundary we write

DLFND = rND−1 − rND

VLF2ND =
veloND

rND

GLF2ND = −veloND − veloND−1

DLFND
− veloND

rND
= gradND − VLF2ND
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12. Radiative transfer in the co-moving frame

while at the outer boundary we write

DLF1 = r1 − r2

VLF21 =
v1
r1

GLF21 = −v2 − v1
DLF1

− v1
r1
= grad1 − VLF21

At the interstices, DLH, VLH and GLH are defined by

DLHi = ri − ri+1

VLH2i =
vi+1 + vi
ri+1 + ri

GLH2i = −vi+1 − vi
DLHi

− VLH2i

After the ray-by-ray computation has finished one frequency point the SUBROUTINE COLIMO is entered.
First of all the quantities GLF,GLH,VLF and VLH are calculated with DX beeing the step in frequency

VLFi = VLF2i /DX

VLHi = VLH2i /DX

GLFi = GLF2i /DX

GLHi = GLH2i /DX

Then the sphericity factor QLF is calculated at all depth points. This is taken from SUBROUTINE ELIMIN.
The the interstice arrays (QLH,OPAKH, EDDIGH, ALH, BLH and CLH are calculated. The are defined by

QLHi =
1
2

(QLFi + QLFi+1)

OPAKHi =
1
2

(OPAKi + OPAKi+1)

EDDIGHi =
1
2

(EDDIGi + EDDIGi+1)

We define a temporary variable T

T =
1

OPAKHi −GLHi ∗ EDDIGHi + VLHi

and define

ALHi =
T

DLHi
BLHi = GLHi ∗ T

CLHi = VLHi ∗ T

The Eddington factors are defined in the MAIN PROGRAM COLI by

EDDIFi =
XKLi

XJLi

EDDIGi =
XNLi

XHLi

with XJL, XHL, XKL and XNL beeing the moments of the intensity. The old Eddington factors from the last
frequency are stored in the arrays EDDIFO and EDDIGO
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12.7. Solution of the moment equation by a differencing scheme

The the tridiagonal Matrix (−A, B,−C) and the right-hand-side (W) are calculated in order to solve the equation
by SUBROUTINE INVTRI. For the inner points (i = 1...ND − 1) we write

−Ai = −QLFi−1 ∗ EDDIFi−1 ∗ ALHi−1

QLHi−1 ∗ DLFi

Bi = −QLFi ∗ EDDIFi

DLFi
∗
(

ALHi

QLHi
+

ALHi−1

QLHi−1

)
−GLFi ∗ EDDIFi − VLFi − OPAKnoth

i

−C = −QLFi+1 ∗ EDDIFi+1 ∗ ALHi

QLHi ∗ DLFi

W = − (BLHi ∗ EDDIGOi +CLHi) ∗ XHLMOi

DLFi
+

(BLHi−1 ∗ EDDIGOi−1 +CLHi−1) ∗ XHLMOi−1

DLFi
−

(GLFi ∗ EDDIFOi + VLFi)XJLMOi − ET AKnoth
i

At the inner boundary we define from the diffusion approximation incl. correction terms (see mathematical
description above)

HPLUS =
BCORE

2
+

DBDR
3 ∗ OPAKND

with BCORE and DBDR beeing the Planck radiation field at TND and DBDR beeing the derivative with respect
to r. EDDIH2 and EDDIN2 are the Eddington factors from

EDDIHIN =

∫
uNDµdµ∫
uNDdµ

EDDININ =

∫
uNDµ

3dµ
∫

uNDdµ

We write the coefficients (incl. EDDIMIX)

−AND =
2

DLFND
·
(

QLFND−1 · EDDIFND−1 · ALHND-1

QLHND-1
+GEPS BND-1

)
(216)

BND =
2

DLFND
·
(

QLFND · EDDIFND · ALHND-1

QLHND-1
−GEPS BND-1

)
(217)

+GLFND · EDDIFND + VLFND + OPAKnoth
ND

+
2

DLFND
· EDDIHIN

−CND = not used (218)

WND =
2

DLFND
·
[(

BLHND-1 · EDDIGOND-1 +CLHND-1
)
· XJLMOold,ND-1 (219)

+GEPS BOND-1 ·
(
XJLMOold,ND + XJLMOold,ND-1

)]

+
(
GLFND · EDDIFOND + VLFND

)
· XJLMOold,ND + ET AKnoth

ND · RADIUS 2
ND

+
2

DLFND
· HPLUS

Note that the terms containing the frequency derivation are neglected at the inner boundary. Therefore the
Eddington factor EDDININ is not needed so far.
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12. Radiative transfer in the co-moving frame

At the outer boundary XIMINUS comes from the boundary condition and EDDIH1 and EDDIN1 are defined
in the same manner as EDDIH2 and EDDIN2. We write

−A1 = not used

B1 = −QLF1 ∗ EDDIF1

QLH1 ∗ DLF1
−GLF1 ∗ EDDIN − (VLF1 + OPAK1) ∗ EDDIH1

−C1 = −QLF2 ∗ EDDIF2

QLH1 ∗ DLF1

W1 = −(GLF1 ∗ EDDINO + VLF1 ∗ EDDIHO) ∗ XJLMO1 + OPAK1 ∗ XIMINUS
2

with EDDIHO and EDDINO beeing the old Eddington factors.

We turn now to the coefficients of equation (215) to calculate the flux H. This equation can be written as :

XHLMOi =

ALHi
QLFi+1EDDIFi+1XJLMOi+1 − QLFiEDDIFiXJLMOi

QLHi
+

(BLHiEDDIGOi +CLHi)XHLMOold,i

12.8. Solution of the tri-diagonal system for J

After having prepared all coefficients, we are left with a system of ND equations in the form

−AlJl−1 + BlJl −ClJl+1 = Wl. (220)

with coefficients Al, Bl, and Cl being typically positive and l denoting the depth index. This can be written in
the form of

TJ⃗ = W⃗ (221)

with a tridiagonal matrix T. To obtain the solution for the vector J⃗, i.e. the radiation field at all depth points
(for the current CMF frequency), the straight-forward way would be to invert the matrix T and calculate

J⃗ = T−1W⃗. (222)

The algebra for solving this tridiagonal system is performed in INVTRI and follows the notation from Rybicki
& Hummer (1991, Appendix A). One can introduce the two further quantities

Dl =
Cl

Bl − AlDl−1
with D1 :=

C1

B1
(223)

Zl =
Wl + AlZl−1

Bl − AlDl−1
with Z1 :=

W1

B1
(224)

which reduces the system of equations to

Jl = DlJl+1 + Zl with JND+1 := 0, (225)

i.e. the radiation field can now be obtained in 2ND calculation steps without the need of a full matrix inversion.
This is performed in the subroutine INVTRI which is called from COLIMO.

THE FOLLOWING SECTION (FROM ANDREAS) DESCRIBES ONE VERSIO OF THE ALO AND IS
NOT YET IMPLEMENTED IN THE STANDARD BRANCH 10-Jan-2019

todo: INVTRI in COLI should be replaced with a Andreas’ version
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12.8. Solution of the tri-diagonal system for J

12.8.1. Extraction of the Λ∗-operator

In order to obtain a suitable approximate lambda operator not only the solution of Eq. (221) is required, but
also the diagonal elements of T−1 are needed.

Jν = [Λν] S ν (226)

If we divide all terms by the opacity κν, our right-hand side vector is actually the sum of the source function
S ν and other terms, hence we can write W⃗ := W⃗′ + S⃗ , i.e.

J⃗ = T−1W⃗′ + T−1S⃗ . (227)

Hence we can write

Jl,ν = (ΛνS ν)l =

ND∑

j=1

T−1
l, j S j,ν +

ND∑

j=1

T−1
l, j W′j. (228)

Knowing that the diagonal of the full Λ-operator is a good choice for our approximate lambda operator Λ∗,
we choose the diagonal elements of the linear contribution from Λ, i.e.

Λ∗l,ν :=
∂Jl,ν

∂S l,ν
=
∂

∂S l,ν

ND∑

j=1

T−1
l, j S j,ν =

ND∑

j=1

T−1
l, j δl, j = T−1

l,l (229)

The consequence is that we need to obtain the diagonal elements of T−1. Since we did not explicitly invert
T to obtain the radiation field, we also need a similar technique to obtain these elements. A suitable method
is described in Appendix B in Rybicki & Hummer (1991) and is based on combining backward and forward
Gaussian elimination. After calculating the quantities

Dl =
Cl

Bl − AlDl−1
with D1 :=

C1

B1
(230)

El =
Al

Bl −ClEl+1
with END :=

AND

BND
(231)

(232)

the diagonal elements of T−1 can simply be obtained via

T−1
l,l = (1 − DlEl+1)−1 · (Bl − AlDl−1)−1 . (233)

This means that also the diagonal elements of T−1 can be found in just ND steps. Since the definition of Dl is
identical to the one which we required to obtain Jν, both operations can be performed in parallel and Λ∗ can
be obtained together with Jν with almost no overhead.

Using these results it is also possible to approximate the partial derivative from the radiation field at the
current CMF frequency to the last one. We can split up the right hand side vector W⃗ even further and write
W⃗′ := W⃗′′ + X⃗(Jν,old). The complete entries of X⃗ would a bit more complex, but assuming that the Eddington
factor gν does not change significantly between the depth points l − 1 and l, they reduce to

Xl =
GLFl · EDDIFOl + VLFl

OPAKnoth
l

Jν,old,l. (234)

From the full equation
J⃗ν = T−1S⃗ ν + T−1W⃗′′ν + T−1X⃗ν(Jν,old) (235)

we immediately deduce
∂Jν,l
∂Jν,old,l

= T−1
l,l

GLFl · EDDIFOl + VLFl

OPAKnoth
l

(236)

Both ∂Jν∂S ν and ∂Jν
∂Jν,old

are passed to the later frequency integration (subroutine FREQUINT).
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12. Radiative transfer in the co-moving frame

12.9. Overall scheme for solving the radiative transfer

PROGRAM COLI ...

The Eddington factors are calculated from the angle-dependent radiation transfer Eq. (128). This equation is
solved “ray-by-ray” by a short-characteristic integration.

The “ray-by-ray” solution is only performed from time to time (usually each 6 grand iterations) in order to
update the Eddington factors. In the meantime the “Eddies” are kept fixed and applied for solving the moment
equations. The latter yield the angle-averaged intensities J which are used to evaluate the radiative rates for
the statistical equations.
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13. Rate equations

The program steal ( = statistical equations with approximate lambda operators) calculates the population
numbers; the rate matrix depends on the mean radiation field Jν(r), the electron temperature Te(r), and the
electron density ne(r). In the course of the model iteration, the statistical equations (program steal) are
solved in turn with the radiative transfer (program coli).

Naively, the statistical equations are just a system of linear equations. However, with such approach the
iteration would not converge with reaonable speed to a consistent solution which fulfills the radiative transfer
equations and the rate equations simultaneously.

The way out is the use of approximate lambda operators ALOs. This method, together with the use of net
radiative brackets (NRBs), make the rate equations non-linear.

In the following subsection, we describe how we solve the non-linear rate equations. The ALOs will be defined
in Sect. 13.2.

13.1. Solving the Rate Equations

LINPOP calculates the new non-LTE population numbers and stores them in the array POPNUM. Therefore
it is the key subroutine of the STEAL program. The radiative rates are calculated with the Scharmer radation
field. (...)

LINPOP loops over all depth points to calculate the new population numbers for the specific depth. This is
again done by a series of iterations that splits in two branches, Newton-Raphson and Broyden.

The Newton-Raphson branch caculates the following

n⃗k+1 = n⃗k − (n⃗k · P − b⃗) · M−1 (237)

P is the coefficient Matrix, M its vector derivative:

Mi, j =
∂

∂ni


∑

m

nmPm, j

 (238)

In the code P is called RATCO, M is called DM and the vector b⃗ is usually referred as V1. The direkt solution
of the equation is done in the subroutine LINSOL which first tries to invert the large matrix DM and then
calculates V2 by multiplying the inverse of DM with the vector V1. For improving the numerical inversion of
DM a so-called “afterburner” is applied right after the direct inversion.

Usually the transitions between the different atomic levels are limited to a single element on the one hand, but
the coefficient matrix (RATCO) usually contains more than one element on the other hand, RATCO and also
DM have a block diagonal structure. The only exeptions are an additional column that balances the electrons
and some entries that occur in some non-linearized situations if GAMMA is used. As the inverse of a block
diagonal matrix is simply a diagonal matrix containing the inverse blocks the large inversion can be split up
into a set of block inversions as long as we neglect the additional column and the few other entries. It turns our
that this works quite well and reduces the problem of inverting large matrices so that we are able to calculate
more elements with each one having as much levels as the complete system had. The block inversion changed
a few lines in LINPOP (reduced the rank to neglect the additional column) and replaced LINSOL with the
new subroutine LINSOL_SPLIT. To ensure the matrix block structure the complete matrix is copyied block
by block before it is inverted.

In both subroutines, LINSOL and LINSOL_SPLIT the “afterburner” then calculated a correction term and
subtracts it form the first solution.
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13. Rate equations

X⃗new := X⃗ −
[
X⃗ · A − B⃗

]
· A−1 (239)

This can be repeated more than once by increasing the value of a variable called IMPMAX. (Default: IMP-
MAX = 1)

After that V2 is added to the vector NLTE population number vector EN. Now serveral criteria are checked to
decide whether the interation for the current depth point has converged or if another interation should be done.
In addition it is checked if the maximum number of iterations (defined by ITMAX) or any fatal problem has
occurred. In both cases the iteration process is stopped.

After the iteration loop the population numbers (POPNUM), the departure coefficients (DEPART) and the
(relative) electron density (RNE) are updated. The derivative Matrix DM is stored in a mass storage file
named DMFILE that is saved on the local machine in the tmp_2day/user/asskn directory.

Afterwards the subroutine checks if the number of diverged points might be so high that it makes so sense
to continue the model calculations at all. This threshold is defined in NKONV_TRESH and usually set to 30
points. (Note that this value is hardcoded while the number of depth points can be adjusted. With usually 50 or
70 depth points there should be no problems, but a major increase of the number of depth points might cause
problems while a major decrease will simply disable this function.) This check is only done if the CARDS pa-
rameters AUTO_MODIFY (stored in BAUTO) and ABORT_AUTO_MODIFY (stored in BAUTO_ABORT)
are set.

If AUTO_MODIFY is set and the number of non-converged depth points is not zero, but below the treshhold,
there will be an interpolation over the non converged depth part between the nearest converged depth points.
If the diverged points are at the inner or outer boundary there will be a two-point extrapolation.

13.2. Implementation of the Accelerated Lambda Iteration (ALI)

THE FOLLOWING SECTION (FROM ANDREAS) DESCRIBES ONE VERSIO OF THE ALO AND IS
NOT YET IMPLEMENTED IN THE STANDARD BRANCH 10-Jan-2019

With Λ∗ν =
∂Jν
∂S true
ν

given, the quantities for the ALI procedure can now be calculated. In order to avoid calcu-
lating all terms on a fine grid, a number of frequency-integrated quantities is calculated during the frequency
integration (subroutine FREQUINT) in the COLI program. Following the basic ALI concept where we ap-
proximate the new radiation field via

Japp = ΛS old + Λ∗∆S (240)

= JFS + Λ∗
(
S new − S old

)
(241)

with JFS being the radiation field given by the previous COLI job, the convergence is “accelerated” by con-
sidering the effect of the changes of the population numbers (via their effect on the source function) already
during the calculation of the radiative rates. However, in order to properly consider the effects for the contin-
uum and the lines we have to extract these reactions from Λ∗l,ν. For this we write the total true source function,
i.e. without Thomson term (S true

ν ≡ S noTh
ν in the code), as the sum of all their contributions, i.e.

S true
ν =

ηtrue
ν

κtrue
ν

=
ηlν + η

c
ν

κlν + κ
c
ν

(242)

=
κlν
κtrue
ν

S l +
κcν
κtrue
ν

S cν (243)

=

Lines∑

ind=1

κindν
κtrue
ν

S indν +
κcν
κtrue
ν

S cν. (244)
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13.2. Implementation of the Accelerated Lambda Iteration (ALI)

In the last step we wrote the total line source function as a weighted sum of all single line source functions. In
principle we could do the same for the (true) continuum source function S c, but refrained from doing it here
as we do not split the various continuum contributions in our ALI approach. Assuming that the total opacity
stays roughly constant and no explicit frequency derivatives occur, we can now deduce

Λ∗,indν =
∂Jν
∂S lν
=
∂Jν
∂S ν

∂S ν
∂S lν
= Λ∗ν

κlν
κtrue
ν

(245)

Λ∗,cν =
∂Jν
∂S cν
=
∂Jν
∂S ν

∂S ν
∂S cν
= Λ∗ν

κcν
κtrue
ν

(246)

which can then be used to obtain the necessary quantities. Of course all these quantities are depth-dependent,
but in order to avoid an even more overloaded notation we will refrain from denoting a depth index to all
quantities from this paragraph on.

13.2.1. Lines

To avoid any fine-frequency integral for the calculation of the radiative rates, the rates use the quantity J̄ for
each line as described in chapter [...]. For the application of the accelerated lambda operator (ALO) we have
to replace J̄ with a corresponding expression following the ALI concept of

Jν → Jν + Λ∗ν∆S ν. (247)

Applying this replacement into the definition of J̄ yields for an individual line ind:

J̄app
ind =

∫

line

Jν ϕ(ν − νind) dν +
∫

line

Λ∗l,ν ϕ(ν − νind)∆S true
ν dν (248)

= J̄ind +
∫

line

Λ∗ν ∆S true
ν ϕ(ν − νind) dν (249)

Now a second term arises which does contain the difference between the new and the old source function.
Note that in this approach so far the total source function appears as we want to approximate the radiation field
and this could be affected by other lines and continua blending with the current line ind. To break this down,
we can write

Λ∗ν ∆S true
ν = Λ∗ν

κlν
κtrue
ν

∆S lν + Λ
∗
ν

κcν
κtrue
ν

∆S cν (250)

= Λ∗,lν ∆S lν + Λ
∗,c
ν ∆S cν (251)

If we assume coherent scattering, the frequency-dependence of the source function for a single line vanishes.
Approximating that this holds also for ∆S l =

∑
∆S ind, we can write:

J̄app
ind = J̄ind + ∆S l

∫

line

Λ∗ν
κlν
κtrue
ν

ϕ(ν − νind) dν +
∫

line

Λ∗ν
κcν
κtrue
ν

∆S cνϕ(ν − νind) dν (252)

= J̄ind + ∆S lΛ̄∗ind +
∫

line

Λ∗ν
κcν
κtrue
ν

∆S cνϕ(ν − νind) dν (253)

Note that in the second term we have the fraction of all line opacities over κtrue
ν , since we want to consider the

total reaction of the radiation field resulting from all lines in the integral region. With the new source function
out of the integral, the quantity

Λ̄∗ind :=
∫

line

Λ∗ν
κlν
κtrue
ν

ϕ(ν − νind) dν (254)
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13. Rate equations

can now be calculated in the COLI program in parallel with J̄ind. These values are then stored as XJLxxxx or
XJLxxxxx in the MODEL file with xxxx denoting the transition index ind. The third term describing the effect
of continuum source function changes is unfortunately more tricky as the frequency-dependence is not as local
as for the lines here. While one could in principle make a similar approximation as for Λ̄∗ind or even include
the continua in this term, numerical experiences showed that this is unfavorable. Instead we approximate the
continuum changes directly by evaluation of the approximate continuum radiation field at the rest wavelength
of the considered. The complete expression for the approximate line radiation field is therefore

J̄app
ind = J̄ind + ∆S lΛ̄∗ind + Japp

c (νind) − Jc(νind). (255)

This quantity is calculated for all non-rudimental lines in the STEAL subroutine SETXJL. The calculation of
Japp
c (ν) will be explained later on.

13.2.2. Generic (iron group) lines

For transitions of the generic iron group element we have to use a different approach as the cross-sections have
a complex frequency-dependence. In this case we try to extract the direct reaction of J on the change of the
population numbers. Here we need to assume that the population numbers of the generic element do not have
major impact on other opacities. In this case we can write:

∂Jν
∂nG

l

∣∣∣∣∣∣∣

ind

=
∂Jν
∂S
∂S
∂κtrue
ν

∂κGν

∂nG
l

(256)

= −Λ∗ν
ηtrue
ν

(κtrue
ν )2

κindν
nl −Glunu

(257)

with Glu =
gl

gu
exp

[
h

kBT
(νind − ν)

]

The indices l and u refer to the lower and upper superlevel of the transition ind. Note that their weights gl and
gu are already complex expressions (Ref. Graefener et al. 2002) and not simple weights as for usual levels.
The analogue considerations for the derivative to the upper level yield

∂Jν
∂nG

u

∣∣∣∣∣∣
ind

=
∂Jν
∂S

(
∂S
∂κtrue
ν

∂κGν

∂nG
u
+
∂S
∂ηtrue
ν

∂ηG
ν

∂nG
u

)
(258)

= Λ∗ν

(
ηtrue
ν

(κtrue
ν )2

κindν Glu

nl −Glunu
+

1
κtrue
ν

ηindν
nu

)
(259)

(260)

Both quantities now must be integrated over the line and weighted with the profile function. Since the individ-
ual profile function is not available, but the cross-sections σindν are, we can define

wG
l :=

∫
∂Jν
∂nG

l

∣∣∣∣∣
ind

σindν dν
∫
σindν dν

(261)

wG
u :=

∫
∂Jν
∂nG

u

∣∣∣∣
ind

σindν dν
∫
σindν dν

. (262)

(263)

These values are stored in the MODEL file as WFLxxxx and WFUxxxx with xxxx being the transition index. The
approximate radiation field for these transitions is then calculated in SETXJL via

J̄app
ind = J̄ind + wG

l

(
nnew

l − nold
l

)
+ wG

u

(
nnew

u − nold
u

)
. (264)
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13.2. Implementation of the Accelerated Lambda Iteration (ALI)

13.2.3. Continua

The calculation of Japp
c (ν), i.e. the approximated continuum radiation field, is not done on an individual

transition level, but instead only performed for the total continuum. In contrast to the lines, we cannot obtain
a frequency-independent form of ∆S cν and thus have to store the continuum fraction of Λ∗ν on the coarse
frequency grid which is available when calculating the transition rates and the approximate radiation field.
Starting from

∂Jν
∂S cν
=
∂Jν
∂S true
ν

∂S true
ν

∂S cν
= Λ∗ν

κcν
κtrue
ν

, (265)

we transform the continuum ALO to the coarse grid by an elaborated integration scheme. Instead of integrating
∂Jν
∂S cν

directly, the DIAGTAU version of the operator first does the transformation

wτJc := − ln
(
1 − ∂Jν
∂S cν

)
(266)

and then performs the integration to the coarse grid before transforming back in the subroutine FREQUNORM.
The quantities of ∂Jν∂S cν on the coarse grid are labeled wJc and termed Scharmer weights. They are stored in the
MODEL file as WJCxxxx with xxxx referring to the coarse frequency index.

The approximated continuum radiation field Japp
c (ν) is calculated in the STEAL-subroutine SETXJC via

Japp
c (ν) = Jc(ν) + wJc(ν)∆S c(ν) (267)

on the coarse frequency grid using the total continuum source functions calculated with the old and new
population numbers. In the case of current temperature corrections, an additional contribution ∆JT

c is added at
the inner boundary to account for the direct temperature dependency:

∆JT
c =

1
2

[
Bν(T new

nd ) − Bν(T old
nd )

]
(268)

13.2.4. Additional derivative terms resulting from ALI

When the derivative matrixM is calculated, additional terms can occur due to the appearance of the source
function in the approximated radiation field.

Mi, j =
∂

∂ni


∑

m

nmPm, j

 (269)

=
∑

m

∂nm

∂ni
Pm, j +

∑

m

nm
∂Pm, j

∂ni

= Pi, j +
∑

m

Di,m, j

Due to the first term, the matrixM (or DM in the code) is initialized with the normal rate matrix P (aka RATCO).
Afterwards the terms Di,m,k := nm

∂Pm, j
∂ni

are calculated in the subroutine DERIV and added to the corresponding
entryMi, j. It is computationally favorable to loop over all line transitions and obtain for a single transition
with the lower level l and upper level u the contributions to Mi,l and Mi,u instead of trying to obtain the
complete expression for the Di,m, j straight forward. We denote Di,u as the contribution toMi,u and can use the
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13. Rate equations

symmetric structure to immediately get Di,l = −Di,u. For a single line transition ind written in the form of a
net radiative bracket we get the following contribution:

Di,u = −nuAu,l
∂

∂ni

J̄app
ind

S ind
(270)

= nuAu,l

[
J̄app
ind

(S ind)2

∂S ind

∂ni
− 1

S ind
∂J̄app
ind

∂ni

]
(271)

We do neglect all explicit derivatives of the radiation field, i.e. ∂
∂ni

J̄ind = 0, which means that the second term
only appears if the ALO is used. For the first term all we need to know is the derivative of the (new) line
source function, i.e.

∂S ind

∂ni
=

[
∂ηind

∂ni
κind − ηind ∂κ

ind

∂ni

]
1

(κind)2 , (272)

so that the first part of the bracket in Eq. (271) then yields

J̄app
ind

(S ind)2

∂S ind

∂ni
=

[
∂ηind

∂ni
κind − ηind ∂κ

ind

∂ni

]
J̄app
ind

(ηind)2 . (273)

The necessary derivatives of the line opacity and emissivity are prepared for all transitions in the subroutine
DLIOP. From all derivatives to ni, of course all those to levels other than to the corresponding upper and lower
level of the transition vanish. Writing the line opacity and emissivity (without profile function) as

ηind =
hνind
4π

Au,l nu (274)

κind =
c2

8πν2ind
Au,l

(
gu

gl
nl − nu

)
(275)

the remaining derivatives are:

∂ηind

∂nl
= 0

∂κind

∂nl
=

c2

8πν2ind
Au,l
gu

gl
(276)

∂ηind

∂nu
=

hνind
4π

Au,l
∂κind

∂nu
= − c2

8πν2ind
Au,l (277)

(Note that additional factors ntot and 1/∆νDop occur in DLIOP due to the usage of relative population numbers
in the code and the compatibility with LIOP, which is also used in combination with the profile function.
Fortunately, due to the fact that we always calculate terms of the source function S = η/κ, all dependencies of
∆νDop eventually cancel out.)

In the case of ALI, the second term in the bracket of Eq. (271) had to be taken into account for calculating
Di,u. As previously mentioned we omit explicit derivatives of the radiation field, so that we remain with the
derivative of the ALO term:

1
S ind
∂J̄app
ind

∂ni
=

1
S ind

∂

∂ni

[
Λ̄∗ind∆S l

]
(278)

=
Λ̄∗ind
S ind

∂

∂ni

[
S lnew − S lold

]
(279)

=
Λ̄∗ind
S ind
∂S lnew

∂ni
(280)

Similar to the radiation field we also neglect explicit derivatives of the ALO. Furthermore the old line source
function S lold cannot depend on the new population numbers and thus the problem finally reduces to the
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13.2. Implementation of the Accelerated Lambda Iteration (ALI)

derivative of the new line source function. Note that S l , S ind as we need to account for overlapping lines. This
necessity is a direct consequence from our calculation of Λ̄∗ind in Eq. (254), where we account for the fraction
of all line opacities in the region of the considered line. Dropping the “new”-index for better readability the
derivative of the total line source function yields

∂S l

∂ni
=
∂

∂ni

ηl

κl
(281)

=

(
∂ηl

∂ni
κl − ηl ∂κ

l

∂ni

)
1

(κl)2 (282)

=
1
κl

Lines∑

ilb=1

∂ηilb

∂ni
− S l

κl

Lines∑

ilb=1

∂κilb

∂ni
(283)

and thus the total second term becomes

1
S ind
∂J̄app
ind

∂ni
=
Λ̄∗ind
S ind


1
κl

Lines∑

ilb=1

∂ηilb

∂ni
− S l

κl

Lines∑

ilb=1

∂κilb

∂ni

 . (284)

The ilb-index ranges over all line transitions overlapping with our ind-transition and includes ind itself.

For the transitions of the generic element, we do not account for any source function changes in the derivatives.
However, we can easily account for the explicit derivative of the ALO-term our calculated quantities wG

l and
wG

u (Eqs. 261, 262) are exactly these derivatives. Writing our radiative rates as

Ru,l = 0 Rl,u = Au,l

[
1 + J̄app

ind

c2

2hν3ind

(
1 − gunl

glnu

)]
(285)

we obtain

DG
i,u = Au,l

c2

2hν3ind

(
nu − gu

gl
nl

)
∂J̄app
ind

∂ni
(286)

with
∂J̄app
ind

∂ni
=



wG
l for i = l
wG

u for i = u
0 else.

(287)

13.2.4.1. Continuum (bound-free) derivatives For the continuum or bound-free rates, two branches ex-
ist, one using a net radiative bracket (NRB) approach and one without. By default, the NRB is used for all
continua. The net radiative bracket for bound-free transitions is more complex than the bound-bound counter-
parts and reads

Zu,l = 4π
ne

T 3/2 Cbf
gl

gu

∞∫

νkon

σkon(ν)
hν

exp
(
− h

kBT
[ν − νkon]

)
2hν3

c2

(
1 − Japp

c (ν)
S kon(ν)

)
dν (288)

for a transition kon with the upper and lower levels u and l plus νkon denoting the edge frequency of the
transition. In Eq. (288) we used the definitions

S kon(ν) =
2hν3

c2

Gkon(ν) nu

nl −Gkon(ν) nu
(289)

and Gkon(ν) =
gl

gu
Cbf

ne

T 3/2 exp
(
− h

kBT
[ν − νkon]

)
(290)

using Cbf =
1
2

[
h2

2πmek

]3/2

≈ 2.07 · 10−16[cgs]. (291)
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13. Rate equations

For calculating the derivatives, it is helpful to simplify the expression for Zu,l using first Gkon(ν) directly in
Eq. (288) and then inserting the expression for S kon(ν):

Zu,l = 4π

∞∫

νkon

σkon(ν)
hν

Gkon(ν)
2hν3

c2

(
1 − Japp

c (ν)
S kon(ν)

)
dν (292)

= 4π

∞∫

νkon

σkon(ν)
hν

Gkon(ν)
(
2hν3

c2 − Japp
c (ν)

nl −Gkon(ν) nu

Gkon(ν) nu

)
dν (293)

= 4π

∞∫

νkon

σkon(ν)
hν

(
2hν3

c2 Gkon(ν) − Japp
c (ν)

[
nl

nu
−Gkon(ν)

])
dν (294)

= 4π

∞∫

νkon

σkon(ν)
hν

(
2hν3

c2 Gkon(ν) − Japp
c (ν)

nl

nu
+ Japp
c (ν) Gkon(ν)

)
dν (295)

For the derivatives we now need to calculate

Di,u = nu
∂Zu,l

∂ni
. (296)

The only non-vanishing terms occur for ni ∈ {nu, nl, ne}. We start with the derivatives to the electron density
which only come into play via Gkon(ν). Since Gkon(ν) depends linear on ne, we can use the fact that

∂Gkon(ν)
∂ne

=
Gkon(ν)

ne
(297)

and avoid repeating lengthy calculations in the code by reusing Zu,l and writing

De,u = nu
∂Zu,l

∂ne
= nu 4π

∞∫

νkon

σkon(ν)
hν

(
2hν3

c2

∂Gkon(ν)
∂ne

+ Japp
c (ν)

∂Gkon(ν)
∂ne

)
dν (298)

=
nu

ne
4π

∞∫

νkon

σkon(ν)
hν

(
2hν3

c2 Gkon(ν) + Japp
c (ν) Gkon(ν)

)
dν (299)

=
nu

ne
Zu,l +

nu

ne
4π

∞∫

νkon

σkon(ν)
hν

Japp
c (ν)

nl

nu
dν. (300)

The second term is essentially a correction to the error we make in the first term. In terms of programming, this
approach is favorable as we can reuse the already calculated Zu,l and the integral in the correction term is very
similar to the expression we obtain for the derivatives to nl and ni. Without considering the ALI contribution
and the usual neglection of explicit derivatives of the radiation field Jc(ν), only one term remains for these
derivatives, namely

Di,u
∣∣∣
i∈{u,l} = −nu

∂

∂ni

(
nl

nu

)
4π

∞∫

νkon

σkon(ν)
hν

Japp
c (ν) dν. (301)
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Hence we can write the total expression for all continuum derivatives in the following way:

Di,u = D(1)
i,u + D(2)

i,u + Daloi,u (302)

with D(1)
i,u =


nu
ne

Zu,l for ni = ne

0 else
(303)

and D(2)
i,u = f (ni)

∞∫

νkon

4π
hν
σkon(ν) Japp

c (ν) dν (304)

with f (ni) =


−1 for ni = nl
nl
ni

else
(305)

Only the ALO-contribution Daloi,u remains to be determined. Essentially these are terms where we have a
derivative of the radiation field, hence

Daloi,u = −nu 4π

∞∫

νkon

σkon(ν)
hν

∂Japp
c (ν)
∂ni

[
nl

nu
−Gkon(ν)

]
dν. (306)

So far we could avoid to actually calculate Gkon(ν) for the derivatives. Now we use the Saha equation

n∗l
n∗u
=

T 3/2

Cbf ne

gu

gl
exp

(
− h

kBT
[ν − νkon]

)
(307)

compared with Eq. (290) to obtain

Gkon(ν) =
n∗l
n∗u

exp
(
− hν

kBT

)
, (308)

where n∗u and n∗l denote the upper and lower LTE population number. With this we can express Daloi,u as

Daloi,u = −nu 4π

∞∫

νkon

σkon(ν)
hν

∂Japp
c (ν)
∂ni

[
nl

nu
− n∗l

n∗u
exp

(
− hν

kBT

)]
dν (309)

= −nu
n∗l
n∗u

4π

∞∫

νkon

σkon(ν)
hν

∂Japp
c (ν)
∂ni

[
n∗u
n∗l

nl

nu
− exp

(
− hν

kBT

)]
dν (310)

(311)

What remains to be calculated is the derivative of the ALO-contribution to the radiation field. Similar as for
the line transitions, we do neglect explicit derivatives of the radiation field and the ALO itself. Thus we obtain

∂Japp
c (ν)
∂ni

=
∂

∂ni

[
wJc(ν)∆S c(ν)

]
= wJc(ν)

∂S new
c (ν)
∂ni

(312)

as only the new source function can depend on the new population numbers. The derivative of the source
function is straight forward,

∂S c(ν)
∂ni

=

[
∂ηc(ν)
∂ni
κc(ν) − ηc(ν)∂κ

c(ν)
∂ni

]
1

(κc(ν))2 (313)

=

[
∂ηc(ν)
∂ni

− S c(ν)
∂κc(ν)
∂ni

]
1
κc(ν)

, (314)
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and – in contrast to the lines – can be done on the total continuum opacity and emissivity since our ALO also
contains the reaction of the total (true) continuum. The summed up derivatives for κc and ηc are prepared in
the subroutine DCOOP. For the individual bound-free transitions we use the expressions

ηkon(ν) =
2hν3

c2 σ
kon(ν) Gkon(ν) nu (315)

and κkon(ν) = σkon(ν)
[
nl −Gkon(ν) nu

]
(316)

and therefore the derivatives to the upper and lower level as well as to the electron density yield

∂ηkon(ν)
∂nl

= 0
∂κkon(ν)
∂nl

= σkon(ν) (317)

∂ηkon(ν)
∂nu

=
2hν3

c2 σ
kon(ν) Gkon(ν)

∂κkon(ν)
∂nu

= −σkon(ν) Gkon(ν) (318)

∂ηkon(ν)
∂ne

= σkon(ν) Gkon(ν)
nu

ne

∂κkon(ν)
∂ne

= −σkon(ν) Gkon(ν)
nu

ne
. (319)

Unless explicitly mentioned, all derivative calculations for Di,u are performed in the subroutine DERIV. The
branch without NRBs, which is usually deactivated, only accounts for Daloi,u and neglects the other terms.

126



14. The temperature stratification

Energy must be conserved in the stellar atmosphere. The temperature stratification T (r) follows from this
condition. The consistent stratification T (r) is established iteratively by temperature corrections which are
calculated and applied in program steal before new population numbers are obtained from the rate equations.
Temperature corrections can be switched off, or might be automatically suppressed as long as the model
iteration shows too large corretions of the population numbers. Several options in the CARDS file regulate the
numerics of the temperature corrections.

Originally, the temperature corrections used in PoWR are derived from the condition of radiative equilibrium.
As an alternative or complementary method, we also implemented the thermal balance approach which can
be numerically more stable in the optically thin part of the atmosphere, as it considers the energy conservation
of the free electrons. Both approaches are briefly outlined in the following subsections.

14.1. Temperature corrections from radiative equilibrium

The radiative equilibrium is usually written in the following two forms which already implicitly include the
energy equation:

4π

∞∫

0

κν (S ν − Jν) rmdν = 0 (320)

4π

∞∫

0

Hνdν = σSBT 4
eff (321)

Usually the first form (320) is meant when the term “radiative equilibrium” is used while the second one (321)
is referred to as “flux conversation” as Hν is the so-called Eddington flux and Teff is constant. In fact, both
forms reflect the energy conservation. Frequency integration of the zeroth moment of the transport equation
leads to the second equation for Hν when using the first one, so it is implicitly included anyhow. The first
one is therefore sometimes called the “differential form” while the second one is referred to as the “integral
form” of radiative equilibrium. Note that the Eqs. (320) and (321) refer to a static, plane-parallel atmosphere
and needs to be adjusted for the application in the PoWR code. This generalization to spherically expanding
non-gray atmospheres of method from Unsöld (1951, 1955) and Lucy (1964) is described in detail in Hamann
& Gräfener (2003). It eventually leads to the following expression for the temperature correction:

∆T (r) =
π

4σSB

1
T 3(r)r2κS (r)

{
−
∞∫

0

(ην − κνJν) dν

+
κJ(r)

(q f )J(r)

Rmax∫

r′=r

(qκ)H(r′)
[
H̃0(r′) − H̃(r′)

]
dr′

+ κJ(r)
(q f )J(Rmax)

(q f )J(r)
H̃0(Rmax) − H̃(Rmax)

hJ(Rmax)

}

(322)

The first line of Eq. (322) after the bracket reflects the radiative equilibrium Eq. (320) while the second and
the third stem from an integral over the generalized version of Eq. (321) with the second line referring to the
integral and the third one to a constant that can be fixed by the boundary values at Rmax

4.

4All three terms can be multiplied with a weighting factor in the PoWR code in order to force specific corrections being preferred or
even switched off.
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14. The temperature stratification

In a thin atmosphere the Eq. (320) can cause numerical problems. The situation is dominated by resonance
lines where κν is basically zero and S ν and Jν are large but should cancel each other as they do not contribute the
free electrons and therefore should not affect the temperature. In fact, it can happen that small numerical errors
are multiplied with a large value and therefore do not cancel each other, but lead to unphysical corrections.

14.2. Temperature corrections from thermal balance

A nice way to avoid the previously mentioned problems is to consider the thermal balance of the electrons,
where bound-bound line transitions do not enter, instead of the radiative equilibrium. Although this temper-
ature correction method was not used for hot star atmospheres until the 1990s, it goes back to the ideas of
Hummer & Seaton (1963) and Hummer (1963) who applied it for planetary nebulae.

Since a proper temperature structure is crucial for a successful application of the hydrodynamic routines de-
scribed later in this work, the “thermal balance” method was included in PoWR as a part of this thesis. While
the method is described in detail by Kubát et al. (1999) and Kubát (2001), their notation is considerably differ-
ent in certain details. Therefore the main equations will be given here in the notation that follows the particular
implementation in PoWR. When comparing these equations with Kubát et al. (1999), it should be noted that
PoWR does not use the so-called occupation probabilities wi, i.e. we set wi ≡ 1 in their equations.

The thermal balance of electrons is written as the difference between heating (QH) and cooling (QC) terms:

∆Q := QH − QC (323)

:= QH
ff + QH

bf + QH
c − QC

ff − QC
bf − QC

c (324)

Both, heating and cooling terms, consist of three contributions, namely free-free and bound-free transitions as
well as collisions. In an ideal situation with a perfect balance we should have ∆Q = 0. In reality the situation
will of course differ, but it is exactly this aim that is used to obtain a correction term for the current temperature
stratification.

The straight-forward way to obtain a temperature correction is to implement a Newton-Raphson scheme, i.e.
calculating the temperature derivative of ∆Q and calculate the new temperature via

Tnew = Told − ∆Q(T )
∂
∂T (∆Q)

. (325)

An example of the corrections for the thermal balance method compared to those from radiative equilibrium
is shown in Fig. 9. For such a cool model, the correction from the thermal balance method in the outer part is
much smoother than those obtained by radiative equilibrium. In the innermost part, flux consistency is usually
more reliable and the thermal balance corrections are switched off.

In the following paragraphs the calculation of Qff, Qbf, and Qc as well as their temperature derivatives are
described. The choice of the Newton-Raphson method especially requires a calculation of the derivatives. For
the population numbers N j and the radiation field Jν no analytical derivatives exist and no proper numerical
derivative can be calculated within an effort that would be legitimate for the purpose of providing a temperature
correction in each iteration. Therefore N j and Jν are treated as if they would not depend on the temperature
in the following calculations. This approximation is probably not as bad as it sounds as the “thermal balance”
method focuses especially on the outer parts of the stellar atmosphere where the temperature dependencies of
both, N j and Jν, should be weak. Furthermore, the derivatives only determine the convergence radius in the
Newton-Raphson method, not the actual value of the solution.
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14.2. Temperature corrections from thermal balance
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Figure 9: Electron temperature correction example for a non-converged B-star model with T∗ = 26 kK: The
corrections suggested by the thermal balance method (green curve) is compared to the three correc-
tion components from Eq. 322 based on radiative equilibrium (RE, blue and orange curves). The two
orange curves together resemble the flux consistency terms.

14.2.1. Free-Free transitions

In free-free transitions all energy is transferred between the radiation field and the electrons. The heating terms
describe the electron energy gains, thus QH

ff
consists of the energy gained by absorption, i.e.

QH
ff = 4πne

∑

j

N j

∞∫

0

αff, j(ν,T )Jνdν (326)

with ne being the electron density, and αff, j the free-free cross section. The radiation field Jν is the radiation
field on a coarse frequency grid, i.e. XJC in the PoWR code. For the cooling term QC

ff
we now have to sum up

the emission processes, i.e.

QC
ff = 4πne

∑

j

N j

∞∫

0

αff, j(ν,T )
(
Jν +

2hν3

c2

)
e−

hν
kT dν. (327)

Note that both, QH
ff

and QC
ff

, vanish for non-charged stages (Z = 0) due to the cross-section αff being propor-
tional to Z2:

αff, j(ν,T ) =
4e6

0Z2

3ch

√
2π

3kme

gff(ν,T )

ν3
√

T
(328)

= 1.37 · 10−23cm5Z2
(T
K

)− 1
2
(
λ

cm

)3
gff(ν,T ) (329)
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14. The temperature stratification

Now the temperature derivative of both terms is needed. Neglecting the temperature dependencies of the
population number and radiation field, only the αff coefficient remains in the heating term. Its derivative can
be calculated straight forward:

∂

∂T
αff, j(ν,T ) = − 1

2T
αff, j(ν,T ) +

4e6
0Z2

3ch

√
2π

3kme

∂gff(ν,T )
∂T

1

ν3
√

T
(330)

For the Gaunt factor gff there is no analytic formula, but only tables depending on frequency ν and temperature
T . However, this allows us to calculate gff(T ) as well as gff(T + δt) in order to approximate the derivative of gff
by a difference quotient. With all these terms given, the derivatives for the free-free heating and cooling terms
can be obtained:

∂

∂T
QH
ff = 4πne

∑

j

N j

∞∫

0

∂αff, j

∂T
Jνdν (331)

∂

∂T
QC
ff = 4πne

∑

j

N j

∞∫

0

(
∂αff, j

∂T
+

hν
kT 2αff, j

)
·
(
Jν +

2hν3

c2

)
e−

hν
kT dν (332)

The longer expression for the derivative of the cooling term (332) follows from the exponential factor in
Eq. (327).

14.2.2. Bound-free transitions

The thermal balance of electrons is not affected by bound-bound transitions – in contrast to the radiative
equilibrium – but by bound-free (BF) transitions where an electron is released or captured. Here ionizations
lead to free electrons and therefore contribute excess kinetic energy to the heating. The resulting gain is

QH
bf = 4π

∑

Kon=(l,u)

Nl

∞∫

νlu

σlu(ν)Jν
(
1 − νlu
ν

)
dν, (333)

with l denoting the lower (bound) level,u the upper level and νlu the ionization edge frequency. The term(
1 − νluν

)
accounts for the subtraction of the energy fraction that is transferred to the atoms, ensuring that

only the energy transferred into electrons is covered here. In a similar way as for the free-free case, the
corresponding term for cooling by recombination is

QC
bf = 4π

∑

Kon=(l,u)

Nu
N∗l
N∗u

∞∫

νlu

σlu(ν)
(
Jν +

2hν3

c2

)
e−

hν
kT

(
1 − νlu
ν

)
dν. (334)

Population numbers marked with an asterisk, e.g. N∗l , refer to the LTE-population number of the corresponding
level. Neglecting the temperature dependence of the non-LTE populations numbers N and the radiation field
Jν, the temperature derivative of the heating term is zero. For the cooling term, there is an implicit Saha-
Boltzmann factor in N∗l /N

∗
u and an explicit exponential factor that has to be taken into account:

∂

∂T
QH

bf = 0 (335)

∂

∂T
QC

bf = −
(

3
2T
+

hνlu
kT 2

)
QC

bf (336)

+ 4π
h

kT 2

∑

Kon=(l,u)

Nu
N∗l
N∗u

∞∫

νlu

σlu(ν)
(
Jν +

2hν3

c2

)
e−

hν
kT

(
1 − νlu
ν

)
ν dν
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14.2. Temperature corrections from thermal balance

14.2.3. Collisions

Energy can also be transferred between atoms and electrons without involving the radiation field, namely by
collisions. The heating component here consists of collisional recombinations and de-excitations

QH
c = ne

∑

l,u

Nu
N∗l
N∗u
Ωlu(T ) hνlu, (337)

while the cooling terms consists of ionization and excitation via collisions

QC
c = ne

∑

l,u

Nl Ωlu(T ) hνlu. (338)

Ωlu is the so-called collision strength, its product with the electron density gives the collisional rates Clu =

neΩlu which enter the rate coefficient matrix for the statistical equations. With the help of the LTE populations
numbers, one can use the relation N∗l Ωlu = N∗u Ωul. Note that the ratio between the LTE population numbers
can be expressed by the (Saha-)Boltzmann equation and therefore introduces a temperature dependence. The
temperature dependency of Ωlu itself is not trivial as different formulae are used for each element.

In the PoWR code, the double sum over all upper and lower levels is replaced by more convenient loops. As
collisions come in two different flavors, namely from line transitions (collisional excitation and deexcitation)
and bound-free transitions (collisional ionization and recombination), the collisional rates are calculated dif-
ferently. For the line transitions, Ωlu is calculated internally, while it is Ωul for the bound-free transitions, so
this has to be taken into account for the derivatives later on. This is the only part where line transitions affect
the thermal balance. Additional care has to be taken for iron superlevels as it can happen that there are no
radiative transitions between two levels which means that such transitions are not covered in a standard loop
using the radiative transition list (IND index). As there can still be transitions via collisions, these contribu-
tions have to be added afterwards. However, their derivatives are not different in type and hence all equations
are the same as for the other line transitions. We thus rewrite equations (337) and (338) for the line transitions
in the following way:

QH
c,ind = ne

∑

l,u

Nu
N∗l
N∗u
Ωlu(T ) hνlu (339)

= ne

∑

l,u

NuΩul(T ) hνlu (340)

=
∑

l,u

NuCul(T ) hνlu (341)

QC
c,ind =

∑

l,u

Nl
N∗u
N∗l

Cul(T ) hνlu (342)

This form reflects that for line transitions Cul is calculated as Cul = neΩul internally while Clu is obtained
by multiplication with the LTE population number ratio using the relation Clu = ne

N∗l
N∗u
Ωul. The tempera-

ture derivatives of the Qc,ind-terms can then be obtained by using an analytic derivative for the Boltzmann
factor originating from the LTE population number ratio while the derivative of Cul can be calculated numeri-
cally. Once again neglecting any temperature dependency of the non-LTE population number, the temperature
derivatives are

∂

∂T
QH

c,ind =
∑

l,u

Nu
∂Cul

∂T
hνlu (343)

∂

∂T
QC

c,ind =
∑

l,u

Nl
N∗u
N∗l

(
∂Cul

∂T
+

hνlu
kT 2 Cul

)
hνlu. (344)
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14. The temperature stratification

The collisional rates for the ionizations are calculated just the other way round. Here, Clu = neΩlu is cal-
culated directly via Eq. (6.39) in Jefferies (1968) while Cul is obtained via scaling with the corresponding
Saha-Boltzmann factor. Hence, the equations are now written

QH
c,kon =

∑

l,u

Nu
N∗l
N∗u

Clu(T ) hνlu (345)

QC
c,kon =

∑

l,u

Nl Clu(T ) hνlu (346)

The corresponding temperature derivatives are:

∂

∂T
QH

c,kon =
∑

l,u

Nu
N∗l
N∗u

[
∂Clu

∂T
−

(
3

2T
+

hνlu
kT 2

)
Clu

]
hνlu (347)

∂

∂T
QC

c,kon =
∑

l,u

Nl
∂Clu

∂T
hνlu (348)

Note that there is a Saha-Boltzmann factor for the bound-free transitions instead of the pure Boltzmann factor
as it was for the line transitions. Furthermore it might seem strange at first that ionizations enter in the heating
term for bound-free transitions, while they appear in the cooling term for collisions, but one has to keep in
mind that the latter ionizations are caused by another electron, so there is a net loss of electron energy in
contrast to the bound-free transitions, where the ionization energy is provided by the radiation field.

14.3. Connection between radiative equilibrium and thermal balance

The two approaches described above, radiative equilibrium and thermal balance, are in fact mathematically
equivalent. The previously defined QH and QC reflect the energy gains and losses for the free electrons. These
values could also be obtained by the sum of the the radiative energy and the product of the ionization energies
and the changes in the population numbers. Hence we can write

dQ
dt
= 4π

∞∫

0

κν (S ν − Jν) dν

︸                    ︷︷                    ︸
=0 in radiative equilibrium

+
∑

i

hνi
dNi

dt
︸       ︷︷       ︸

=0 in statistical equilibrium

(349)

(see also Hillier & Miller 1998). The second term on the right hand side vanishes in statistical equilibrium,
as the population numbers Ni do not change then. What remains is the first term which exactly vanishes in
radiative equilibrium. Therefore in a situation with statistical and radiative equilibrium, the left hand side
should be zero, but this is what we already have described as thermal balance. This illustrates that in statistical
equilibrium, both correction methods should in theory lead to the same temperature structure. Numerically
this is usually not the case, as both methods have different strengths and weaknesses which were previously
mentioned. The proper method therefore has to be chosen depending on the specific model situation. The
effective temperature or the departure from LTE in a certain part of the atmosphere can have a huge effect on
how successful one or the other method exactly is.
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15. Formal Integral: radiative transfer in the observer’s frame

THIS SECTION IS UNDER CONSTRUCTION!

The job formal runs after the model iteration (wruniq jobs) is finally converged. Based of the thus established
stratifications of temperature, density, velocity, and population numbers, the program FORMAL calculates the
emergent spectrum.

More precisely, FORMAL reads the input file FORMAL_CARDS, which is usually composed with the help of
the job newformal_cards (see Sect. 6.2). Each RANGE specified in NEWFORMAL_CARDS_INPUT creates a
corresponding section in FORMAL_CARDS that starts with BLEND and ends with -BLEND. The program formal
sequentially calculates the emergent spectra for each such blend-block alias RANGE, which are typically named
UV, OPT, K-BAND et cetera. Each spectrum is issued in the form of plots and tables (optionally).

15.1. Wavelength and frequency grid

The formal integral is calculated in the observer’s frame of reference. For each range, a grid of frequency
points is defined. We introduce a dimensionless (observer’s frame) frequency x by

ν = ν0

(
1 +
3D

c

)x
(350)

or, equivalently,
ln ν = ln ν0 + ALN x . (351)

with ALN := ln
(
1 + 3Dc

)
. Hence,

x =
ln ν − ln ν0
ALN

. (352)

In terms of wavelengths λ = c/ν, this relation becomes

x =
ln λ0 − ln λ
ALN

. (353)

since the speed of light c cancels out.

The Doppler unit is specified by 3D, taken as the smallest Doppler-broadening velocity that occurs in the model
atmosphere, accounting for thermal and microturbulent velocities.

The zero-point of the x-scale defined above is at ν0 = c/λ0. We take for λ0 the first line-center wavelength that
is accidentally encountered in the atomic data for this range (named XLAM in the code, unfortunately). Note
that x < 0 for wavelenths larger than λ0.

Next, we need to define the grid points, indexed with k that runs from 1 to NFOBS, where k = 1 shall refer
to the shortest wavelength (highest frequency) of the range. The corresponding dimensionless frequency is
termed FREMAX). The step-width in the dimensionless frequency x is ∆x.

Thus we define
x0 = FREMAX + ∆x (354)

and finally get the grid in terms of the dimensionless frequency

xk = x0 − k ∆x (355)

Translated into wavelengths, this corresponds to

λk = λ0 exp (xk ALN) (356)
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15. Formal Integral: radiative transfer in the observer’s frame

(cf. beginning of k-loop in formal, with λk termed XLAMREF in the code).

The inverse calculation, k from a given wavelength, is needed in LIMBDARK_PREP:

k =
x0 + (ln λ0 − ln λ)/ALN

∆x
(357)

and gives the index k for λ = λk; for arbitrary λ one gets a fractional values for k that can be used, e.g., for
interpolation.

For frequency integrals (also needed e.g. in LIMBDARK_PREP), note that the step-width scales like

∆ν ∝ ν ∝ [
exp(ALN)

]xk (358)

15.2. The emergent flux

In order to predict the spectrum as seen from an external observer, the radiative transfer must be solved in a
fixed frame of reference – the observer’s frame. This is performed in the program formal as a formal solution,
i.e. on the basis of the level population numbers that have been established iteratively in the wruniq cycles.

The observer at distance d measures the emergent flux

Fν =
R2∗
d2

2π∫

φ=0

Rmax∫

p=0

I+ν (p, φ) p dp dφ (359)

where I+ν (p, φ) is the emergent intensity (see below). Note that I+ν (p, φ) comes in physical units. The factor R2∗
d2

is because p is normalized to R∗.

15.3. The emergent intensity

Calculation of the emergent intensity I+ν (p, φ) requires an integration along each ray:

I+ν =
∫ τmax

0
S ν(z) e−τ(z) dτ

[
+I∗ν e−τmax

]
(360)

S ν(z) = ην(z)/κ(ν, z) is the source function at the observer’s frame frequency ν and the position z along the
considered ray, and

τ(z) =
∫ zmax

z
κ(ν, z′) dz′ (361)

the optical depth reached at z along that ray.

The term in square brackets in Eq. (360) applies only for rays which hit the inner boundary, with I∗ν denoting
the intensity of the core’s radiation entering the atmosphere.

Numerically, the integral in Eq. (360) can be evaluated with the trapezoidal rule, achieving best accuracy
when incorporating the exp(−τ) factor into the quadrature weights. However, this formulation requires that
κ(ν) > 0, i.e. it fails in laser situations. Therefore, if negative opacity is encountered in an integration step, the
code switches for just this step to the alternative formulation

I+ν =
∫ zmin

zmax

ην(z) e−τ(z) (−dz) (362)

TO BE CONTINUED
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15.4. Frequency redistribution by electron scattering
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Figure 10: Integration of the emergent flux. The star is seen from the observer. In case of spherical symmetry,
the emergent flux depends only on the impact-parameter p, but is independent from the azimuth
angle φ. In case of wind rotation, or in case of two models being geometrically combined, this
degeneracy will be lifted (see below).

15.4. Frequency redistribution by electron scattering

One contribution to the emissivity η in Eq. 360 is from photons scattered by free electrons. While this Thomson
scattering is assumed to be coherent when iterating the model structure and population numbers (program
COLI, the formal integral shall now account more correctly for the frequency redistribution of the scattered
photons caused by their thermal motion.

Following Hummer & Mihalas (1967) – cf. also Mihalas (1978) p. 432 –, the angle-avaraged redistribution
function for electron scattering is ... TO BE WRITTEN

Note, however, that such angle-averaging makes onlty sense in the co-moving frame. Therefore, in preparation
for the formal integration (Eq. 360), we must first perform a full CMF radiative transfer calculation for the
spectral range under consideration. This calculation is performed in the subroutine FORMCMF which is called
first for each range.

A CMF frequency grid is established, spaced by 0.3 DXCMF

The continuum opacities are evaluated (subr. COOP), as are the line opacities for all alines in the current range
(subr. LIOP). The line opacities are added to the total opacity, adopting gaussian profiles (i.e. only Doppler
broadening) with the Doppler velocity composed of the thermal velocity (depending on atomic mass and local
temperature) and the local microturbulence (if specified).

NOTE: WE SHOULD CHECK IF THIS IS TRUE. SINCE DXCMF IS MADE FOR RESOLVING VDOP
FROM THE MODEL FILE, IT MIGHT BE NOT SUFFICIENT FOR RESOLVING NARROWER LINES
HERE!!!

The electron-scattering contribution to the emissivity is adopted as for coherent scattering as first guess. After
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15. Formal Integral: radiative transfer in the observer’s frame

z

p

r1 = RMAX
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rND = 1

Figure 11: Integration of the emergent intensity. The observer is to the right. For each ray with impact param-
eter p and observer’s-frame frequency ν, the integration proceeds inwards along the z coordinate.
The integration starts when the ray enters the domain at Rmax and ends either at the stellar core (if
p < 1) or when the ray leaves the back hemisphere.

the whole frquency range is complete, the emissivity is updated, using now the electron-scattering redistribu-
tion function ...

This procedure is repeated in an iteration loop, until the maximum relative correction of η (at any frequency
and depth) falls below a specified threshold ϵ = 0.001.

In FORMCMF, the radiative transfer is solved ray-by-ray (i.e. angle-dependent) by a differencing scheme, which
is given in detail in the Appendix of Hamann (1981).5

...

A starting value for the Feautrier-intensity u at the first frequency index is needed (“blue-wing boundary
condition”).

15.5. Line broadening

By default, the line profiles in the opacity and emissivity have Gaussian shape, i.e. they account only for
thermal and microturbulent broadening (cf. specifications of VDOP and VMIC).

This is sufficient for wind lines, i.e. especially for Wolf-Rayet type spectra. Natural line broadening (radiation
damping) might contribute to very thick lines, and was included in some of the older WR model calculations
by specifying the VOIGT parameter on the FORMAL_CARD entries of the corresponding lines.

For O- and B-type stars, however, pressure broadening is essential. This is invoked (together with radiation
damping) for all lines by the FORMAL_CARD option BROADENING alias ALLBROADENING.

5In program COLI we apply a short-characteristic integration for the same purpose; we might consider to implement the same here
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15.5. Line broadening

Technically, the computation of line broadening proceeds in two steps:

• SUBROUTINE STARKBROAD (called for each spectral RANGE from the main program FORMAL) prepares
broadening data and marks each line with a broadening keyword (vector LINPRO) that is also displayed
in formal.out.

• When the formal integration is actually performed in subroutine ZONEINT, this keyword triggers for
each line the evaluation of the appropriate profile function (cf. Table 2).

There are particular subroutines for the preparation of the broadening, as well as functions for the evaluation
of the profile. The code distinguishes between H i lines, He i lines, He ii lines, hydrogen-like ions (linear Stark
effect), and other lines (quadratic Stark effect), see Table 2.

Table 2: Different kinds of line broadening
======================================================================
Ion LINPRO Preparation Profile evaluation

keyword (called from STARKBROAD) (called from ZONEINT)
----------------------------------------------------------------------
H I BRD-H READ_H_STARKDATA FUNCTION STARKPROF

FUNCTION STARK_HI_LEMKE
Fallback:
FUNCTION STARKHI

----------------------------------------------------------------------
He II BRD-HeII STARKHEIIPREP FUNCTION STARKPROF

FUNCTION STARKHEII
Fallback: --> L-STARK

----------------------------------------------------------------------
He I BRD-HeI STARKDAMP_HEI FUNCTION STARKVOIGT

Fallback: --> Q-STARK
----------------------------------------------------------------------
H-like L-STARK LINSTARK FUNCTION STARKHOLTSMARK

FUNCTION KHOLTSMARK
----------------------------------------------------------------------
Others Q-STARK QUADSTARK FUNCTION STARKVOIGT

Fallback: --> VOIGT
----------------------------------------------------------------------
DRTR. VOIGT FUNCTION STARKVOIGT
======================================================================

The treatment differs especially between those lines for which detailed broadening tables can be used (a limited
number of lines from H i and He ii), and other lines for which broadening functions (Voigt, Holtzmark) are
applied.

15.5.1. Radiation damping

While natural line broadening by radiation damping contributes implicitely to all broadening prescriptions, this
effect remains the only broadening mechanism (in addition to thermal broadening) in case of (a) the fallback
branch from Q-STARK, and (b) for transitions from auto-ionization levels (DRTRANSIT, see Sect. ??).
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15. Formal Integral: radiative transfer in the observer’s frame

Radiation damping alone leads to a Lorentz profile

φL =
a
π

1
(x − x0)2 − a2 (363)

where x is the dimensionless frequency in Doppler units, and x0 its value at the line center, and a

Doppler broadening alone, caused by thermal plus microturbulent motion, leads to a Gauss profile

φD = π
−1/2e−(x−x0)2

. (364)

Combination of these two broadening mechanisms correspond to a convolution of the two profile functions;
the resulting Voigt function H(a, x) cannot be written in analytic form; we use a numerical approximation from
Detlef Koester (priv. comm.) in FUNCTION VOIGTH (see also textbooks for more details).

The Voigt parameter
a =

γ

4π
/∆νD (365)

is depth-dependent, because the Doppler unit ∆νD is depth-dependent in any case, and the damping parameter
γ can be depth-dependent as well if including pressure broadening in certain cases (see below).

Therefore we establish (in STARKBROAD) a two-dimensional array AVOIGT(NBL,L) for the Voigt parameter a,
where NBL stands for the line index and L for the depth index as usual.

For He i the Voigt parameter is provided by the subroutine STARKDAMP_HEI for the contribution by electron
impacts, and by STARKDAMP_HEI_NEUTRAL for collisions with neutral helium atoms. The latter contribution
is probably only important for plasma that is nearly neutral (only few free electrons). In the present shape,
STARKDAMP_HEI_NEUTRAL provides only very small damping parameters, but this might be a bug as well.
Therefore, the call of STARKDAMP_HEI_NEUTRAL is currently commented.

For all other ions, the damping (Voigt) parameter a is provided by the subroutine QUADSTARK. This might not
be the ultimate sophistication; there is also some inaccuracy regarding doubly excited states (see comment
in QUADSTARK). Moreover, this subroutine is not really well-tested, since we have not yet been confronted
with any spectra in which metal lines were pressure-broadened sigificantly. If necessary, this branch must be
worked on.

In FUNCTION STARKVOIGT), the value of a is interpolated over the radius before the Voigt function VOIGTH
is evaluated. The obtained profile function, multiplied with the line opacity, is finally used in the radiative
transfer integral in ZONEINT.

15.5.2. Tabulated profiles: H i

For hydrogen lines, we apply tabulated profiles from Michael Lemke (available via SIMBAD, published in
Lemke (1997) and stored for PoWR in the file LEMKE_HI.DAT (see the FORMAL_CARDS option PATH_LEMKE_DAT
for its location). The Lemke tables comprise the first four line series of hydrogen, while the upper priciple
quantum numbers up to 22 are covered.

This table is read by subroutine READ_H_STARKDATA. Subsequently, in function STARK_HI_LEMKE, for each
radial grid point the profile is interpolated to the current temperature and electron density. The profiles in
these tables account already for thermal broadening. Therefore, we convolve each requested profile only with
a Gaussian for additional microturbulent broadening. For each radial point, the normalized profile is stored as
a vector over frequency points in the array PHITAB. For each line of the current BLEND block that is tabulated
this way in PHITAB, the vector IPOINTERPHITAB bookmarks its index.

For lines that are not covered by the Lemke table, the fallback is coded in function STARKHI. The genesis of
this subroutine is obscure; following its comment lines, it has been written by Deane Peterson & Bob Kurucz.
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15.5. Line broadening

It follows work by Griem (1960, 1967) with corrections to approximate numerical results from Vidal et al.
(1973).

For those H i lines which are treated by the fallback function STARKHI, the profiles are stored in PHITAB in the
same way as for the lines found in the Lemke tables. We believe that the profiles returned by STARKHI also
account already for thermal broadening, and hence must be convolved only for additional microturbulence.

When the transfer equation is finally integrated along each ray in subroutine ZONEINT, the interpolation in the
PHITAB tables is performed by function STARKPROF.

15.5.3. Tabulated profiles: He ii

For the broadening of He ii lines we use the Vidal-Cooper-Smith-Schoening-Butler tables published by Schoen-
ing & Butler (1989); Schoning & Butler (1989). The corresponding data file is called VCSSB.DAT (see the
FORMAL_CARDS option PATH_VCSSB for its location). The source of this data file is not known anymore.

Unfortunately, these tables cover only 18 lines (principle quantum number transitions 2− 3; 3− 4...3− 10; 4−
5...4 − 15). For all other He ii transitions, we use L-STARK as fallback.

The tables in VCSSB.DAT are extracted for each requested line by the subroutine STARKHEIIPREP. The
function STARKHEII then interpolates in the extracted table with respect to the temperature and density at
each radial point, and returns the respective profiles as vector over the frequency points in the PHITAB array.

In contrast to the H i profiles (see above), we believe that the VCSSB tables do not account yet for thermal
broadening. Therefore, they are convolved with a Gaussian of width the depth-dependent Doppler width
DD_VDOPDU which includes both, thermal broadening plus microturbulence.

As for H i, the evaluation of those profiles that have been prepared in the array PHITAB is performed by function
STARKPROF when the transfer equation is finally integrated along each ray in subroutine ZONEINT.

15.5.4. He i

For the lines of neutral helium, Voigt profiles are assumed. The damping “constant” GAMMAHE1 for its Loren-
tian part is calculated in subroutine STARKDAMP_HEI for each requested line at each radial grid point. The
source of this subroutine is not known. The theory follows mainly Griem et al. (1962) and further sources
mentioned in the subroutine’s comment lines. Wavelength shifts of the line centers are also calculated, but
neglected in the rest of the PoWR code.

The subroutine STARKDAMP_HEI has hard-coded coefficients for only 16 lines of He i, all in the optical range.
For transitions not covered here, STARKDAMP_HEI sets the broadening keyword to Q-STARK as fallback.

For extremely cool atmospheres, collisions with neutral atoms might contribute to pressure broadening. This
shall be treated by the subroutine STARKDAMP_HEI_NEUTRAL which, however, still needs debugging and,
therefore, is commented out.

The damping constant GAMMAHE1 is finally converted into the Voigt parameter a (array AVOIGT) and added to
the radiation damping. The latter has been calculated already before in subroutine PREFORM from the inverse
lifetimes of both involved levels (= sum of Einstein coefficients) and stored in AVOIGT.

When the transfer equation is finally integrated along each ray in subroutine ZONEINT, the evaluation of the
Voigt function is performed by function STARKVOIGT.

15.5.5. Linear Stark effect

This effect applies for all hydrogen-like ions (i.e. with one electron in the outermost shell), if not already
covered by tabulated broadening (H i, He ii).
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15. Formal Integral: radiative transfer in the observer’s frame

The preparation is done in subroutine LINSTARKwhich was written by Andreas Sander following the approach
that is described in the Appendix B of Hubeny et al. (1994) as used in his code TLUSTY. Part of the physics
is outsourced to the function KHOLTSMARK, which relies on Griem (1960). The result of LINSTARK is the
parameter GRIEMPAR for each line at each depth point.

When the transfer equation is finally integrated along each ray in subroutine ZONEINT, the evaluation of the
profile function is performed by function STARKHOLTSMARK. Here, the GRIEMPAR parameter is interpolated
before calling the function PHIHOLTSMARK, which combines a Doppler line-core with asymptotic Holtsmark
wings, again following Hubeny et al. (1994).

The L-STARK formalism requires knowledge of the principal quantum number. If this number is missing in
the DATOM file, the corresponding line is calculated with Q-STARK and a corresponding warning is issued.

15.5.6. Quadratic Stark effect

The formalism in QUADSTARK follows Cowley (1971), and leads to Voigt profiles. The damping parameter
Γquad is calculated from an “effective quantum number”. Since the latter diverges for upper-level energies at
the ionization threshold, the quadratic Stark effect is not calculated for level energies close to or above the
ionization threshold. Fallback in this case is LINPRO=’VOIGT’, i.e. only natural line broadening (radiatoon
damping) is accounted for.

15.5.7. Bandwidth estimate

For the linebroadening it is essential to make the frequency bands for each line much wider than the few
Doppler width which are sufficient for pure Gaussian profiles. Unfortunaley, we cannot allow different band-
widths for the individual lines; our administration of lines that are active at a given wavelength is based on
the wavelength-sorted linelist: the active lines form a compact section in this list, and they are checked-in and
checked-out when the calculation proceeds through the spectrum. Hence, we must apply the largest of all
needed bandwidths, XMAX to all lines. Note: A more flexible administration with individual bandwidths could
save substantial computing time→ future work.

The largest bandwidth needed, XMAX, is establshed by SUBROUTINE BANDWIDTH. For a fixed value of the
optical depth TAUCRIT we integrate the line opacity over radius as if the atmosphere was static, for each of the
different frequencies from the line center to the wings, till the obtained optical depth falls below the TAUCRIT
threshold. This wavelength difference to the line center (in Doppler units) defines XMAX for the tested line, and
finally we take XMAX as the largest from all lines in the line list for the calculated RANGE alias BLEND complex.

Obviously, the parameter TAUCRIT should not be choosen too small for efficiency reasons. Since the opacity
is integrated through the whole atmosphere, it can be compared to the Rosselend (continuum-only) Rosseland
optical depth TAURCONT, which is usually chosen to be 20 at the inner boundary (TAUMAX=20. FIX ...).
For instance, with chosing TAUCRIT=0.1, the line wing (of the broadest line) is followed till the optical depth
falls below 0.5% of the (mean) continuum opacity – which should be sufficient.

The default value of TAUCRIT, here named TAUMINBROAD, is set in formal.f to 0.0001 (0.1 before Jan 2017,
0.01 before Mar 2025). This default can be overwritten by the option
TAUBROAD = x.x
in the FORMAL_CARDS.

15.6. Wind Rotation

This formalism is described in the Master Thesis by Tomer Shenar and, in less detail, in Shenar et al. (2014).
The basic assumptions are:
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15.6. Wind Rotation

• For a rigidly rotating sphere, the loci of constant line-of-sight projected velocity are lines parallel to the
rotation axis (red stripes in Fig. 12), and these projected velocities depend only on the product of the
rotational velocity at the eqator, veq, and the sinus of the inclination angle i: veq sin i = VSINI – for an
elegant proof, see the book by Unsoeld (1968) on Physik der Sternatmosphären.

• Each radial shell rotates as if it were rigid, but with its own specific angular velocity ω(r). This assump-
tion implies the same parameter degeneracy as known from non-extended atmospheres, namely that the
effect depends only on the product veq sin i = VSINI, holds here as well.

• We assume rigid rotation up to some co-rotation radius RCOROT. For radii larget than RCOROT, we assume
conservation of angular momentum in the equatorial plane. The same angular velocity is then adopted
for all latitudes, i.e. each radial shell rotates rigidly.

Thus, the angular velocity is
ω(r) = const. for r < RCOROT
ω(r) ∝ 1/r2 for r > RCOROT

In other words, we assume

• cylindrical rotation (no velocity component in polar direction

• the azimuthal velocity component (vφ) is sin(θ) · f (r).
The function f (r) depends on the radial regime:

f (r) ∝ r if r < RCOROT (rigid-body rotation)
f (r) ∝ 1/r if r > RCOROT (angular momentum conservation)

The rotational component of the velocity field is therefore defined by specifying two parameters, VSINI and
RCOROT – cf. FORMAL_CARDS options in Sect. 9.

Figure 12: Rotating sphere, projected into the plane of the sky (x, y). The projected rotation axis is parallel
to the y-axis. For a rigidly rotating sphere, the velocity component in the direction to the observer
is constant along lines parallel to the y-axis, and depends only on 3 sin i. The same holds for our
model of a rotating wind, since each radial shell is assumed to rotate rigidly.

Thus, the velocity vector has now two components:
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15. Formal Integral: radiative transfer in the observer’s frame

• radial component with velocity law 3(r)

• azimutal component due to rotation with 3φ

This breaks the rotational symmetry of intensities over the stellar disk; instead, the flux integral becomes now
2-D (over p and over φ) – see Fig. 9 :

Fν =
1

R2
max

2π∫

φ=0

Rmax∫

p=0

I+ν (p, φ) p dp dφ

15.7. Combining two models

This version of the formal integral is invoked by the option SECONDMODEL in the FORMAL_CARDS (see Sect. 9).
Concept is the combination of two models – the MODEL of the current chain in wrdatan, and a previously
calculated model that has been saved in the directory specified by the SECONDMODEL PATH option.

The formal integration now takes the population numbers, density and velocity from the second model in a
specified part of atmosphere’s volume, and from the current MODEL everywhere else.

15.7.1. Cone model

In this version, the second model is applied within a double-cone with (half) opening angle THETA=θ. The
inclination angle between the cone axis and the line-of-sight is INCLINATION=i, where i = 90◦ means the the
cone lies in the plane of the sky (cf. Sect. 9).

The combination of inclination and opening angle is slightly restricted: i and θ are not allowed to be equal, but
must differ by more then 0.1◦. Note that in case i > θ the observer sees the double-cone from the side, while
if i < θ the observer looks into the opening of the cone.

Figure 13: Distribution of rays in the plane of the sky for a rotating wind. In order to assure sufficient spectral
resolution and thus avoiding numerical artefacts, the number of impact-parameter points with p < 1
(“core rays”) is automatically increased. Azimuth-angle points φi are automatically defined in each
impact-parameter circle. Note that wind rotation does not break the symmetry between the upper
and the lower hemisphere.
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15.7. Combining two models

The two-model option can be combined with the wind-rotation option (cf. Sect. 15.6). In case of cone geome-
try, the cone axis is always assumed to lie in the (y, z) plane, and there is no option to turn the cone to the side.
If not combined with wind rotation, this is not restricting generality, but with rotation it is since the rotation
axis also lies in the same plane. Albeit not being general, this complies with the plausible assumption that the
cone axis and the rotation axis are identical.

The plane of the sky is spanned by the axes (x, y), and the observer looks along the z-axis from z = ∞. Now
it is necessary to distinguish between two cases, depending on whether the inclination angle i is greater or
smaller than the opening angle θ:

1. Ellipse case

θ

z

y

rmax

i

y0

zE1zE2

Figure 14: Cone geometry for the combination of two models: cut through the plane at x = 0 (note: the cone
axis lies in this plane). The observer looks from right (z→ ∞). The cone is inclined by the angle i
and has a half opening angle θ. The intersection with the plane y = y0 gives an ellipse with major
axis from zE1 to zE1 (thick blue line).

As obvious from Fig. 14, if i > θ the observer looks at the cone from the side. Any line-of-sight can cut
through the cone only once, entering the cone domain at some itersection point z1 < zE1 and leaving at
z2 > zE2. We have y0/zE1 = sin(i − θ) / cos(i − θ), and thus

zE1 = y0 cot(i − θ) (366)

zE2 = y0 cot(i + θ) (367)

Now we consider a cut through the cone in the plane y = y0 (Fig. 15), which gives an ellipse. Its major
axis lies on the x-axis; the center of the ellipse is at

zM =
1
2

(zE1 + zE2) (368)

The major semi-axis has the length
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zE1zE2 zM

a

b

z

x
rmax,y0

x0

z2 z1

zmax

Figure 15: Cone geometry for the combination of two models: cut through the plane at y = y0. The green
ellipse is the cut with the inclined cone. The observer looks from right (z → ∞). One specific
line-of-sight at x = x0 (red line) cuts the ellipse at z1 and z2.

a =
1
2

(zE1 − zE2) (369)

The minor semi-axis can be calculated from the opening angle and the inclination of the cone. For that
we need the numeric eccentricity, which is defined by

ϵ =
cos(i)
cos(θ)

. (370)

The numeric eccentricity is related to the linear eccentrizity by ϵ = e/a. The minor semi-axis is defined
through a2 = e2 + b2, so we get for the minor semi-axis

b = a
√

1 − ϵ2. (371)

The equation of the ellipse finally reads

(z − zM)2

a2 +
x2

b2 = 1 (372)

In order to calculate the intersection points z1 and z2 with the line-of-sight at x = x0, we have to insert
this value into Eq. (372) and solve this quadratic equation. Sorting the terms for powers of z gives:

(z − zM)2 +
a2 x2

0

b2 − a2 = 0 (373)

which results in

z2 − 2zM z + z2
M +

a2 x2
0

b2 − a2 = 0 (374)

The standard form z2 + pz + q = 0 has the solutions z1,2 = − p
2 ±

√
p2

4 − q. Here we have
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p = −2 zM (375)

q = z2
M +

a2 x2
0

b2 − a2 (376)

Hence the two solutions are

z1,2 = zM ±
√
term2 (377)

with

term2 = z2
M −

z2
M +

a2 x2
0

b2 − a2

 (378)

= a2 − a2 x2
0

b2 (379)

= a2 − x2
0

1 − ϵ2 (380)

z1 may not lie outside of the circle with radius rmax,y0 =

√
r2

max − y20 (cf. Fig. 15). Hence, the maximum
value of z is

zmax =

√
r2

max − x2
0 − y20 (381)

and thus

z1 = min[z1, zmax] (382)

z2 = max[z2,−zmax] (383)

Note that there is no solution for |x0| > b. Moreover, there is also no solution inside the sphere with
radius rmax if z2 > zmax, and also not if z1 < −zmax.

2. Hyperbola case
If i < θ the observer looks into the cone. In priciple, any line-of-sight starts from inside the cone domain,
leaves it at z2, and enters the second part of the double-cone at z3 and stays there till infinity (cf. Fig. 16).
Of course, the computed domain is restricted to the sphere with radius rmax, and the region behind the
stellar core is obscured.

ZE1, E2, ZM and a are the same as in the ellipse case (see previous item). However, the intersection line
of the cone with the x − z-plane any given y0 now gives a hyperbola with two branches (cf. Fig. 17).

A hyperbola is described by the equation

z2

a2 −
x2

b2 = 1. (384)

It is easy to see that the major axis is the same as the major axis of the ellipse. The semi axis is not the
same as the ellipcal semi axes. The semi axis b is perpendicular from the apex to the asymptoic slope of
the hyperbola. So we have again the linear eccentrizity

e2 = b2 + a2. (385)
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θ

z

y
r

max

i
y0

zE1 zE2

Figure 16: Cone geometry for the combination of two models: cut through the plane at x = 0 (note: the cone
axis lies in this plane). The observer looks from right (z → ∞). In the shown case, the cone
inclination i is smaller than the half opening angle θ, i.e. the observar looks into the cone.

Hence, we get with the numerical eccentrizity Eq. (370)

b = a
√
ϵ2 − 1 (386)

As following below, we get
(z − zM)2

a2 − x2

b2 = 1. (387)

To calculate the intersection points z2 and z3 with the line-of-sight at x = x0, we have to insert this value
into the Eq. (387) and solve this quadratic equation with the reduced quadratic equation. Hence we get

z2 − 2zzM + z2
M −

x2
0

b2 a2 − a2 = 0. (388)

The Variables for the reduced quadratic equation are

p = −2 zM (389)

q = z2
M −

x2
0

b2 a2 − a2. (390)

Hence the two solutions are
z2,3 = zM ±

√
term3 (391)

with

term3 = z2
M − z2

M +
x2

0

b2 a2 + a2 (392)

= a2 +
x2

0

ϵ2 − 1
(393)
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rmax,y0

z

x

z3 z2

zM

a
b

Figure 17: Cone geometry for the combination of two models: cut through the plane at y = y0. The green
hyperbolas are the cut with the inclined cone. The observer looks from right (z→ ∞). One specific
line-of-sight at x = x0 (red line) leaves the cone domain at z2 and enters the second part of the
double-cone again at z3.

The intervals (z1, z2) as well as (z1, z2) are clipped at the outer radius of the stellar atmosphere, rmax. For
a selected ray, zmax,y0 is defined by Eq. (381). As can be seen in Fig. 17), we have now two intervals,
which are defined by the maximum of the radius of the star, the intersection or and the core radius.
Hence we get

z1 = zmax

z2 = min[z2, zmax]

z3 = max[z3,−zmax]

z4 = −zmax

15.7.2. Sphere model

In this version, the second model is applied within a sphere that is located in the wind (or at least partially
overlapping). The motivation of such model is to describe the Stromgren sphere of an embedded X-ray source
in a High-Mass X-ray Binary.

The plane of the sky is spanned by the axes (x, y), and the observer looks along the z-axis from z = ∞. The
sphere and its location is specified by four mandatory parameters (cf. Sect. 9):

• RSPHERE=rsph, the radius of the sphere;
• DSPHERE=dsph, the radial distance of the sphere’s center from the origen;
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• DELTASPHERE=δsph, the sphere-center’s elevation angle above the (x, z) plane (cf. Fig. 18);
• ALPHASPHERE=αsph, the angle between the direction from the origin to the sphere center and the (y, z)

plane (cf. Fig. 19).

M

dsph

(x, z)

y

rmax

δsph

rsph
yM

Figure 18: Sphere geometry for the combination of two models: cut through the plane containing the y-axis
and the sphere center M.

M

z

x

rmax

αsph

rsph

dsph cos δsph

xM

zM

Figure 19: Sphere geometry for the combination of two models: projection into the (x, z)-plane
. If this geometrical configuration rotates around the y-axis, αsph grows with the phase.

As obvious from Figs. 18 and 19, the coordinates of the sphere center (xM, yM, zM) follow from the input
parameters as

xM = dsph cos δsph sinαsph (394)

yM = dsph sin δsph (395)

zM = dsph cos δsph cosαsph (396)

The two-model sphere geometry can be combined with the wind-rotation option (cf. Sect. 15.6). Since the
sphere center can be freely located, there is no restriction of generality.

With the above center coordinates, the equation of the sphere reads

148



15.7. Combining two models

(x − xM)2 + (y − yM)2 + (z − zM)2 = r2
sph (397)

Thus, for given ray with (x0, y0) we obtain a quadratic equation for the intersection points z1,2:

(z1,2 − zM)2 + (x0 − xM)2 + (y0 − yM)2 − r2
sph = 0 (398)

yielding

z2
1,2 − 2 z1,2 zM + z2

M + (x0 − xM)2 + (y0 − yM)2 − r2
sph = 0 (399)

The standard form z2 + pz + q = 0 has the solutions z1,2 = − p
2 ±

√
p2

4 − q. Here we have

p = −2 zM (400)

q = z2
M + (x0 − xM)2 + (y0 − yM)2 − r2

sph (401)

Hence the two solutions are

z1,2 = zM ±
√
term2 (402)

with

term2 = r2
sph − (x0 − xM)2 − (y0 − yM)2 (403)

Obviously, there is no intersection if r2
sph − (x0 − xM)2 − (y0 − yM)2 < 0

Moreover, the intersection points may not lie outside of the atmosphere domain (cf. Eq. 381), i.e.

zmax =

√
r2

max − x2
0 − y20 (404)

and thus

z1 = min[z1, zmax] (405)

z2 = max[z2,−zmax] (406)

Note that there is also no solution inside the sphere with radius rmax if z2 > zmax, and also not if z1 < −zmax.

15.7.3. Visualization

The secondmodel geometry is visualized by two plots, which are both kept in the scratch directory in which
the formal job has been executed, e.g. $USER/work/scratch/formaln:

• secondmodel.plot is a WRplot script showing the plane of the sky as seen from the observer (cf.
Figs. 20, 21).

• secondmodel.dat is a dataset that contains 3-D coordinates, and is to be viewed with the gnuplot-
script gnuplot ∼wrh/proc.dir/view-secondmodel.gplt (cf. Fig. 22). In the window opened by
gnuplot, the viewing direction can be turned with the mouse.
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Figure 20: Positions of the rays for which the emergent intensities are calculated. Shown is the plane of the
sky with spherical coordinates p (impact parameter) and azimuth-angle φ. Red dots mark rays
which intersect with the second-model domain, while blue dots mark those which don’t. The
concentric circles correspond to the impact-parameter grid. The red dots are concentrated in the
domain of the second model according to its specified geometry. In this example, the second-model
domain is specified as SHAPE=SPHERE in a distance of DSPHERE=2 from the center and a radius of
RSPHERE=1. The position angle is chosen as DELTA=45 degrees. The angle ALPHA=135 degrees is
larger than 90◦, i.e. the second-model domain lies in the back hemisphere and therefore is partially
obscured bu the stellar disk. For better representation, the wind was cut off beyond 3.5 R∗ with
NOWIND RADIUS=3.5 as option in FORMAL_CARDS.

15.7.4. Implementation details

In the main program FORMAL, the MODEL file is read by the subroutine FORMOSA. In case of requesting a second
model, FORMOSA is called a second time, and all model quantities are stored in arrays with an additional
dimension for the model index IMOD=2.

Each of the two models have their own radius grid, which is optimized for the respective model. The CMF
radiative transfer calculation is performed by subroutine FORMCMF for each of the models on its respective grid,
and provides the contribution to the emissivity due to electron-scattering redistribution.

In order to combine two models for formal intergration, the opacities and emissivities now must be provided
on a common geometrical grid. Here it turned out to be important that the “merged” grid is suitable for both
models to be combined. The subroutine MERGE_RGRID combines the radius points such that their density
follows everywhere the higher density of both original grids. This procedure leads to a moderate increase in
the number of depth points (as reported in the cpr file). Subsequently, also the impact-parameter grid and the
z-grid is established according to the new, merged radius grid. – Note that the “core rays”, i.e. the impact-
parameter points, might have been increased already before because of wind rotation if requested.

With the merged radius grid established, all opacities, emissivities, nd some further arrays are interpolated onto
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Figure 21: Same as Fig. 20, but in this example the second-model domain is specified as SHAPE=CONE with
an inclination angle CONEI=10 and opening half-angle THETA=40 [degrees]. In the cone case with
i < θ (the “hyperbola case”), the red dots mark rays which intersect with the front part of the
double-cone, while black crosses denote rays intersecting with the back part; red dots with croses
on top are rays which cut through both parts. Moreover, the calculation includes wind-rotation with
VSINI=300 [km/s] which causes additional impact-parameter and angle-points (cf. Fig. 13). For
better representation, the wind was cut off beyond 3.0 R∗ with NOWIND RADIUS=3.0 as option in
FORMAL_CARDS.

that grid. The intersection points of all rays with the domain of the second model are calculated as described
in Sect. 15.7. Then the integration along each ray is performed for each frequency, taking the opacities,
emissivities and line profiles from the 1st or the 2nd model, respectively, acording to the domain where the
current integration step is located.

The inclusion of a second model breaks the rotational symmetry (as does the wind rotation if requested).
Hence, the intensities must now be calculated for several azimuthal angles φ (cf. Fig. 20 or Fig. 21) and finally
integrated over those angles. Hence, the computational effort increases significantly, possibly by a factor of
∼20 ! (The average number of φ angles is reported in the cpr-file.) Therefore, one should consider to restrict
such calculations to the necessary wavelenth range(s).

The use of a SECONDMODEL is prepared in SUBROUTINE SECONDMODEL_PREP. For each ray (characterized
by the impact-parameter index JP and the phi-point index LPHI) the points where the ray enters or exits the
second-model domain (i.e. z1, z2, z3, z4) are calculated and stored in the array ZINTER(i, JP, LPHI), where
the first index is 1, 2, 3, or 4. If a ray does not enter the second-model domain, z1 = z2 = .0 or z1 = z2 = .0,
respectively. When the integration along a specific ray is finally performed in SUBROUTINE ZONEINT, it is
checked at each (fine) integration step: if the quadrature point lies in one of the intervalls (z1, z2) or (z3, z4),
this point belongs to the SECONDMODEL domain.
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15. Formal Integral: radiative transfer in the observer’s frame

Figure 22: Example of gnuplot ∼/proc.dir/view-secondmodel.gplt, which visualizes those parts of
the rays that fall into the domain of the second model.

15.8. Program Structure

The input file FORMAL_CARDS has a double nature. Various commands specify some setting (e.g. ALLBROADENING);
such settings overwrite their default and stay valid until being revised. In the program, these input lines are
sequentially decoded by the subroutine DECFORM.

The bulk of lines in FORMAL_CARDS, however, contain atomic data. Usually, these data have been assembled
with the help of the newformal_cards tool (see Sect. 6.2). For each spectral range (specified by a RANGE
command in NEWFORMAL_CARDS_INPUT), the atomic data for all spectral lines in that range are bracketed
between BLEND and -BLEND.

When subroutine DECFORM encounters the beginning of such BLEND block, reading continues by subroutine
PREFORM. Here, the LINE and MULTIPLET data are decoded, the latter with the help by subroutine MULTIPLE
which eventuelly appends additional SUBLEVEL population numbers to the POPNUM array.

After the -BLEND mark has been reached, the code returns to the main program FORMAL and performs the
spectrum synthesis calculations for that range, especially creating the output and plot files for that range.

Subsequently, DECFORM continues to read the input from FORMAL_CARDS, eventually encountering another
BLEND block, and so one. Thus, the program FORMAL works progressively through the spectral ranges.

1 DATOM
2 FEDAT

1 FORMOSA
1 POPMIN_NULLING
1 PRI_PAR
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15.8. Program Structure

1 DECFORM

1 VDOP_STRUCT

1 ROTATION_PREP
1 PLOT_WINDROT_GRID

1 SECONDMODEL_PREP
2 PLOT_SECONDMODEL_GRID
1 COPY_SECONDMODEL
1 PREPMACROCLUMP
1 MANIPOP
1 SET_POP_ZERO

1 PREFORM
1 LIOP

1 COOP
1 PRIOPAL

1 FORMCMF
2 CMFFEOP
2 COOP
2 ELIMIN
2 BACKJC
2 CONVOLOPAFE

1 RESCALE_SECMOD

1 STARKBROAD
1 LIMB_INFO
1 PRIDWL

1 PREPRAY
1 OBSFRAM
2 ZONEINT
1 TRAPLO
1 TRADWL
1 PRIPRO
1 PLOTVDOP
1 PLOTLIMB
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15. Formal Integral: radiative transfer in the observer’s frame

Start

DATOM
FORMOSA

Loop for each range (BLEND-block)
DECFORM

VDOP_STRUCT
ROTATION_PREP

SECONDMODEL_PREP
PREPMACROCLUMP

MANIPOP
SET_POP_ZERO

PREFORM
LIOP (for each line)

Option: print cont. opacities:
COOP, PRIOPAL

FORMCMF

If combining two models:
RESCALE_SECMOD

STARKBROAD

Loop over all rays:
PREPRAY
OBSFRAM
  ZONEINT

Output options
TRAPLO
TRADWL
PRIPRO

PLOTVDOP
PLOTLIMB

Stop

Figure 23: Flowchart of the program FORMAL
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16. Atomic transitions

Atomic data enter the radiative transfer (via opacities and emissivities) and the rate equations (via the rate
matrix). The atomic data are taken from the followind input files: DATOM (see Sect. 2.4), FEDAT (for iron-
group superlevel atoms, see Sect. 16.8.1), and FORMAL_CARDS (see Sect. 9).

In the followowing sections we describe the different atmoc transition processes between explicitely treated
non-LTE levels. The superlevel approach as employed for the “generic” iron-group elemement is outlines in
Sect. 16.8.1.

16.1. Collisional bound-bound transitions

16.1.1. Introduction

Collisional transition rates Ri j depend on the collisional rate coefficiens Ci j:

Rlu = nl Clu and Rul = nu Cul (407)

PoWR only accounts for collisions with electrons. Therefore,

Ci j = ne Ωi j (408)

where Ωlu is called the collision strength.

As the electrons are assumed to have a Maxwellian distribution, collisions alone would establish LTE. In LTE,
detailed balance must hold; therefore,

Ωlu = Ωul

(
nu

nl

)∗
(409)

In this notation (from Mihalas),
(

nu
nl

)∗
=

(
gu
gl

)
e−

E
kT denotes the LTE population number ratio, i.e. the Boltzmann

factor.

The number of collisions between an electron and an ion depends on the electron’s speed v and the ion’s cross
section Qlu. The Maxwellian distribution of the velocities is

w(v) =
4√
π v3th

v2 exp


v2

v2th

 (410)

with the thermal velocity

vth =

√
2kT
m

(411)

The collision strength is an integral over all collisions of sufficiently high velocity v0 (kinetic energy greater
than the bound-bound energy difference hν):

Ωlu =

∫ ∞

v0

Qlu(v) v w(v) dv (412)

Qlu is in general a function of the velocity v. Ωi j is a function of the electron temperature T . But even for
constant Qlu, Ω becomes a function of T .

For very few transitions, we can use Ω(T ) from quantum mechanical calculation.

For allowed (dipole) transitions, there are approximate formulas which relate the collision strength to the
radiative probability of that transition (i.e. to the oscillator strength flu or the Einstein coefficient Aul.

For forbidden transitions, such relations cannot be applied.

155



16. Atomic transitions

16.1.2. Specification of the collisional bound-bound data

The file DATOM contains a line for each line transition, starting with the keyword LINE, e.g.:

*KEYWORD--UPPERLEVEL LOWERLEVEL--EINSTEIN RUD-CEY --COLLISIONAL COEFFICIENTS--
LINE HEI 2S3..2 HEI 1S1..1 1.1300E-4 X BFK1 +7.0E-7 -4.E-13
LINE N 32P2P4.2 N III2P2.1 2.65E2 KB24 1.0
LINE N V 3S...3 N V 2S...1 X FCMW 0.0398 0.005220.429 1.047
LINE N V 4S...6 N V 3P...4-0.071 KB22 0.2

Subroutine DATOM reads these lines.

Subroutine COLLI first calculates the effective collision strength Ωul. This is done either in COLLI or in one
of its subroutines CBBH (for hydrogen), CBBHE (for helium), CBBN (for nitrogen), or CBBMORE (for all
other elements). The subroutine CBBFE is special for generic iron, which is not described in the DATOM file,
but by the binary file FEDAT.

Finally, Subr. COLLI calculates

Cul = ne Ωul (413)

and with help of detailed balance:

Clu = Cul

(
nu

nl

)∗
(414)

16.1.3. Formulas for collisional bound-bound collision strengths

16.1.3.1. Zero crossection Keyword: ZERO
Subroutine: COLLI

Ωul = 0 (415)

Usage: not used (only for tests)

16.1.3.2. Neutral atoms Keyword:
(empty) for hydrogen
JEFF for helium

Subroutine:
CBBH (hydrogen)
CBBHE (helium)

Source: Jefferies (1968), Eq. (6.24):

Ωlu = 2.16 α−1.68 e−α T−3/2 flu (416)

converted to:

Ωul = 3.24
(
hc/kB

λTe

)−1.68

T−3/2
e

Aul

λ−2 (417)

with hc/kB = C1 = 1.44 in cgs→

OMEGA=3.24*EINST(NUP,LOW)/WN2/T32/(C1*WAVENUM/TL)**1.68

Usage: permitted transitions in neutral atoms, i.e. H i, He i
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16.1. Collisional bound-bound transitions

16.1.3.3. Neutral helium, forbidden (1) Keyword: BFK1 and BFK2
Subroutine: CBBHE

Source: Berrington, Fon & Kingston 1982, MNRAS 200, 347 Berrington et al. (1982)

BFK1:

PBFK=COCO(1,IND)/TROOT
+ +COCO(2,IND)+COCO(3,IND)*TROOT
+ +COCO(4,IND)*T32

BFK2:

PBFK=COCO(1,IND)/TL
+ +COCO(2,IND)/TROOT+COCO(3,IND)
+ +COCO(4,IND)*TL

OMEGA=PBFK*WEIGHT(LOW)/WEIGHT(NUP)

Usage: He i forbidden transitions between n = 2, n = 1 or within n = 2

16.1.3.4. Neutral helium, forbidden (2) Keyword: BKMS or BKGR (are equivalent)
Subroutine: CBBHE

Source: Benson & Kulander 1972, Solar physics 27, 305 (formula 3)Benson & Kulander (1972), there in
references to Mihalas & Stone 1968 Mihalas & Stone (1968)
Green, A.E.S. 1966, AIAA, J. 4, 769

Ωlu = AT n exp(−αX0) (418)

X0 = E0/kT (419)

C*** ATTENTION: COCO(3,IND) := 1.-ALPHA
OMEGA=COCO(1,IND)*TL**COCO(2,IND)*

* EXP(COCO(3,IND)*C1*WAVENUM/TL)*WEIGHT(LOW)/
/ WEIGHT(NUP)

Usage: forbidden transitions between n > 2, n = 1 or n > 3, n , 1

16.1.3.5. Neutral helium, forbidden (3) Keyword: UPS1, UPS2
Subroutine: CBBHE

Source: Formula from Mendoza (1983) ???, Υ from Schmutz priv. comm., see Diss. Wessolowski

Ωul = 8.63 10−6 Υ

gu
√

T
(420)

with:
Υ = 0.05 for keyword UPS1 (for ∆n = 1)
Υ = 1.00 for keyword UPS2 (for ∆n = 0)

Usage: He i intercombination (forbidden) transitions between combined levels (traditional DATOM: n ≥ 4)
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16. Atomic transitions

16.1.3.6. Positive ions, allowed transitions (1) Keyword: blank (helium), JEFF (nitrogen)
Subroutine: CBBHE, CBBN

Source: Jefferies (1968), Eq. (6.25), following van Regemorter

Ωlu = 3.9 α−1 e−α T−3/2 flu (421)

with α = E/kBT . Using the Einstein coefficient

Aul =
8π
λ2

gl

gu

πe2

mc
flu (422)

which, in cgs units, reads

flu = 1.499
(
λ

cm

)2 gu

gl
Aul (423)

We convert this with help of detailed balance into

Ωul = 4.06
(
λ

cm

)3
Alu T−1/2 (424)

OMEGA=4.06*EINST(NUP,LOW)/WN3/TROOT

16.1.3.7. Positive ions, allowed transitions (2) Keyword: KB22
Subroutine: CBBN
Source: Diss. Wessolowski, van Regemorter (1962, APJ 136, 906)

Ωlu = π a2
0

√
8kB

πm

√
T

[
14.5 flu

(EH

hν

)2]
u0 e−u0 Γ(u0) (425)

with u0 = hν/kBT , Γ(u0) = max
[
g, 0.276 eu0 E1(u0)

]
.

E1 is the first Exponential Integral, defined as

E1(x) =
∫ ∞

1

e−xt

t
dt (426)

g = 0.7 is a parameter of this formula, and should be set to:

g = 0.7 for ∆n = 0

and g = 0.2 else.

π a2
0

√
8kB

πm
= 5.465 10−11 (427)

in cgs.

With help of Einstein coefficients, we convert this into:

Ωul = 20.56 Γ(u0) Aul

(
λ

cm

)3
/
√

T (428)

OMEGA=20.56*GAMMA*EINST(NUP,LOW)/WN3/TROOT

Usage: allowed transitions of positive ions
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16.1. Collisional bound-bound transitions

16.1.3.8. Positive ions, forbidden transitions Keyword: KB24
Subroutine: CBBN

same formula as in section (16.1.3.5), but with Υ as parameter. This parameter is always set to 1.0.

16.1.3.9. N iii, calculations from D. Hummer Keyword: KB23
Subroutine: CBBN
Source: calculations from Hummer (priv. comm.), polynomial fit from Butler 1984, Diss. Wessolowski
Polynomial coefficients are in DATA statements within the subroutine, the parameter gives some index to
identify the transition.

Ωul =
1√
T

N=7∑

i=1

ai

(
log(

T
104 K

)
)i−1

(429)

16.1.3.10. N V, calculations Keyword: ACMW, FCMW
Subroutine: CBBN
Usage: for allowed (ACMW) or forbidden (FCMW) transitions between n = 2 and n = 3
Source: COCHRANE +MCWHIRTER (1983), PHYSICA SCRIPTA 28, 25-44
Fit formula with three (ACMW) or four (FCMW) coefficients given as parameters. For the allowed transitions
the cross section is related to the Einstein coefficient.

ACMW:

GFIT=COCO(1,IND)+COCO(2,IND)*ALOG(TL/WAVENUM/C1+
+ COCO(3,IND))

OMEGA=20.56*GFIT*EINST(NUP,LOW)/WN3/TROOT

FCMW:

GFFIT=COCO(1,IND)+COCO(2,IND)*ALOG((TL/WAVENUM/C1+
+ COCO(3,IND))/(TL/WAVENUM/C1+COCO(4,IND)))

OMEGA=13.71/WAVENUM/TROOT*GFFIT*WEIGHT(LOW)/WEIGHT(NUP)

16.1.3.11. Bohr’s radius Keyword: NONE

Subroutine: COLLI

Q(v) ≡ πa2
0 = 8.8 10−17 cm2 (430)

leading to the effective collision strength

Ωul = πa2
0

√
8kBT
πm

(
1 +

E0

kBT

)
gl

gu
(431)

OMEGA=5.465E-11*TROOT*(1.+C1*WAVENUM/TL)*WEIGHT(LOW)/WEIGHT(NUP)

Source: lecture wrh, diss. Wessolowski

Usage in our traditional DATOM:

He i intercombination transitions transitions (singulet – triplet), if no other data known

N iii intercombination transitions transitions (doublet – quartet), if no other data known

N v for forbidden transitions with ∆n , 1 and ∆L , 1
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16. Atomic transitions

16.1.4. Summary of Subroutines and keywords

Subroutine Keyword Ion Comment
COLLI ZERO all Ω = 0

NONE all Bohr’s radius
CBBH blank H i Jefferies 6.24, allowed
CBBHE JEFF He i Jefferies 6.24, allowed

BFK1 He i forbidden, special data
BFK2 He i forbidden, special data
BKMS He i forbidden, special data
BKGR He i forbidden, special data
UPS0 Ω = 0 (obsolete)
UPS1 He i forbidden, Υ = 0.05
UPS2 He i forbidden, Υ = 1.0
blank He ii Jefferies 6.25, allowed

CBBN JEFF N Jefferies 6.25, allowed
KB22 N van Regemorter, allowed
KB24 N forbidden, like UPS2, Υ = 1.0 first parameter
KB23 N iii Hummer fits (calculations)
UPS0 N iv Ω = 0 (obsolete)
UPS1 N iv forbidden, like UPS2
ACMW N v allowed (calculations)
FCMW N v forbidden (calculations)

CBBMORE JEFF all others Jefferies 6.25, allowed
KB22 all others van Regemorter, allowed
KB24 N forbidden, like UPS2, Υ = 1.0 first parameter

CBBFE Superlines, van Regemorter

WARNING: Note that some keywords have different meaning, depending on the element for which they are
used!

16.1.5. Defaults and recommendations

Individually calculated data, when available, are extected to be more accurate than the general formulae.
However, the representation of Ω(T ) by fits is dangerous and sometimes giving nonesense! Note, that there is
a special PROGRAM PLOTCBB to visualize the collisional cross sections over temperature.

Among the general formulae, there is an unclear choice; different DATOM versions exist, e.g. for allowed
transitions of nitrogen:

JEFF (no parameter) or KB22 with parameter g = 0.7 (if ∆n = 0) or 0.2 (else),
and for the forbidden transitions of nitrogen:

NONE (Bohr’s radius) or KB24 with parameter 1.0

16.1.5.1. Defaults by program opdat
The opdat-program uses the following recipes:

Allowed transitions f ≥ 0.01
Formula from van Regemorter (1962):
CKEY = KB22
and the parameter:

• KB22 0.7 : if ∆n = 0
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16.2. Collisional bound-free transitions

• KB22 0.2 : else

Forbidden transitions f < 0.01
Set X for "rudimental", but not if one of the involved levels is the groundstate and its f-value is known.
Set CKEY and coefficient depending on the change of principle quantum number:

• if ∆n > 1 : CKEY = NONE (means: take Bohr’s radius, accounting for ∆E)

• if ∆n = 1 : KB24 0.05

• if ∆n = 0 : KB24 1.0

As there is no CBB formula for forbidden transitions of positive ions, we adopted (see N V memo from 2007)
the scheme from neutral He i. This scheme is from Wessolowski (1991), allegedly motivated by Mendoza
(1983). Note that Wessolowski (1991) had set CBB keyword for forbidden transitions of ions to “NONE”
(=Bohr’s radius).

16.1.6. PLOTCBB - a plotting tool

There exists a main program PLOTCBB for creating plots of Ωul versus the logarithm of temperature. There
is a job (similar to the steal job), see e.g. wrh/work/wrjobs/plotcbb1, which can be submitted in the usual
way (e.g. sub plotcbb1). The plots are based on the current DATOM and FEDAT files in the corresponding
wrdatan directory.

PLOTCBB can show Ωul for one or more line transitions of a given line index, or a range of line indices.
Consult the output from PRINT DATOM to figure out line indices.

The input of PLOTCBB consists of only one line, which must be edited inside the plotcbb1 jobfile. This line
must read
LINE n
or
LINE n - m
where n and m are the first and last line indices for which the data are plotted.

Note that WRplot is limited to show 100 datasets within one plot. To show more plots, insert a SET_NSETMAX
statement into the WRplot source file.

16.2. Collisional bound-free transitions

Calculated by COLLI, only one formula (!) does not depend on element (?, p. 121, Eq. 6.39):

Clc = 1.55 × 1013 gi a(0) e−αα−1ne√
T

(432)

with α = E/kBT and gi = 0.1, 0.2, 0.3 for Z = 1, 2, > 2, the charge of the upper ion. The collisional b-f
rate is related to a(0), the photo ionization cross section at the threshold Eth. We may rewrite the collision
strength for energy E in cm−1 with help of hc/kB = 1.44 cm grad, regarding, that our a(0) is given in Mbarn
(10−18 cm2):

Ωlc = 1.55 × 1013 gi a(0) e−hν/kBT

√
T

(
h c
kB

E
T

)−1

= 1.076 × 10−5 gi

√
T σth

e−E/kBT

Eth
(433)

Therefore in COLLI:

G=.3
IF (NCHARG(NUP) .EQ. 2) G=.2
IF (NCHARG(NUP) .EQ. 1) G=.1
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16. Atomic transitions

Calculation of Ω:

OMEGA=G*1.08E-5*TROOT*EINST(LOW,NUP)*EXPFAC/EDGE
CRATE(LOW,NUP)=ENE*OMEGA
CRATE(NUP,LOW)=ENE*OMEGA*ENLTE(LOW)/ENLTE(NUP)

where EINST(LOW,NUP) is SIGMA, the first parameter of the CONTINUUM card.

16.3. Radiative line transitions

Main program COLI provides the scattering integral J̄L, defined as

J̄L =

∫

line
Jν ϕ(ν) dν (434)

for each line, where ϕ(ν) is the profile function (see Sect. ??). Each vector J̄L (over depth index) is stored
in the model file under the name XJLnnnn, where nnnn is the line index. Main program STEAL reads these
vectors for calculating the rate coefficients.

However, for those lines treated as rudimental (see ... ...), J̄L is not provided by COLI. For these lines, it is
assumed that J̄L = JC(νL), i.e. equal to the continuum intensity at the line frequency. JC(νL) is obtained by
interpolation in the array of continuum intensities. The interpolation is done in terms of radiation temperature
(subroutine XRUDI).

This approximation should be critically reconsidered!!
The rate coefficients are defined by

Rlu = Blu J̄L (435)

and

Rul = Aul + Bul J̄L (436)

Remember that the Einstein coefficients are related via

Aul =
2hν3L

c2 Bul and gl Blu = gu Bul (437)

The PoWR code makes use of the Einstein coefficient Aul, stored in the array EINST. Hence the radiative line
rates are

Rlu =
c2

2hν3L

gu

gl
Aul J̄L (438)

Rul = Aul +
gl

gu
Rlu

The above formulation of the rates is implemented in subroutine RADIO (calling tree: STEAL - POPZERO
- NLTEPOP - RADIO). This branch is only used when all ALO-Gammas are zero, because than the rate
equations can be kept entirely linear.

Otherwise, the rate coefficients are calculated in subroutine RADNET (Calling tree: STEAL - LINPOP -
COMA - RADNET. Because with ALOs the rate equations are non-linear anyhow, Net Radiative Brackets
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16.4. Radiative bound-free transitions

(NRBs) are employed for all line transitions which have a non-zero line core, i.e. lines for which the approx-
imate lambda operator is zero. (For all other lines, the rates are calculated as described above.) Superline
transitions always go through the NRB branch.

The NRB notation was proposed by Mihalas to achieve a better stability for optically thick transitions, by
expressing the rate in terms of the ratio between intensity and source function.

In the rate equation one can group pairs of terms, referring to the transition u → l und the contrary transition
l→ u,

nu Rul − nl Rlu (439)

Such pair is now re-written as
nu (Rul − nl

nu
Rlu) (440)

The term in brackets (the “Net Radiative Bracket”) is now expressed with help of the non-LTE source function.
First we insert Eqns. 438 and factor out the common Aul:

Aul

1 + JL
c2

2hν3L

(
1 − gu nl

gl nu

) (441)

Comparison with the non-LTE line source function,

S L =
2hν3L

c2

nu
gu
gl

nl − nu
=

2hν3L
c2

[
gu nl

gl nu
− 1

]−1

(442)

reveals that the NRB can be written as

Aul

(
1 − JL

S L

)
(443)

Hence, the rate equation is recovered by defining new rate coefficients as

Rlu = 0

Rul = Aul

(
1 − JL

S L

)
(444)

Note that the source function S L depends on the population numbers ni. Hence, albeit Eq. 444 looks simple, it
implies that the coefficients of the rate equations now themselves depend on the unknown variables ni, i.e. the
equations are no longer linear.

16.4. Radiative bound-free transitions

Data for radiative continuum transitions (photoionization and recombination) are given explicitly in DATOM,
e.g.:

*KEYWORD LOWERLEVEL ----SIGMA ----ALPHA --SEXPO-- -IGAUNT- -KEYCBF- --IONLEV--
CONTINUUM C IV 2S..1 .652 1.539 2.168
CONTINUUM C 33P3DP23 0.9675 2.0510 -0.25922 PIKB12 C IV 2P.21

-4.7573E-2 0. 0.
CONTINUUM N 43S’P114 0.905 1.6816 -0.12313 BUTLER12 N V 2P...2
CONTINUUM N 34S’P431 1.134 1.5014 10. DETAILN3 N IV 2P3.2
CONTINUUM H I......1 7.92 MIHALAS
CONTINUUM H I......2 15.84 2. SEATON
CONTINUUM HEI 1S1..1 7.43 4.3965 -0.22134 KOESTER
CONTINUUM NE7s2 1S01 2.90E-01
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16. Atomic transitions

Despite the parameters and keywords for the formulas there is also the possibility to give the target level of
the upper ion as the last parameter (IONLEV), otherwise the ground state of the upper ion is the target state.

These cards are read in by DATOM and the cross sections are then calculated by PHOTOCS, which is called by
BFCROSS (preparation of b-f cross sections in array SIGMAKI, loop over continua and frequencies),
COOP (continuous opacities for all depth points, loop over continua and frequencies, if SIGMAKI not yet calcu-
lated),
and CMFCOOP (optimized version of COOP).

These subroutines calculate only the continuum opacity. To get the rates, the subroutine RADIO (linear) calcu-
lates the rate coefficients

Rlu = 4π
∫ ∞

ν0

σν
Jν
hν

dν (445)

and from detailed balance (LTE), where Jν = Bν and therefore Rul
Rlu
=

(
nl
nu

)∗
we obtain:

Rul = 4π
(

nl

nu

)∗ ∫ ∞

ν0

σν
hν

(
2hν3

c2 + Jν

)
exp

(
− hν

kBT

)
dν (446)

Or, analogously, the subroutine RADNET calculates the rate coefficients with help of net radiative brackets,
where Zul := Rul − nl

nu
Rlu and Zlu = 0:

Zul = 4π
(

nl

nu

)∗ ∫ ∞

ν0

σν
hν

exp
(
− hν

kBT

)
2hν3

c2

(
1 − Jν

S lu
ν

)
dν (447)

where

S lu =
2hν3

c2

1
1

Gν
nl
nu
− 1

(448)

and Gν =
gl

gu
exp

{
h(ν0 − ν

kBT

}
nec3T−3/2 ( cf. Saha Eq.) (449)

Following quantities are prepared within in PHOTOCS for every cross section frequency point:

X=EDGE/WAVENUM
XINV=1./X

All formulas are in a form, that for νth ≡ ν0 the cross section σth ≡ σ0 is given (keyword SIGMA in file DATOM).
The unit of σ is always Mbarn (10−18 cm2 = 10−22 m2).

PHOTOCS then sets all cross sections with σ < 0 or σ > 10 × σ0 to zero, in the last case, a warning is
printed out:

WRITE (0,*) ’WARNING : VERY HIGH PHOTOIONISATION CROSS ’,
> ’SECTION DETECTED; SET TO ZERO’

16.4.1. Detailed OP photoionization cross sections, e.g. C ii

Radiative bound-free cross sections σ(ν) can have a complicated ν dependence due to resonances or dielec-
tronic recombination (cf. Fig. 24).
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2
s2

p
3
P

o

2
s2

p
1
P

o

C II 2s
2
2p

2
P

o

0

2

4

6

8

10

1.0 1.2 1.4 1.6 1.8 2.0

 Eγ  / Eth

 σ
 /

 M
b

Figure 24: Opacity project photo cross section for C ii, summed up
over all target states

C ii C iii E(C iii)/Ry

2s2 2p 2Po 2s2 1S 0.0
2s 2p2 4P 2s 2p 3Po 0.477

2s 2p 1Po 0.940

In Fig. (25) are shown resonances for the 2s2p2 2S and 2s2p2 2D state. As the transition 2s2p2+hν→ 2s2+e
is forbidden, due to two-electron jump, one has to include interactions with other configurations, e.g.
2s2p2 + hν→ 2s2p(3Po)nℓ → 2s2 + e

Now, the problem is raised, how to treat such resonances within the code. Usually a fitting formula, smoothing
over these resonances is used, which should at least recover the integral

∫
σνdν. A more detailed treatment

is possible for the Low Temperature Dielectronic Recombination (LTDR, see below). However, the treatment
of the sharp resonances within the radiative transfer equation remains unclear (e.g. what is width of these
“spikes”) and is not consistent.

In the following the fit formulas for photoionization cross sections from various sources is presented.

16.4.2. Formulas for the bound-free photo cross sections

16.4.2.1. Kramers formula - Hydrogenic cross section Keyword: blank
Parameters: σ0
Source: Kramers (1923), Cowan (1981):

Q
p
n ≡ Qn,ϵ ≃

64παa2
0n

33/2Z2
c

(
ϵn
ϵ

)3
= 7.91 × 10−18 cm2 n

Z2
c

(
ϵn
ϵ

)3
(450)

where ϵn = Z2
c /n

2 is the threshold ionization energy for the shell n, Zc = Z − N + 1 (N is total number
of electrons, including the free electron, so that V(r)Coulomb ≃ −2Zc/r ), and α = e2/ℏc the fine-structure
constant. This is only an approximation (even for non-relativistic one-electron atoms), the accurate Q

p
n varies

as ϵ−8/3 to ϵ−7/2 (Cowan 1981).

The cross section σ0 at the threshold (ν/ν0)−3 = 1 for any level with energy E w.r.t. the ground state of the
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Figure 25: Photoionization cross section (total) for C ii 2s 2p2 2D. The ground state of C iii can only be reached
by the intermediate auto-ionization state 2s 2p( 3P0)3d 2F0. For higher photon energies also other
configurations of C iii can be target levels, depending on which electron was removed (different
spins and mℓ). The OP photoionization cross section is the sum of the photoionization cross sections
for all individual transitions from the given level of the lower ion to the different target levels.

lower ion can be roughly estimated from the formula:

σ0 =
4.541 × 108 Mbarn

(z − N + 1)
√

(Eion − E) c
(451)

=
2.623 × 103 Mbarn

(z − N + 1)
√

(Eion − E)
(452)

with ion charge z − N (e.g. z − N = 0 for He i), the threshold energy (Eion − E) in cm−1 and the speed of light
c in cm s−1 (Dissertation U. Wessolowski, Wiese, Götz).

Example:
CONTINUUM NE7s2 1S01 2.90E-01

16.4.2.2. Seaton fit-formula Keyword: blank
Parameters: σ0, α, s
Source: Seaton (1958) This formula is used to fit the slope of detailed cross sections:

σ(ν) = σ0

(
α
(
ν0
ν

)s
+ (1 − α)

(
ν0
ν

)s+1
)

(453)

Example:
*KEYWORD LOWERLEVEL ----SIGMA ----ALPHA --SEXPO-- -IGAUNT- -KEYCBF- --IONLEV--
CONTINUUM N V 2S...1 0.5 1.5 2.3
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16.4. Radiative bound-free transitions

16.4.2.3. Koester fit for He i Keyword: KOESTER
Parameters:a0, a1, a2
Source: Koester et al. (1985), fit formula for calculations from Jacobs (1971, 1972, 1974) and Stewart (1978,
1979)

ln gσ = a0 + a1 ln λ + a2(ln λ)2 (454)

with statistical weights g, coefficients a0, a1, a2 in Koester et al. (1985) are for λ in Å and σ in cm2. This may
be transformed to

σ =
exp(a0)
g
λa1 exp(a2(ln λ)2) (455)

By dividing through σ0 =
exp(a0)
g λ

a1
0 exp(a2(ln λ0)2) one obtains:

σ = σ0

(
λ

λ0

)a1

exp[a2(ln2 λ − ln2 λ0)] (456)

The coefficients are identified as follows: SIGMATH = f (a0), ALPHA = a1, SEXPO = a2, where f (a0) absorbs
some constants, so, that in the program

X=EDGE/WAVENUM
XLN=ALOG(1.E8/WAVENUM)
XLN2=XLN*XLN
X0LN=ALOG(1.E8/EDGE)
X0LN2=X0LN*X0LN
SIGMA=SIGMATH*X**ALPHA(KON)*EXP(SEXPO(KON)*(XLN2-X0LN2))

Example:
CONTINUUM HEI 1S1..1 7.43 4.3965 -0.22134 KOESTER

16.4.2.4. Butler, modified Seaton fit for N iv Keyword: BUTLER12
Parameters: σ0, α, s
Source: Butler (priv. comm.) gives modified fit formula

σ = σ0

(
ν0
ν

)α+s∗ln(ν0/ν)
(457)

SIGMA=SIGMATH*X**(ALPHA(KON)+SEXPO(KON)*ALOG(X))

Example:
CONTINUUM N IV 2S1.1 0.967 1.5013 -0.27972 BUTLER12

16.4.2.5. Butler, extended version of Butler12 Keyword: DETAILN3
Parameters: σ0, α, s, a3, a4, a5, a6
Function: PHOTON3
Source: Butler (priv. comm.), the formula is half coded in the function photon3.f and half in subroutine
PHOTOCS. In PHOTOCS the parameter s is only used as index for the function PHOTON3. If s = [4; 6], the cross
section is set to zero for ν0ν ≤ 0.05 (λ ≤ 30 Å).

σ = σ0

(
ν0
ν

)α+Σ
(458)

function photon3: Σ =
6∑

i=3

ai

(
ln
ν0
ν

)i−2
(459)
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16. Atomic transitions

Σ is calculated in photon3.f

XLN=ALOG(X)
PHOTON3=XLN*(AI(3,NO)+XLN*(AI(4,NO)+XLN*(AI(5,NO)+AI(6,NO)*XLN)))

Example:
*KEYWORD LOWERLEVEL ----SIGMA ----ALPHA --SEXPO-- -IGAUNT- -KEYCBF- --IONLEV--
CONTINUUM N 32P2P4.2 3.871 2.1302 1. DETAILN3 N IV 2P3.2

16.4.2.6. Obsolete PIKB12 Keyword: PIKB12
Parameters: σ0 (,α, s, a1, a2, a3)
Source: unknown, formula with x = ν0/ν

σ = σ0xα+ln x (s+ln x (a1+ln x (a2+ln xa3))) (460)

= σ0 exp
(
α ln x + s(ln x)2 + a1(ln x)3 + a2(ln x)4 + a3(ln x)5

)
(461)

As this expression diverges for small x (high energies), the formula is replaced by the hydrogenic cross section
and a warning is printed out:
*** WARNING issued from PHOTOCS:
*** Obsolete Formula PIKB12 replaced by hydrogenic slope ***

Note: This formula works with a continuation line, containing three further coefficients. Therefore in sub-
routine DATOM the keyword PIKB12 signalized to read in another line and convert this into coefficients ADD1,
ADD2, ADD3, or ADDCON1(KONT), ADDCON2(KONT), ADDCON3(KONT) respectively.

Example:
CONTINUUM C 33S3PP13 0.4110 1.4742 -0.19453 PIKB12 C IV 2P.21

-1.4499E-2 0. 0.

16.4.2.7. OP fits Keyword: OPAPROIX

Parameters:σ0, α, s, a1
Source: unknown
Opacity project data fit (The lithium isoelectronic sequence; Peach, Saraph & Seaton 1988, J. Phys. B: At.
Mol. Opt. Phys. 21, 3669)

σ = σ0

(
ν

ν0

)α+s log(ν/ν0)+a1 log2(ν/ν0)

(462)

XLOG = ALOG10(XINV)
SIGMA = SIGMATH*XINV**(ALPHA(KON)+XLOG*(SEXPO(KON)+

+ XLOG*ADDCON1(KON)))

Note: Not used.

16.4.2.8. Mihalas Keyword: MIHALAS

Parameters: σ0 (, a0, a1, a2, a3, a−1, a−2, a−3 DATA in photocs)
Source: (Mihalas 1967, p. 187)
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16.5. K-shell ionization

Modification of Kramers formula with help of Gaunt factors, interpolation of Gaunt factors from threshold up
to 50 Å:

gII(n, x) = a0 + a1 x + a2 x2 + a3 x3 + a−1 x−1 + a−2 x−2 + a−3 x−3 (463)

IF (X .GT. 0.055) THEN
GAUNT=A0+X*(AM1+X*AM2)+(A1+(A2+A3*XINV)*XINV)*XINV

ELSE
GAUNT=1.

ENDIF
SIGMA=SIGMA*GAUNT

Example:
CONTINUUM HE II....1 1.981 MIHALAS
CONTINUUM H I......1 7.92 MIHALAS

16.4.2.9. Hydrogen-like levels – Keyword: SEATON

Parameters: σ0, s(= n)
Source: Seaton (1960)
Main quantum number n is stored in s:

g = 1 + 0.17238
(
ν

ν0
− 2

) (
ν0
ν n

)2/3
− 0.0496

([
ν

ν0
− 1

] (
ν

ν0
+

1
3

)
+ 1

) (
ν0
ν n

)4/3
(464)

U=XINV - 1.
DEN=(X/SEXPO(KON))**0.666666666666
GAUNT=1. + 0.1728 * (U-1.) * DEN -

- 0.0496 * (U*(U+1.333333333333)+1.) * DEN * DEN
SIGMA=SIGMA*GAUNT

Example:
CONTINUUM N V 4F...9 1.263 4. SEATON

16.4.2.10. Summary The different formulas which are implmented for the radiative bound-free transitions
are listed in Table 3.

16.4.2.11. Recommendation If available the exact OP cross sections should be fitted, e.g. with Seaton fit
formula. Due to the complex structure, this may be done manually and a smoothing of the curve should be
performed first. Furthermore, the integral

∫
σνdν should be recovered.

If no exact cross section is available, the hydrogenic approximation with effective quantum number for calcu-
lation of the threshold cross section is used, e.g. by the program opdat.

16.5. K-shell ionization

Despite ionization via removal of the outer (photo) electron, there is also the possibility of removing the inner
(K-shell, 1s-) electron via X-rays.

Analogously to PHOTOCS, the subroutine KSIGMA (called by COOP, CMFCOOP, COOPFRQ, DCOOP, RADIO, and
RADNET) calculates the K-shell cross section:

169



16. Atomic transitions

Table 3: Summary of the radiative bound-free formulas

Keyword Coefficients Ion Comment

blank σ0 all hydrogenic
blank σ0, α, s all Seaton fit
KOESTER f (a0), a1, a2 He i Koester fit to calculations
BUTLER12 σ0, α, s N iv Butler, priv. comm.
DETAILN3 σ0, α, s, + 3 N iii Butler, priv. comm., hard coded coeff.
PIKB12 σ0 C iii, ii replaced by hydrogenic cross section
OPAPROIX not used
MIHALAS σ0 H (n = 1), He ii (n = 1) gaunt factors coded in photocs
SEATON σ0, s = n H (n > 1), He ii (n > 1), N v for hydrogenic levels

X=EDGEK/WAVENUM
SIGMAK = SIGMATHK * 1.E-18 * X ** SEXPOK

Data for K-Shell cross section can be given optional in DATOM, e.g. old style with averaged opacities:

*KEYWORD--*****SY***<-K-SIGMA><-K-SEXPO>***<-K-EION->
K-SHELL C 1.0 2.50 2400000.
K-SHELL N 0.71 2.54 3333333.3
K-SHELL O 0.483 2.605 4928045.

or new style (~wrh/work/wrdata/DATOM.K-SHELL-by-ions) with data for every ion:

*KEYWORD--*****SY*I*<-K-SIGMA><-K-SEXPO>***<-K-EION->
K-SHELL C 1 0.742 2.47 291.EV
K-SHELL C 2 0.665 2.48 308.EV
K-SHELL C 3 0.807 2.49 329.EV
K-SHELL C 4 0.811 2.51 352.EV

With the cross section at the threshold K-SIGMA im Mbarn, the exponent of the fitting formula K-SEXPO and
the threshold energy K-EION, which can be given in cm−1 or by using the trailing EV in eV.

The exponent K-SEXPO is from Daltabuit & Cox (1972), energies and threshold cross section are taken from
Verner et al. (1993); Verner & Yakovlev (1995), e.g.:
C I: Z= 6, N= 6, K-SIGMA= 0.938 Mb, E_th= 291.0 eV
Note: The recent K-SIGMA are confused with the σ0 from Verner & Yakovlev (1995).
There, the fit formula is

σnl(E) = σ0F(E/E0) (465)

F(y) =
[
(y − 1)2 + y2w

]−Q (
1 +

√
y/ya

)−P
, (466)

where n is the principal quantum number of the shell, l = 0, 1, 2 is the subshell orbital quantum number, E is
the photon energy in eV, y = E/E0, Q = 5.5+ l− 0.5P; σ0, E0, yw, ya, and P are the fit parameters. It must be
point out that in this case, σ0 and E0 are not σth and Eth, respectively.

Note: If cross sections are not given for every ion explicitly, the same given mean data are used for every ion.

We assume that K-shell absorption is always followed by auto-ionization, e.g. Auger effect (inner photo ef-
fect):
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16.5. K-shell ionization

Seaton fit:

σth  = 0.5

α = 1.5

s = 2.3

∫ x=2

x=1 σdx :

OP              0.2405025

Seaton        0.2566341

Hydrogenic 0.2227412
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Figure 26: OP photo ionization cross section (blue dotted line) for N v ground state 1s22s 2S vs. Seaton fit
(green solid line) and Hydrogenic fit (red dashed line). Shown are also the values of the integrals
for the curves in the interval ν/νth = [1; 2]. Also identified are the threshold energies for the levels
of the upper ion N vi

.

Figure 27: (Ref.: Wikimedia commons)

Through Auger effect, one X-ray photon with energy above Eth
removes two electrons, therefore ionization stage changes by +2.
Auger-ionization needs at least 4 electrons. The competing pro-
cess, emission of an X-ray photon (X-ray fluorescence), is domi-
nant for heavy elements with Z > 33.
Note that the upper level of the Auger process should be the first
excited state (of the helium-like ion?). As for C v, N vi, O vii usu-
ally only the ground state is included in the model, the ground
level is taken instead.
If there are only 3 electrons or, in the case of more than three
electrons, the upper level is not included in the rate matrix, then
K-shell ionization occurs without Auger effect.

K-shell ionization with only two electrons is equivalent to normal photoionization.
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16. Atomic transitions

16.6. Dielectronic recombination

Close to the ionization threshold often exist doubly excited states, possibly with (positive) energies above the
ionization threshold. These states may be reached by absorption of a photon from lower ion or recombination
with an electron from upper ion. Then two competing processes are possible, either the excited atom makes
auto-ionization, thus an electron is ejected and an excited ion may be left, or a stabilizing transition back to the
ground state via photon emission occurs. This process is called Low Temperature Dielectronic Recombination
(LTDR).
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Figure 28: Grotrian diagram adopted from Leuenhagen & Hamann (1994) for C ii doublets with 2s2 singly
(left) and 2s 2p doubly (right) excited states. Triply excited states are indicated by 2p3. The levels
above the ionization threshold are considered to be in LTE with the C iii ground state. None of
these LTE levels can auto-ionize (to the C iii ground state 2s2 1S) without radiation, as the inner
n = 2 electrons have parallel spins: 1s2 2s2p(3Po). Therefore, their lifetimes are comparable to
normal levels and they can de-excite by a stabilizing line transition, e.g. 2s 2p 3d 2Do - 2s 2p 3p 2P
at 6100 Å.

By use of the DATOM entries for DRTRANSIT, e.g.:

*KEYWORD LOWERLEVEL UPPERLEVEL --G- --ENERGY-- -EINSTEIN- PARENT-ION RUD
DRTRANSIT C 22P4PP.2 C 23D4PP34 12 2193 -0.13830
DRTRANSIT C 22P4PP.2 C 24S4PP37 12 12931 -0.02158

we assume LTE for auto-ionization levels (upper levels) w.r.t. ground state of upper ion. Auto-ionization levels
are inserted in the rate matrix with rates of stabilizing lines with background radiation field (optically thin),
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16.6. Dielectronic recombination

mostly auto-ionization occurs within ≈ 10−14 s. Then due to energy-time uncertainty principle (Heisenberg)
there energies are unsharp, therefore no (sharp) lines must be considered in RTE.

However, there are exception for some levels (see e.g. Fig. 28), for which auto-ionization is prohibited by
selection rules, thus they also have sharp level energies. The assumption of optically thin lines may then
violate energy conservation, and the stabilizing lines must be treated in the RTE like normal lines (see Fig. 29).
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Figure 29: V348 with visible lines due to dielectronic recombination.

UNDER CONSTRUCTION:

Explanation:

Auto-ionizing levels should have a short life-time; therefore, their energies are supposedly unsharp (Heisen-
berg’s uncertainty principle), making the stabilizing lines much broader that normal spectral lines. For that
reason, by default we treat the stabilizing lines as rudimental lines, i.e. their opacities/emissivities are neglected
in the radiative transfer, and their radiative rates are calculated with the background radiation field.

However, this is not the full truth: certain doubly-excited states cannot decay easily because of selection rules,
albeit their energy lies above the ionization threshold. Then, the life-time of such states becomes “normal”,
and the stabilizing lines are as narrow as normal spectral lines (see above; note, however, that the calculation
of such stabilizing lines in the formal integral is completely independent from the MODEL calculation).

Therefore, one can specify in the CARDS file:

DRLINES ALL

meaning that ALL stabilizing transitions are treated in the radiative transfer like normal "narrow" lines.

If levels below the ionization threshold are included in the DRTRANSIT data, the corresponding levels are
presumably sharp, and the corresponding stabilizing lines are treated as narrow lines. However, the inclusion
of such levels is no longer default, and discouraged (see above).

There is also the CARDS option DRLINES NONE meaning that none of the stabilizing lines is treated as
being sharp. If levels below the ionization threshold are not included, as is now the recommended default,
DRLINES NONE has no effect compared to the default.

Future work: One could go through all DRTRANSIT data in our database, identify the terms of the auto-
ionizing levels, and figure out whether they can auto-ionize via any dipole transition. It is already foreseen
in the DRTRANSIT data line to mark explicitely stabilizing lines as rudimental by an X in the corresponding
column, or by NO if the upper levelis definitely sharp. Such entries would supersede the global DRLINES
setting.
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16. Atomic transitions

16.7. Radiative free-free transitions (Bremsstrahlung)

Interaction of free electrons with ions of charge Z where we assume a Maxwellian distribution of the mo-
mentums of the electrons (thermalization of the electron gas), i.e. free-free emission and free-free absorption
always in LTE (cf. script “Physik der Sternatmosphären”).

S ffν (ν) =
ηffν (ν)
κffν (ν)

= Bν(ν,T ) =
2hν3

c2

1

exp
(

hν
kBT

)
− 1

[ erg
cm2 Hz s sr

=
erg

cm2 sr

]
(467)

Due to the argument of detailed balancing, the opacity and emissivity are always (also in NLTE):

ηff(ν) = αff(ν,T,Z) ne nk
2hν3

c2 exp
(
− hν

kBT

) [ erg
cm3 Hz s sr

]
(468)

κff(ν) = αff(ν,T,Z) ne nk

[
1 − exp

(
− hν

kBT

)] [
1

cm

]
(469)

Note that Eq. (468) divided by Eq. (469) recovers the Planck function Eq. (467).

The cross section αff(ν,T,Z) · ne for the free-free absorption is proportional to ne and depends due to the
Maxwellian distribution of the electrons on T . nk denotes the population number of the ion k with charge Z.
In a semi-classic approach the free-free coefficient is a generalized from the Kramers formula

αff(ν,T,Z) =
4e6

0Z2

3ch

[
2π

3km3
e

]−1/2

T−1/2 ν−3 gff(ν,T, ne)
[
cm5

]
(470)

= 3.692 × 108 cm5 Z2
(T
K

)−1/2 (
ν

Hz

)−3
gff(ν,T, ne) (471)

= 1.370 × 10−23 cm5 Z2
(T
K

)−1/2 (
λ

cm

)3
gff(ν,T, ne) (472)

The free-free Gaunt factor gff describes the departure from Kramer’s theory. It is close to gff ≈ 1 in visible and
near ultra-violet spectrum. For radio waves the gaunt factor is (Chambe & Lantos 1971; Allen 1973) ca.

gff = 10.6 + 1.90 log10 T − 1.26 log10(Zν) (473)

16.7.1. Implementation

The free-free emissivity and opacities are calculated in cmfcoop.f (and also in coop.f) with help of the
subroutine gauntff.f. The subroutine gauntff.f uses the values from Berger (1956) and Karzas & Latter
(1961). The tabulated ranges for Z = 1 are T = 1577 . . . 157 700 K and λ = 120 . . . 1.2 × 106 Å, bicubic
spline interpolation is performed (up to Z = 17). For λ < 120 Å gff is set to 1.With these gffs the opacity and
emissivity is calculated.

16.7.2. Additional X-rays for superionization

In PoWR it is possible to add X-rays, which do not emerge from the photosphere, but are rather created in the
wind.

We treat only (continuum) free-free emission and absorption (Bremsstrahlung, see Sect. 16.7), as line contri-
butions can be neglected for photon energies above 0.9 keV (≈ 14 Å) and the considered parameter range (see
Baum et al. 1992). Therefore we assume a 2nd, hot plasma component in the wind, which is assumed to be
distributed within the cool wind in form of optically thin filaments of temperature TX.
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16.7. Radiative free-free transitions (Bremsstrahlung)

flux from: ./steal-xray.plot
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Figure 30: Example for the emergent flux from steal.plot with additional X-rays included (between
log(λ) = 0.2 and log(λ) = 2.3). This special plot has been generated by xrcheck.com for a B
star of Teff = 23 kK.

They are described by three parameters. The first one, XFILL, is the X-ray filling factor Xfill = EMhot/EMcool,
which is related to the emission measure EM. The temperature (only one temperature!) of the hot material,
TX is set by the parameter XRAYT and is typically in the order of one or a few MK. The filaments are homoge-
neously distributed (Xfill = const.) in the atmosphere, starting at radius XRMIN (in R∗). E.g.

XRAY XFILL 1.3E-1 XRAYT 1500000. XRMIN 1.1

The emissivity η and opacity κ are calculated in cmfcoop.f and coop.f.
For calculations in STEAL → LINPOP → COMA and WRSTART → GREY → OPAGREY, i.e. in the absence
of NLTE population numbers it is assumed that all material is He iii.
So in both cases it is ηff ∼ ni ne Xfill. Therefore XFILL is referenced to as the “fraction” (which can be larger
than one) of electrons that make additional Bremsstrahlung. Also, the luminosity in X-rays of the hot filaments
depends roughly linear on XFILL.
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Figure 31: Superlevel assignment for Fe xiii: The sum of the statistical weights of all considered levels is
shown in bins of 500 kayser. The yellow lines refer to the contributions of levels with an even parity
while the blue color denotes those with odd parity. The red horizontal lines indicate the sorting in
a certain superlevel and the green line marks the ionization energy of the ion. The corresponding
superlevel indices are given by the red numbers on the right.

16.8. Iron-group elements

16.8.1. Superlevel approach

Iron and other iron group elements are treated in form of one generic element, labeled as ELEMENT G. The
iron-group elements possess many electrons, which leads to thousands of levels and millions of line transitions
that cannot be treated in full detail within a stellar atmosphere code. Nevertheless the elements are extremely
important as their huge number of lines have a significant “line-blanketing” effect on the radiative transfer
and atmospheric structure, even though the combined abundance of these elements is only on the order of
XG ≈ 0.1%, even for solar metallicity. For PoWR models this has been demonstrated in Gräfener et al. (2002).

This section introduces the basic concepts of the superlevel approach and shows the basics of their their
implementation in the PoWR code. For ionization stages below G x, it contains all elements with atomic
numbers from 21 to 28, i.e. scandium, titanium, vanadium, chromium, manganese, iron, cobalt, and nickel.
The required atomic data is taken from the Kurucz database. For higher ions, where no Kurucz data are
available, only iron is accounted for, taking all the required data from TOPbase, the Opacity Project database
(Mendoza 1992). The relative abundances of the elements are listed in Gräfener et al. (2002).

In order to summarize levels, which will now be called sublevels here, into superlevels, energy bands have to be
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16.8. Iron-group elements

defined for each ionization stage. An example for such a superlevel grouping can be seen in Fig. All sublevels
that inside each energy band are assumed to have an occupation probability based on an LTE-description using
a characteristic temperature Texc for this ion. This temperature is called the excitation temperature and has to
be given6. This allows the define the following quantities, where capital indices always refer to superlevels,
while lowercase indices refer to the sublevels which are added up to a superlevel:

EL =

∑
i,l

El ai gl exp
(
− El

kTexc

)

∑
i,l

ai gl exp
(
− El

kTexc

) (474)

gi,l =ai gl exp
(

EL − El

kTexc

)
(475)

GL :=
∑

i,l

gi,l =
∑

i,l

ai gl exp
(

EL − El

kTexc

)
(476)

The term EL then denotes the energy of a superlevel, while El refers to the sublevel energy. GL is the weight
of the superlevel. It is actually the sum of the generalized sublevel weights gi, l, which in turn contains the
actual weight gl of the sublevel and the occupation probability. Note that even though PoWR does not use
occupation probabilities for normal levels, these factors cannot be neglected for superlevels. Only in the limit
of Texc → ∞ this factor vanishes and the total weight turns into a simple addition of individual weights. The
factor ai describes the relative abundance of a real element in the generic element.

The population number of a sublevel ni,l can be obtained from the corresponding superlevel population number
nL via

ni,l = nL
gi,l

GL
. (477)

To obtain the transition rates as well as the emissivity and opacity for the superlevels, the particular values have
to be summed. In a first step, the individual cross-sections σlu are added up to the superlevel cross-sections
σLU such that the product of the superlevel weight and the superlevel cross-section matches the sum of the
weighted individual cross-sections, i.e.

σLU :=
1

GL

∑

i,l,u

gi,lσlu. (478)

An example for the complex, wavelength-dependent structure of the resulting superlevel cross sections can
be seen in Fig. 32. Due to the exponential terms in the definition of the superlevel weight (476), the equation

6In practice, a significant values for the Texc of a particular ion can be determined iteratively by calculating a stellar atmosphere
model and check at which electron temperature this ion is the leading ion.
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Figure 32: An excerpt of the superlevel cross section σLU for a transition of the G ix state of the generic
element representing the iron group elements.

σlugl = σulgu is not automatically fulfilled for the superlevels:

σUL =
1

GU

∑

i,l,u

gi,uσul (479)

=
1

GU

∑

i,l,u

aigu exp
(

EU − Eu

kTexc

)
σul (480)

=
GL

GU

1
GL

∑

i,l,u

ai
gl

gu
gl

exp
(

EU−Eu
kTexc

)

exp
(

EL−El
kTexc

) exp
(

EL − El

kTexc

)
σul (481)

=
GL

GU

1
GL

∑

i,l,u

aigl
exp

(
EU−EL
kTexc

)

exp
(

Eu−El
kTexc

) exp
(

EL − El

kTexc

)
σlu (482)

=
GL

GU

1
GL

∑

i,l,u

gi,l exp
[

h
kTexc

(νUL − νul)
]
σlu (483)

It is precisely the exponential term with the brackets that prevents a straight-forward transformation from σLU

to σUL. The exponential term vanishes only in the limit of an infinite excitation temperature Texc or if νul =

νUL. The latter is approximately true if the superlevels are small enough. However, a look at Fig. 31 illustrates,
that for the important ionization stages, this is not possible without losing the advantage of superlevel, i.e. a
significant reduction of the total number of levels. Thus, the fact that σUL cannot be calculated from σLU

as simple as for normal levels has significant consequences and requires a special treatment for the radiative
rates, opacities and emissivities in the PoWR code.

In the current blanketing approach in PoWR, which is described in Gräfener et al. (2002), only σLU is pre-
calculated and stored in the iron data file, while σUL has to be calculated. Based on the fact that only active
transitions are considered in the comoving frame, i.e. those where the current integration frequency ν is in
a certain range around νUL, the Eq. (483) is further approximated by replacing νul with ν. This allows to get
the exponential term out of the sum. Furthermore the excitation temperature Texc is replaced by the current
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16.8. Iron-group elements

electron temperature Te, so the expression used in the code is:

σUL =
GL

GU

1
GL

exp
[

h
kTe

(νUL − ν)
]∑

i,l,u

gi,lσlu (484)

=
GL

GU
exp

[
h

kTe
(νUL − ν)

]
σLU (485)

This approach has proven to be quite successful in normal models which usually use ions only up to G x. In
this regime, the difference between Te and Texc is usually not large in the regions where a line is active. The
usage of Te is also motivated in order to regain the LTE limit at the inner boundary. However, this approach
seems to have problems when using the higher ions, especially if combined with stellar temperatures above
≈ 175 kK. Already below this limit the high ions produce insufficiently high transitions rates, but this could be
neglected by implementing a more sophisticated “switch-off” for levels which are not significantly populated.
For higher temperatures however, the temperature correction method is also affected and the coupling of the
electron temperature Te with η, κ, and the rates seems to produce situations where the corrections might
produce a non-converging or even diverging situation. This is one of the reasons why WO models are hard
to calculate, which will later become important when discussing a hydrodynamically consistent WO model in
Sect. ??.

Regardless of how accurate the terms of σUL are produced, the way of calculating the superlevel rates as well
as the line opacities and emissivities are always the same. The line opacities of the superlevels can than be
calculated by simply adding up their sublevel line opacities:

κlu =nlσlu

(
1 − nu

nl

gl

gu

)
= nlσlu − nuσul (486)

κLU :=
∑

l,u

κlu =
∑

i,l,u

ni,lσlu

(
1 − ni,u

ni,l

gl

gu

)
(487)

=
nL

GL

∑

i,l,u

gi,lσlu

(
1 − nU

nL

gi,u

GU

GL

gi,l

gl

gu

)
(488)

=
nL

GL

∑

i,l,u

gi,lσlu − nU

GU

∑

i,l,u

gi,uσlu
gl

gu
(489)

=
nL

GL

∑

i,l,u

gi,lσlu − nU

GU

∑

i,l,u

gi,uσul (490)

=nLσLU − nUσUL (491)

In a similar way the superlevel line emissivities can be calculated:

ηlu =
2hν3lu

c2 nu
gl

gu
σlu (492)

ηLU =
∑

l,u

ηlu =
∑

i,l,u

2hν3lu
c2 ni,u

gl

gu
σlu (493)

=
2h
c2

nU

GU

∑

i,l,u

ν3lugi,u
gl

gu
σlu (494)

The last expression can be reduced further, if one assumes that νlu ≈ νLU and hence

ηLU ≈
2hν3LU

c2

nU

GU

∑

i,l,u

gi,uσul (495)

=
2hν3LU

c2 nUσUL (496)
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16. Atomic transitions

The to total radiative transition rate is the sum of all subrates. Using this requirement and inserting Eq. (477)
leads to

nLRLU =
∑

i,l,u

ni,lRlu = nL

∑

i,l,u

gi,l

GL
Rlu (497)

which immediately provides the formula how to add up the rate coefficients of the sublevels:

Rlu = 4π

∞∫

0

σlu

hν
Jνdν (498)

RLU =
∑

i,l,u

gi,l

GL
Rlu (499)

= 4π
∑

i,l,u

gi,l

GL

∞∫

0

σlu

hν
Jνdν (500)

= 4π

∞∫

0

Jν
hν

∑

i,l,u

gi,l

GL
σludν (501)

= 4π

∞∫

0

Jν
hν
σLUdν (502)

The same scheme can be used for slightly more complex RUL:

Rul = 4π
gl

gu

∞∫

0

σlu

hν

[
2hν3

c2 + Jν

]
dν (503)

RUL =
∑

i,l,u

gi,u

GU
Rul (504)

= 4π
∑

i,l,u

gi,u

GU

gl

gu

∞∫

0

σlu

hν

[
2hν3

c2 + Jν

]
dν (505)

= 4π

∞∫

0

1
hν

[
2hν3

c2 + Jν

]∑

i,l,u

gi,u

GU
σuldν (506)

= 4π

∞∫

0

1
hν

[
2hν3

c2 + Jν

]
σULdν (507)

The Eqs. (502) and (507) show that the radiative transition rates for the superlevels have the same form as
those for normal levels, except that the cross-sections σul and σlu are replaced by their superlevel counterparts
σUL and σLU , which means no additional assumptions or approximations have to be made beside those en-
tering the calculation of the superlevel cross sections. However, for the normal rates the (hν)−1-term is often
approximated to (hνul)−1 and thus can be put in front of the frequency integral. This is also the case in the
PoWR code, where the “normal” radiative rates are calculated using the coarse frequency grid. For the rates
of the generic element however, the (hν)−1 is kept and the rates are calculated on the fine frequency grid, in
parallel with the CMF radiative transfer.

For a start approximation which has to be available before the first radiative transfer calculation, the rates
of the generic element are also calculated in the approximated form as it is done for the other rates. This is
also done during the solution of the statistical equations, where the have to be recalculated based on updated
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16.8. Iron-group elements

population numbers. Here the more accurate rates from the CMF calculations are used, but afterwards updated
by adding the differences between the approximated rates. By using only the differences of the rates and not
their absolute value, the error should be kept small.

A special features for iron line transitions accounts for the fact that the temperature might have been updated
since the radiation field has been calculated.

HERE: INPUT FROM ANDREAS on the TCORR FERAT factor!

16.8.2. The FEDAT files

The iron-group elements are treated as one generic model atom with superlevels and superlines. The corre-
sponding atomic data are prepared with the Blanketing program (see Sect. 16.8.1). The data are provided to
the PoWR code in form of the name-indexed mass-storage file FEDAT or FEDAT_FORMAL. This file is decoded
by the subroutine FEDAT which is called from DATOM in each of the PoWR main programs.

In the FEDAT file, the lower and upper superlevel index is encoded in strings named AnnaNAM, where nn is
the ion charge. The level names are stored in vectors (one vector per ion) LEVNnna, only since parity splitting
is taken into account. The number of superline transitions in each of the ions are stored in the FEDAT-file in
vector NTRA_A (Fortran variable: NTRA)

The bound-bound cross sections are stored in the FEDAT file in variables with names of the kind Annammm,
where nn is the ion charge and mmm is the line transition index (counted within this ion). The cross-sections
are tabulated over a logarithmic frequency grid which is consistently defined in the Blanketing program. The
grid index k translates into wavelength λk as

λk = λ0 · 10k∗XLOGSTEP with XLOGSTEP = log
(
1 +
vDop

c
DX

)

The parameters defining the wavelength grid are communicated via the FEDAT file.

Variable Mass-storage name Fortran variable comment

vDop VDOPP VDOPFE
DX FSTEP DXFE spacing in Doppler units
λ0 XLAMNULL XLAM0FE

ASCII-coded level indices AnnaNAM ion charge nn; 1 entry per line
level names LEVNnna LEVNAMES new since parity splitting

mean level energies ELEVnna ELEVEL vector; cf. Eq. (2.65) in Diss. Sander
superlevel stat. weight WEIGnna WEIGHT vector; cf. Eq. (2.67) in Diss. Sander

No. of superlines NTRA_A NTRA vector, 1 entry per ion
σℓu Annammm SIGMAFE ion charge nn, line index mmm

1st freq. index Annammm(2) IFRBSTA(IND) neg. index kmin
last freq. index Annammm(1) IFRBEND(IND) neg. index kmax

No. of freq. in σℓu Nnna_A NX_A vector

The first entry in Annammm gives (with a minus sign) the frequency index kmax of the first cross-section entry;
the second entry gives the frequency index kmin of the last cross-section entry. FEDAT stores these numbers
in the variables (with negative sign!!) IFRBEND(IND) and IFRBSTA(IND), respectively. The following
NX_A(IND) elements of vector Annammm contain the values of the superline cross section. Note that the first
element refers to the largest wavelength (lowest frequency), i.e. the values correspond to a falling sequence of
frequency index k.
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16. Atomic transitions

Redundantly, the number of cross section data points is also stored in the FEDAT vector Nnna_A (Fortran
variable name: NX_A(i), for the current ion).

In the Fortran program (subroutine FEDAT), all bound-bound cross sections are stored in a single big vector
SIGMAFE, now in inverse order (i.e. index increases with wavelength). The first index for each particular line
transition IND inside the vector SIGMAFE is stored in the vector element INDRB(IND).

Subroutine CMFFEOP is called for a specific wavelength XLAMK and returns the iron bound-bound opacity and
emissivity vectors (over radius points). Internally, it loops over all radius points. For each radius index, the
cross-sections SIGMAFE of all lines that are “active” at this wavelength are multiplied with the respective
population numbers and added up into the vectors OPA and ETA. The “active” lines have been identified before
by the subroutine FECHECK.

In order to get the cross section for a given transition at a particular wavelength XLAMK, the corresponding
dimensionless wavelength x = XINDF (real number!) on the iron-wavelength scale is calculated. For each
(active) superline, this index XINDF is compared with its start index IFRBSTA and the relative index of the
next-lower and next-higher grid point is determined. A linear interpolation is then performed to obtain the
cross section SIGMA.

Note that the program COLI calls the subroutine CMFFEOP for a each wavelength separately. In contrast, the
formal integral (program FORMAL) requires the opacities and emissivities over the whole wavelength range
instantaneously, in order to calculate the electron-scattering redistribution. Therefore, the subroutine FORMCMF
calls CMFFEOP in a frequency loop and stores the opacities and emissivities in two-dimensional arrays.

16.8.2.1. The effect of microturbulence on iron-line blanketing Iron data (FEDAT-Files ara available
for different values of the Doppler-broadening velocity VDOP (usually encoded in their filename). For the
interation of the MODEL, it makes sense to chose the same VDOP for the FEDAT version as for all other lines
(VDOP parameter in the CARDS file).

For the spectrum synthesis (program formal) the microturbulence is usually chosen much smaller and dictated
by the width of observed absorption-line profiles (talking here about OB-star models, not abaout WR stars).
If the FEDAT file was established for smaller VDOP than the minimum Doppler-broadening required by the
thermal and microturbulent velocities, the iron lines are degraded automatically. In the opposite case, i.e. if
the iron data have a too large Doppler broadening, the formal program can only issue a warning. However,
in this case the “iron forest” might be over-estimated, s demonstrated in Fig. 33.
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Figure 33: The influence of different values of VDOP (only in iron data) on the iron forest. The model shown
is B31_MDOT-10_LOGL4.8_LOGG3.97_Si0.1 and was calculated with VDOP=100 km/s in the
wruniq iteration, while the formal was calculated with VDOP=30 km/s. Only the FEDAT_FORMAL
is different according to the key in the figure. In each case the so-called SMALL version was used.
This version contains only observationally confirmed iron lines (i.e. with correct wavelengths),
while the BIG version also includes theoretically predicted iron lines without observational con-
firmation. The BIG file is used in the wruniq iteration. The differences between BIG and SMALL
version increase towards shorter wavelengths, especially below the 1240 Å the BIG file provides
much more lines than the SMALL version. The model spectra were convolved with a Gaussian of
FWHM of 10 Å to emphasize the effect on the equivalent widths.

183



Part III.
Organization of the Code

184



UNDER CONSTRUCTION!

In PoWR, the MODEL is established by iterating the radiative transfer (program COLI) with the statistical
equations (program STEAL).

17. The MODEL file

In a PoWR run, a chain of main programms is executed. The information is passed from one program to the
next with the help of the file MODEL, which is a name-indexed mass-storage file. Such binary file cannot be
read with an editor, but we have a couple of tools to extract content from such files, see Sect. 4. fortran does
not allow to open random-acess files under a filename; the file MODEL is assigned to channel 3 (fort.3).

In particular, file MODEL contains the following records:

POPNUM ...

XJLn meaning J̄IND, where n is the 4-digit or 5-digit line index IND, see Sect. 18.

18. Reading atomic data

Each main program calls SUBROUTINE DATOM, which reads the atomic-data input. For the “normal” elements
these data are provided by the ascii file also called DATOM, while the data for the “generic element” (iron group)
are to be decoded from the random mass-storage file FEDAT alias fort.21.

The following variables are established for the “normal” elements:

• An index I is assigned to each atomic energy level, specified by a LEVEL entry, in the sequence of its
occurence in the DATOM file. The levels must be grouped per ELEMENT, and be sorted by energy within
each ion.

The following vectors are filled for I=1 ... N:
LEVEL(I) 10-character name of the level
NCHARG(I) charge of the ion to which this level belongs
WEIGHT(I) statistical weight of this level
ELEVEL(I) energy of the level above the gound level (in Kayser = wavenumber per cm)
EION(I) ionization energy (in Kayser) from the ground state to which this level belongs
MAINQN(I) pricipal quantum number of this this level
NA(I) index of the element

• A line-index IND is assigned to each bound-bound transitions in the sequence of the occurence of a LINE
entry in the DATOM file. Note that all possible bound-bound transitions need to be covered with a LINE
entry. Rudimental lines are included in this index list.

The following vectors are filled for IND=1 ... LASTIND:
INDNUP(IND) index of the upper level of this line transition
INDLOW(IND) index of the lower level of this line transition
EINST(NUP,LOW) Einstein coeff. Au, ℓ

rudimental lines are marked by -2. in the transposed matrix element EINST(LOW,NUP)
KEYCBB(IND) the keyword specifying the formula for collisional bound-bound (CBB) cross section
(see Sect. 16.1)
COCO(k,IND) (k=1...4) up to four coefficients to supply the respective CBB formula

• A continuum-index KONT is assigned to each bound-free transitions in the sequence of the occurence of
a CONTINUUM entry in the DATOM file.

185



18. Reading atomic data

The following vectors are filled for KONT=1 ... LASTKON:
KONTLOW(KONT) index of the lower level of this bound-free transition
KONTNUP(KONT) index of the upper level of this bound-free transition; if not specified explicitely in the
DATOM input file, this is the groundlevel of the next-higher ion
EINST(KONTLOW,KONTNUP) photo-cross section at the threshold in 10−18 cm2

IGAUNT(KONT) keyword specifying which of the different formulas for the radiative bound-free (RBF)
cross sections (see Sect. 16.4) is applied
ALPHA(KONT), SEXPO(KONT) parameters to supply the applied formula for the radiative bound-free
cross sections
KEYCBF(KONT) keyword specifying which of the different formulas for the collisional bound-free (CBF)
cross sections (see Sect. 16.2) is applied
ADDCON1(KONT), ADDCON2(KONT), ADDCON3(KONT) additional parameters for certain CBF formu-
las

• For K-SHELL ionization (if specified in file DATOM by K-SHELL entries), the following arrays are filled
(cf. Sect. 16.5):
SIGMATHK(NATOM,ISTAGE) threshold photo cross-section in 10−18 cm2, where NATOM is the index of
the element, and ISTAGE the ionization stage (1 = neutral)
SEXPOK(NATOM,ISTAGE) exponent for wavelength-dependence
EDGEK(NATOM,ISTAGE) energy of the K-shell edge in Kayser

• Stabilizing lines of dielectronic recombination channels connect an autoionizing level (doubly excited
state above the ionization threshold) with a normal bound state.

They are specified by DRTRANSIT entries in the DATOM file; an index IAUTO=1 ... NAUTO is assigned
to each of these entries describing a stabilizing line transition. The following vectors are filled:

LOWAUTO(IAUTO) index of the lower level
LEVUPAUTO(IAUTO) name of the upper (auto-ionizing) level
AAUTO(IAUTO) Einstein coeff. Au, ℓ

KRUDAUTO(IAUTO) value 1 if line flagged as rudimental, 0 else (default);
IONAUTO(IAUTO) index of the level reached by auto-ionization; if not specified explicitely, this is the
ground level of the next-higher ion
WAUTO(IAUTO) statistical weight of the upper (auto-ionizing) level
EAUTO(IAUTO) energy [Kayser] of the upper (auto-ionizing) level, relative to the ionization threshold

Note that a specific auto-ionizing level can appear as upper level in many DRTRANSITs; therefore, entries
with the same upper-level name LEVUPAUTO must agree in the given statistical weight WAUTO and its
energy EAUTO. This is checked in wrstart.

For the dielectronic transitions, the indices for the lower level and the upper level (after autoionization)
are appended to the line indices in the range LASTIND+1 ... LASTINDAUTO:

DO IND=1, NAUTO
INDLOW(LASTIND+IND) = LOWAUTO(IND)
INDNUP(LASTIND+IND) = IONAUTO(IND)

ENDDO

Moreover, SUBROUTINE APPEND_AUTOLEVELSwhich is called by subr. DATOM appends the auto-ionizing
levels to those vectors that specify the energy levels (index range N+1 ... N_WITH_DRLEVELS). This
includes all attributes that are assigned to each energy level (see above). An autoionizing level which
occurs repeatedly in DRTRANSIT entries leads to only one entry in the level list.

The huge amount of atomic data describing the generic elementfor the iron group, which is treated in
the superlevel approach (cf. Sect. 16.8.1), are provided by the mass-storage file FEDAT alias fort.21.
This file is decoded by SUBROUTINE FEDAT which is called from subr. DATOM when the entry ELEMENT
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GENERIC is encountered in file DATOM towards its end. For all ions in the range which is requested on
this ELEMENT GENERIC entry, the following arrays are filled:

ELEVEL (appended to the vector behind LASTIND) WEIGHT (appended to the vector behind LASTIND)
LEVNAMES SIGMAFE (compact vector with all superline bound-free cross-sections) IFENUP IFELOW
superline indices

subr. FEDAT appends analogues LASTFE entries to the vectors INDNUP(IND), INDLOW(IND) as
well as the matrix EINST(NUP,LOW). –> max. index LASTIND is increased: LASTIND = LASTIND
+ LASTFE

19. Initialization

in WRSTART :

in WRSTART - JSTART: initial rad. field written to MODEL file; for lines: XJLnnnn with nnnn (I4) = IND;
if IND > 9999 : XJLnnnnn (I5)

RUD lines *are* skipped (no XJL entry written): IF (EINST(I,J) .EQ. -2.) GOTO 99 jumps behind CALL
WRITMS (3,XJL ...

Since the loop runs over all line indices IND=1, LASTIND starting values for XJL are written including all
iron superlines

20. Radiative transfer

Main program COLI

COLI - DECCOLI:

reads an obsolete option LINE ... in many old CARDS files: LINES: ALL which means IND1=0, IND2=LASTIND
default: also like ALL –> this option might be deleted !! at the end of deccoli: effectively LINE(IND) = IND

COLI - SEQLINECL sorts the lines by increasing wavelengths

Rud. lines are skipped here!!! NLINE (input) becomes reduced by the number of rud.lines: NLINE=NLINE-
NUMRUD

COLI has a big frequency loop (index K)

Before thet loop:

COLI - PREPK initialized (among others): K = 0 LINECHECK = 1 ILINECHECK = LINE(ILINECHECK)

Note: for iron this initalization is done directly in COLI: INDFEACT(1) = 1

Insside thie loop: COLI - CHECK_LINES : For the current K, those lines wich are "active" at this frequency
are asembled in vector LIND(NL), NL= 1 ... MAXLIN

MAXLIN is a dimension parameter set in the main program COLI. Unused entries in the LIND vector are set
to zero. The total number of lines that are active at any given frequency (NACT) thus cannot exceed MAXLIN
(else: error stop).

A line is checked out when the loop wavelenth has passed its BANDWIDTH. If this happens for the line with
index LACT=LIND(NL), the mean intensity XJL is written to the model file:

WRITE (NAME,’(A3,I4,A1)’) ’XJL’,LACT,’ ’ CALL WRITMS > (3, XJLMEAN(1,NL), ND, NAME, -1,
IDUMMY, IERR)

where LIND(NL) is the original (from DATOM) line index
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20. Radiative transfer

After beeing checked-out, LIND(NL) is set to zero (i.e. this entry is now free and can be re-used for another
line to be checked-in.

In effect, XJL.... entries for rud. lines are *not* written by COLI

After the last XJL-entry for lines of explicit atoms (index LASTIND), the next LASTFE entries contain the
corresponding mean intensities XJFEMEAN for the superlines.

These XJL entries for iron bands are written to MODEL by subr. WMODCOLI
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22. List of routines

21. PoWR-Code-Skripte

21.1. wrstart8

#!/bin/ksh
echo $HOSTNAME > $HOME/work/scratch/wruniq8/fwhere
. $HOME/work/wrjobs/wrstart_helge 8 $1

21.2. wruniq8

#!/bin/ksh
. $HOME/work/wrjobs/wruniq_helge 8 $1

21.3. set_repeat8

# Set_Repeat8
#
cd $HOME/work/wrdata8
echo ’REPEAT’ > next_job
echo ’REPEAT’ > next_jobz

21.4. njn8

#!/bin/ksh
. $HOME/work/wrjobs/njn_neu_helge 8

22. List of routines

FLAG_ZERORATES returns a logical vector with index over all levels, indicating whether the level is
switched off due to POPMIN criterion. Flagging is only allowed if the level above is already flagged.

NLTEPOP called by ... for solving the linear rate equations. The rate equations are only linear in the case of

• first steal in wrstart-job

• all GAMMAs off, PRINT RATES enabled
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23. Compilation of PoWR code

You need the libraries, the scripts and the FORTRAN compiler for generating new exe-Files.

Usually you will find in ~wrh/libraries.dir the libraries

• libcr_cl.tlb and libcr_cl.a containing the .f and .o files resp.

• libcr_add.tlb and libcr_add.a

You can also have your own library, e.g. libcr_user.tlb and libcr_user.a.

When using the scripts in ~wrh/proc.dir you have to omit all suffixes after the dot.

23.1. The way it works - Example

• create your own ~/libraries.dir

• in this directory you can create your own library

• you need the file loadlibs for compiling (s. below)

• create your own ~/proc.dir and copy therein the following scripts (chmod ux *.com+):

– work.com

– index.com

– get.com

– replace.com

– link.com

– linkopt.com

and alias them to the shortend forms work, index, etc.

• pay attention, that you have the adequate compiler, e.g. the f90 on the alphas or intel on
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A. Atomic Theory

A. Atomic Theory

A.1. Levels – energy order

1s 2s 3s 4s 5s 6s 7s 8s 9s 10s
2p 3p 4p 5p 6p 7p 8p 9p 10p

3d 4d 5d 6d 7d 8d 9d 10d
4 f 5 f 6 f 7 f 8 f 9 f 10 f

5g 6g 7g 8g 9g 10g
6h 7h 8h 9h 10h

7i 8i 9i 10i
8k 9k 10k

9l 10l
10m

Table 4: For determining the energy order of terms of a one-electron system, just go along the diagonals, e.g.
1s 2s 2p 3s 3p 4s 3d 4p 5s.

A.2. L-S coupling

J = L + S (508)

L =
∑

i

li (509)
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A.2. L-S coupling

A.2.1. Addition of angular momenta

l1 ml1 l2 ml2 ml L = 3 2 1
2 2 1 1 3 x

2 0 2 x x
1 1 2 x x

2 -1 1 x x x
1 0 1 x x x
0 1 1 x x x

1 -1 0 x x x
0 0 0 x x x
-1 1 0 x x x

0 -1 -1 x x x
-1 0 -1 x x x
-2 1 -1 x x x

-1 -1 -2 x x
-2 0 -2 x x

-2 -1 -3 x

Table 5: Magnetic quantum numbers of an l = 2 (d) electron plus an l = 1 (p) electron, from (Cowan 1981, p.
52)

A.2.2. Selection rules for dipole radiation

1. In general:

∆J = 0, ±1 but no (J = 0)→ (J = 0)
∆mJ = 0, ±1 but no (mJ = 0)→ (mJ = 0), if ∆J = 0

2. LS -coupling:

∆S = 0
∆L = 0, ±1
∆ℓ = ±1 for the transient electron (so ∆L = ±1 for one-electron transitions)

3. j j-coupling:

∆ j = 0, ±1 for one electron
∆ j = 0 for all others

4. In general – change of parity:

for all dipole transitions: ∆P = ±1
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B. Quadrature sums

B. Quadrature sums

B.1. General

Integrals are numerically solved as quadrature sums, i.e.

I =
∫ b

a
f (x) dx (510)

is evaluated as
I =

∑

i

wi fi (511)

where fi = f (xi), and wi are the quadrature weights. Let us for the following consider only a small interval
(a, b) between just two points; for a sum over many intervalls, at each inner point two weights from both
adjacent intervalls apply to the same fi and can be added.

The trapezoidal rule yields weights wa =
1
2 (b − a) and wb =

1
2 (b − a). The quadrature sum with these weights

gives the exact integral for a linear function f (x).

Now we want to achive the same accuracy for the integral

I =
∫ b

a
f (x) g(x) dx (512)

where the integral contains a weight function (or “kernel”) g(x). For this purpose, the weight function is
accounted for in the quadrature weights. Before considering specific weight functions, we first derive the
general formalism.

We define

∆ = b − a

m = 1/2 (b + a)

x = m + r∆/2

dx = ∆/2 dr

A linear interpolation of f (x) between fa = f (a) and fb = f (b) is then the function

f (r) = f e + f o (513)

with the even (with respect to r) term

f e =
fb + fa

2
(514)

and the odd term
f o = r

fb − fa
2

(515)

The weight function is also split into an even and an odd (with respect to r) part

g(x) = ge(r) + go(r)

ge(r) =
1
2

[
g(m +

∆

2
r) + g(m − ∆

2
r)
]

go(r) =
1
2

[
g(m +

∆

2
r) − g(m − ∆

2
r)
]
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B.2. Linear weight function

The integral is now

I =
∆

2

∫ 1

−1
( f e + f o(r)) (ge(r) + go(r)) dr (516)

Because of the symmetric interval, only the even-even and the odd-odd products contribute to the integral, i.e.

I =
∆

2

∫ 1

−1

[
fb + fa

2
ge(r) +

fb − fa
2

r go(r)
]

dr (517)

Therefore we define

G ≡
∫ 1

0
ge(r) dr

H ≡
∫ 1

0
r go(r) dr

This makes the integral to

I =
∆

2
[
( fb + fa) G + ( fb − fa) H

]
= wa fa + wb fb (518)

with the quadrature weights being

wa =
∆

2
(G − H) and wb =

∆

2
(G + H) (519)

B.2. Linear weight function

g(x) = x =⇒ G = m, H =
∆

6

wa =
∆

2

(
m − ∆

6

)
, wb =

∆

2

(
m +
∆

6

)

B.3. Quadratic weight function

g(x) = x2 =⇒ G = m2 +
∆2

12
, H = m

∆

3
(520)

wa =
∆

2

(
m2 +

∆2

12
− m
∆

3

)
, wb =

∆

2

(
m2 +

∆2

12
+ m
∆

3

)
, (521)

B.4. Cubic weight function

g(x) = x3 =⇒ G = m3 +
1
4

m∆2, H =
1
2

m2∆ +
∆3

40
(522)

wa =
∆

2

(
m3 +

1
4

m∆2 − 1
2

m2∆ − ∆
3

40

)
, wb =

∆

2

(
m3 +

1
4

m∆2 +
1
2

m2∆ +
∆3

40

)
(523)
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B. Quadrature sums

B.5. Inverse-x weight function

g(x) = x−1 =⇒ G =
1
∆

ln
∣∣∣∣∣
b
a

∣∣∣∣∣ , H =
2
∆

[
1 +

m
∆

ln
∣∣∣∣∣
a
b

∣∣∣∣∣
]

(524)

wa =
b

b − a
ln

∣∣∣∣∣
b
a

∣∣∣∣∣ − 1 , wb =
−a

b − a
ln

∣∣∣∣∣
b
a

∣∣∣∣∣ + 1 (525)

B.6. Exponential weight function

g(x) = e−x =⇒ G =
1
∆

(
e−a − e−b

)
H =

1
∆

(
−e−a − e−b +

2
∆

(
e−a − e−b

))
(526)

wa = e−a +
1
∆

(
e−b − e−a

)
, wb = −e−b − 1

∆

(
e−b − e−a

)
(527)

TO BE SORTED !!!!!!!!!!!

We describe in the following the integration weights used for the calculation of J,H,K and N.

J: To solve the integral
∫ 1
−1 J dµ we prepare the integration weights W0 along each ray (JP) for all valid

depth points (L = 1 ...Lmax). In this special case (weight function is 1) Wa = Wb = 1/2. W0 is then
defined by

JP=1 =⇒W0(L) = Z(L,1)−Z(L,2)
2R(L)

intemediate steps =⇒W0(L) = Z(L,JP−1)−Z(L,JP+1)
2R(L)

Last step (non-core) =⇒W0(L = Lmax) = Z(L,JP−1)
2R(L)

The integrations weights are then Wa = Wb = 1/2

H: The integral
∫ 1
−1 J µ dµ can be written as p

r2 dp. Therefore the weights are equal for all depths. We
introduce the abbreviations A = PJ−1, B = PJ and C = PJ+1 Each integration weight has contributions
from the left and the right intervall Wb of the left interval is

Wb =
∆

2r2

(
m +
∆

6

)
=

B − A
2r2

(B + A
2
+

B − A
6

)
=

1
6r2 (2B2 − AB − A2)

while Wa of the right interval is

Wa =
∆

2r2

(
m − ∆

6

)
=

C − B
2r2

(C + B
2
− C − B

6

)
=

1
6r2 (C2 + BC − 2B2)

both terms together yield

W =
1

6r2 (C2 + BC − AB − A2) =
1
r2 (A + B +C)(C − A)

At the first (last) point only Wa (Wb) contributes

W = Wa = (C − B)(C + 2B), W = Wb = (B − A)(B + 2A) , respectively

Special attention is essential to the end of an integration if non-core rays are considered. Wa of the right
interval has then to be calculated for the half interval [JMAX − 1, JMAX], i.e C = 1/2(PJ +PJ+1). This
integration weight is written into WP1Last. The complete sum to integrate an interstice shell is then

H =


JMAX−1∑

P=1

v j · WP j

 + v j=JMAX · WP1LAST j=JMAX
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K: The same as for J but with different weights.
∫ 1
−1 µ

2 dµ = 1
r3

∫
z2 dz.

∆

2

(
m2 +

∆2

12

)
=

1
6

(B3 − A3) and
∆

2
m
∆

3
=

1
12

(B3 − A2B − AB2 + A3)

{ r3Wb =
1
6

(B3 − A3) +
1
12

(B3 − A2B − AB2 + A3) and

r3Wa =
1
6

(C3 − B3) − 1
12

(C3 − B2C − BC2 + B3)

Wa +Wb =
1

12r3

[
B(C2 − A2) +C(C2 + B2) − A(A2 + B2)

]

N: The integral
∫ 1
−1 µ

3 dµ can be written as
∫ (

p
r2 − p3

r4

)
dp. The weights are principally in the same manner

as the weights for H. For the second term (µ3 dµ) the weights are the following

Wa =
∆

2

(
m3 +

1
4

m∆2 − 1
2

m2∆ − ∆
3

40

)
and

Wb =
∆

2

(
m3 +

1
4

m∆2 +
1
2

m2∆ +
∆3

40

)

Wa =
C − B

16

(
(C + B) + (C + B)(C − B)2 − (C + B)2(C − B) − C − B

5

)
and

Wb =
B − A

16

(
(B + A) + (B + A)(B − A)2 + (B + A)2(B − A) +

B − A
5

)

Together with the first term (µ dµ) we derive

Wa = (C − B)(C + 2B) +
C − B

16

(
(C + B) + (C + B)(C − B)2 − (C + B)2(C − B) − C − B

5

)

and

Wb = (B − A)(B + 2A) +
B − A

16

(
(B + A) + (B + A)(B − A)2 + (B + A)2(B − A) +

B − A
5

)

Because the calculation of the weights is not time-critical, we do not simplyfy these formulae in order
to avoid errors.

C. Interpolation with cubic splines
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D. Characteristics of the Moment Equations

D. Characteristics of the Moment Equations

In this Appendix we want to derive the consitions for the coefficients in the moment equations which must be
fulfilled to be of hyperbolic type. This will yield constraints for the choice of the Eddimix-Parameter ϵ.

This notation in this Appendix, which is copied from the work of Christian Friedl, is slightly different from the
one in the main Sections. E.g., we omit the tilde, i.e. J = J̃ = r2J,H = H̃ = r2H,K = K̃ = r2K,N = Ñ = r2N.
Therefore we first briefly repeat the equations.

∂H(r, x)
−∂r +

(
v′(r) − v(r)

r

)
∂K(r, x)
∂x

+
v(r)

r
∂J(r, x)
∂x

= (J(r, x) − S (r, x)) κ(r, x),

∂(qK)(r, x)
−q(r, x)∂r

+

(
v′(r) − v(r)

r

)
∂N(r, x)
∂x

+
v(r)

r
∂H(r, x)
∂x

= κ(r, x)H(r, x),

with
J(r, x) : 0. moment
H(r, x) : 1. moment
K(r, x) : 2. moment
N(r, x) : 3. moment
S (r, x) : sourcefunction
v(r) : velocity > 0
v′(r) :velocity gradient > 0
q(r, x) : sphericity factor > 0
f (r, x) : K

J Eddingtonfactor 0 < f < 1
g(r, x) : N

H+ϵJ another Eddington factor
ϵ(r): Eddimix parameter.

Respectively in a form which only contains the moments J and H:

∂H(r, x)
−∂r +

(
v′(r) − v(r)

r

)
∂( f J)(r, x)
∂x

+
v(r)

r
∂J(r, x)
∂x

= (J(r, x) − S (r, x)) κ(r, x),

∂(q f J)(r, x)
−q(r, x)∂r

+

(
v′(r) − v(r)

r

)
∂[g(H + ϵJ)](r, x)

∂x
+
v(r)

r
∂H(r, x)
∂x

= κ(r, x)H(r, x),
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The first equation is called the 0.moment equation, and the second one is called the 1.moment equation.
Building the linear combination (1) + λ(0) gives

∂(q f J)
q∂r

+

(
v

r
− dv

dr

)
∂

∂x

[
g(H + ϵJ)

]
− v

r
∂H
∂x

+λ

{
∂H
∂r
+

(
v

r
− dv

dr

)
∂( f J)
∂x
− v

r
∂J
∂x

}

= −κH + λκ(S − J).

This can be written as

∂(q f )
q∂r

J + f
∂J
∂r

+

(
v

r
− dv

dr

)
×

[
∂g

∂x
H + g

∂H
∂x
+ ϵJ
∂g

∂x
+ ϵg
∂J
∂x

]
− v

r
∂H
∂x

+λ

{
∂H
∂r
+

(
v

r
− dv

dr

) (
∂ f
∂x

J + f
∂J
∂x

)
− v

r
∂J
∂x

}

= −κH + λκ(S − J). (528)

Note, that

κ(J − S ) = κJ − η = (κnoth + κTh)J − ηTh − ηnoth = κnothJ − ηnoth.

Sorting by derivatives we obtain

f Jr + λHr +

[(
v

r
− dv

dr

)
g − v

r

]
Hx

+

[(
v

r
− dv

dr

)
ϵg +

(
v

r
− dv

dr

)
λ f − λv

r

]
Jx

+

[
∂(q f )
q∂r

+ λ

(
v

r
− dv

dr

)
∂ f
∂x
+ λκnoth +

(
v

r
− dv

dr

)
ϵ
∂g

∂x

]
J

+

[(
v

r
− dv

dr

)
∂g

∂x
+ κ

]
H − ληnoth = 0, (529)

and with the abbreviations
V := vr > 0
G := dv

dr − vr
F := fG + V > 0
D := gG + V > 0

(F is greater than zero because 0 < f < 1, D is greater than zero because of the "Eddireset condition"), we achieve the
following result

f Jr + λHr − DHx − [
Gϵg + λF

]
Jx

+

[
∂(q f )
q∂r

+ λ

(
κnoth −G

∂ f
∂x

)
−Gϵ

∂g

∂x

]
J

+

[
κ −G

∂g

∂x

]
H − ληnoth = 0. (530)

It’s possible to simplify the term with the sphericity factor q:

∂(q f )
q∂r

=
∂ f
∂r
+

f
q
∂q
∂r
, (531)
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D. Characteristics of the Moment Equations

the sphericity factor is implicitly defined as follows

∂ln(r2q)
∂r

=
3 f − 1

f r
.

The lhs gives
1

r2q

[
2rq + r2 ∂q

∂r

]
=

2
r
+

1
q
∂q
∂r
,

this leads to the relation
f
q
∂q
∂r
=

f − 1
r
.

So we obtain the final representation

f Jr + λHr − DHx − [
Gϵg + λF

]
Jx

+

[
∂ f
∂r
+

f − 1
r
+ λ

(
κnoth −G

∂ f
∂x

)
−Gϵ

∂g

∂x

]
J

+

[
κ −G

∂g

∂x

]
H − ληnoth = 0. (532)

To get the value of of the scaling factor λ and something more, a short insertion:
Consider a function u, which depends of 2 variables r and x, which are parametrized by a parameter σ, i. e.

u = u(r(σ), x(σ)). (533)

The derivative gives
du
dσ
= ur

dr
dσ
+ ux

dx
dσ
. (534)

So, every linearcombination aur + bux can be interpreted as differentating u to σ along the curve (r(σ), x(σ)). The slope
of this curve in the x − r plane is given by

dr
dx
=

dr
dσ
dx
dσ

=
ṙ
ẋ
=

a
b
. (535)

Characteristic curves of 2 functions u1(r, x) and u2(r, x) have the property, that the slope dr
dx is the same (this slope gives

a so called characteristic direction).
The following equation delivers the slope of the characteristics

dr
dx
=

a1

b1
=

a2

b2
. (536)

In our case, we set u1 = J , u2 = H and from (532) we can read off the slope of our characteristic curves

dr
dx
=

f
−Gϵg − λF =

λ

−D
. (537)

This leads to an quadratic equation for the scaling factor λ

λ2F + λGϵg − D f = 0, (538)

with the solutions

λ+ =
−Gϵg +

√
X

2F
> 0, (539)

λ− =
−Gϵg − √X

2F
< 0, (540)
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and
X = (Gϵg)2 + 4DF f . (541)

The system of differential equations is called of hyperbolic type, if there real characteristics exist.

Obviously it is sufficient for the discriminant X to be real if D, F and f are positive. Since J > 0 and H < J, this is sure
for f = H/J and F = f V ′ + (1 − f )V .

For D = gG + V being always positiv, however, we must demand a large enough ϵ. This is exactly the same condition
that we have already derived in order to avoid singular coefficients in the moment equations, see Eq. (204).
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E. Conversion, constants, formulae

E.1. Constants and conversions

1 cm = 108 Å (542)
1µ = 105 Å (543)

1 Å =
1.239842 × 104

1 eV
(544)

1 pc = 3.085677 × 1016 m = 3.09 × 1018 cm = exp(18.4894) cm (545)
1 Ryd = 13.6 eV · 1.6022 × 10−19 C/6.626 × 10−34 Js/2.9979 × 1010 cm s−1 [ cm−1] (546)

= 1.097375 × 105 cm−1 (547)
1 W m−2 = 103 erg s−1 cm−2 | 1 erg s−1 cm−2 Å = 10−2 W m−2 nm−1 (548)

1 W m−2 µ−1 = 10−2 erg s−1 cm−2 Å−1 (549)

1 Jy = 10−26 W Hz−1 m−2 = 10−23 erg s−1 cm−2 Hz−1 = 10−23 λ
2

c
erg s−1 cm−2 Å−1 (550)

EB−V = 0.826 Eb−v = 0.77 c(Hβ) (R = 3.1) (551)
L⊙ = 3.846 × 1026 W = 3.846 × 1033 erg s−1 = 33.585 log( erg s−1) (552)
R⊙ = 69.57 × 109 cm = 10.842 log( cm) (553)
M⊙ = 1.989 × 1033 g = 33.299 log( g) (554)

1 M⊙ a−1 = 6.303 × 1025 g s−1 = 25.80 log( g s−1) (555)
h = 6.6237 × 10−27 erg s = −26.179 log( erg s) (556)

kB = 1.3803 × 10−16 erg grad = 8.6173303 × 10−5 eV/K = −15.860 log( erg grad) (557)
hc = 1.98648 × 10−8 erg Å (558)
hc
kB

= 1.4385 cm grad = 0.1579 log( cm grad) (559)

σSB = 5.671 × 10−5 erg cm−2 s−1 grad−4 = −4.2463 log( erg cm−2 s−1 grad−4) (560)

σ0 =
π e2

0

mec
= 0.026537 cm2 Hz (561)

G = 6.67384 × 10−8 cm3 g−1 s−2 (562)
(563)

E.2. Formulae

DM = m − M = 5 log10 d[ pc] − 5 ⇔ d[pc] = 10DM/5+1 (564)

Rt = R∗


v∞

2500 kms−1

/
Ṁ
√

D
10−4 M⊙ a−1


2/3

(565)

vesc = 618 km s−1

√
(M/M⊙)
(R/R⊙)

(566)

= 618 km s−1 4
√

M/M⊙ · 10
1
4 (log g−4.4371) (567)

= 618 km s−1
√

10log g−4.4371 R/R⊙ (568)

log g = 4.4382 cm s−2 + log
(

M/M⊙
(R/R⊙)2

)
(569)

M
M⊙

= 10log g−4.4371+2 log(R/R⊙) (570)

(571)
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E.2. Formulae

R
R⊙

= 10
1
2 (log(L/L⊙)−4 log Teff+15.05) (572)

= 10
1
2 (log(M/M⊙)−log g+4.4371) (573)

Teff =

4√L/L⊙√
R/R⊙

103.7625 =
10

1
4 log L/L⊙
√

R/R⊙
103.7625 (574)

vth =

√
2kBT
mA

= 0.1285 km s−1

√
T/K

A
=
√

2 a

a = isothermal sound speed =

√
5
3

p
ϱ

 (575)

e.g. O star: T = 50 kK, A = 1 (hydrogen)⇒ vth = 29 km s−1 (576)

Re-scaling grid models for a different luminosity L∗, with ∆ log L∗ = log L∗ − log L′∗:

R∗ ∼ L1/2 ⇒ R∗ = R∗ ′
(
10∆ log L∗

)1/2
(577)

Ṁ ∼ L3/4 ⇒ log Ṁ = log Ṁ ′ +
3
4
∆ log L∗ (578)

If you want to convert our T∗ to the often used T2/3, i.e. the temperature at the radius R2/3, where τRoss = 2/3:

T2/3 = T∗

√
R∗

R2/3
(579)
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F. Contour plots for model grids

This is a more or less complete description how to generate a contour plot over a given grid of models, where T∗ is on
the x-axis, Rt on the y-axis, and the iso-lines (z-axis) indicate one of the following quantities:

• the equivalent width of a spectral line, e.g. He i 5875.7, for every model of the grid as a function of (T∗, Rt),

• or the ratio of the equivalent widths of two different spectral lines, e.g. EW(He ii 4686) / EW(He i 5875.7) as a
possible indicator for T∗, for every model of the grid as a function of (T∗, Rt),

• or the peak value of a spectral line in the continuums normalized form, e.g. the peak value of He i 5875.7, for
every model of the grid as a function of (T∗, Rt),

• or the ratio of the peak values for two different spectral lines, e.g. EW(He ii 4686) / EW(He i 5875.7) as a possible
indicator for T∗, for every model of the grd as a function of (T∗, Rt).

F.0.1. How to create contur plots

1. gridformal: The formal-output files:

• Create a directory, e.g. grid.dir that contains subdirectories (or symbolic links to directories) with the file
MODEL, so that all MODEL files can be found by
ls .../grid.dir/*/MODEL. The names of the subdirectories (or symbolic links) should refer to our usual
grid spacing of the parameters, e.g. “14-17”.

• Edit the job gridformal in your ~/work/wrjobs, e.g. gridformal1: set the path to the grid directory (see
above) and the path to the output directory, i.e. the directory where the files formal.out and formal.plot
for every model of the grid are written to,
e.g. formal_HeI_5876.dir. Note, that the names of the plot and .out files are the names of the original
grid subdirectories, e.g. 17-14.plot.

• The necessary files for a the normal formal job i.e. the correct FEDAT_FORMAL, DATOM, and FORMAL_CARDS
with the respective line(s) or multiplett only, must exist in the wrdata directory associated with the gridformal
job, for instance wrdata1 for gridformal1.
For larger grids (i.e. with many models), it may be time-saving to set the option NOREDIS7 in FORMAL_CARDS.
Furthermore, the equivalent width of a line, measured in the observed spectrum is usually measured without
the scattering wings.

• The command
sub gridformal1
starts a sequence of formal jobs, one for each model of the grid. The status of the gridformal job can be
monitored by dint of the command
stat tlog gridformal1 .
The MODEL files are not copied to the wrdata(1) directorz, but instead, a symbolic link is created. When
the gridformal job has finished, this link targets to the nonexistent file “finished”.

After a successful run of gridformal, the output directory contains the formal.plot and formal.out files.
Only the latter are needed for the next step.

2. my_isoex Collecting the data

7no photon redistribution due to electron scattering
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• The file iso.part1 is needed in the output directory. For instance, in the case of He ii 4686 it may have the
following content:
PEAK
DIVISORDIRECTORY = ~/models.dir/formal_HeI_5876
** Box for isoplots:
RRBOX
* scale min max tick schrift wert
xkas 0. 4.45 5.3 0.10 0.1 0.0
ykas 0. -0.3 1.9 0.10 0.5 0.0
xlet=\CENTER\log (&IT&N\* / kK)
ylet=\CENTER\log (&IR&N&Tt&M / &IR&N\S )
logx
logy
*PPCM 20.0
PPCM 40.0
grid 8,0.2
end
----------------------------------------------------
*NAME:
line
TYPE : COMM
Kasten=RRBOX
*
HEADER nodiel-wngrid: He II 4686
WRPLOT 5 0.1
MONO
SLOPE -0.6
STEP= 30.00
*STEP= 1.00
* first number = number of the following parameters
* but is not longer evaluated
*--------------------------------------------
*level 0 -1 -2 -4 -10 -20 -40 -80
format=f5.0

• Edit the macro for the plotfile header and the contour increment in iso.part1 if necessary.

• Change to the output directory and execute my_isoex. This program is available as a Fortran binary for
DEC Alpha (~wrh/libraries.dir/my_isoex.exe) and Linux 64Bit ( ~htodt/bin/my_isoex.exe).
However, more flexible and transparent (easy to edit) is the alternative bash-script my_isoex.bash (e.g.
from ~htodt/proc.dir/my_isoex.bash), with following abilities:

– by setting the keyword PEAK (at the beginning of any line in iso.part1, not case sensitive) or as a
command line argument (at arbitrary position and not case sensitive), the peak values instead of the
equivalent widths are use;

– by providing an additional output directory from another spectral line, either within iso.part1 with
leading keyword divisordirectory:
divisordirectory=~/models.dir/formal_HeI_5876
or simply as another command line argument, the ratio of the equivalent widths of the current directory
divided by the divisordirectory is used for the contour plot. Analogously, the peak values are used, if
keyword PEAK is set.

my_isoex or my_isoex.bash creates the file isoex.iso.

• In the last step, the Fortran program isopro.exe processes the file isoex.iso and produces the WRplot
file isopro.plot with the intended contour plot is created. The program isopro.exe works as follows:

– firstly it asks for the input file, if left blank, the file isoexe.iso in the current directory is taken as
input file - press ENTER. You have to press ENTER once more and than terminate the program by
“CTRL + D”.
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F. Contour plots for model grids

– the following keywords are interpreted by isopro.exe:

STEP step widths, determines number of iso lines between minimum and maximum (default is 10)

level alternatively, prescribe the values for the isolines to plot

FORMAT format of the isoline labels, that are the values for EW or peak height (FORTRAN syntax), e.g.
FORMAT=f5.1
default: f5.2 (set in subroutine INCOM in variable ISOFOR)

xkas description of the x-axis scaling (WRplot syntax)

ykas description of the x-axis scaling (WRplot syntax)

xlet label for the x-axis (WRplot syntax)
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