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The two-body problem
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Equations of motion I

We remember (?)

The Kepler’s laws of planetary motion (1619)

1 Each planet moves in an elliptical orbit where the Sun is
at one of the foci of the ellipse.

2 The velocity of a planet increases with decreasing
distance to the Sun such, that the planet sweeps out
equal areas in equal times. (Consequence of which law?)

3 The ratio P2/a3 is the same for all planets orbiting the
Sun, where P is the orbital period and a is the semimajor
axis of the ellipse. (What defines value of ratio?)

SOa

The 1. and 3. Kepler’s law describe the shape of the orbit (Copernicus: circles), but not the
time dependence ~r(t). This can in general not be expressed analytically by elementary
mathematical functions (see below).
Therefore we will try to find a numerical solution.
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Equations of motion II

Earth-Sun system
Step 1: → two-body problem → one-body problem via reduced mass of lighter body (partition
of motion) via Newton’s 3. & 2. law:

~F12 = −~F21 ⇒ m1~a1 = −m2~a2 ⇒ ~a2 = −m1

m2
~a1 (1)

~arel := ~a1 − ~a2 =

(
1 +

m1

m2

)
~a1 =

m2 + m1

m1m2
m1~a1 = µ−1 ~F12 (2)

=
d2~xrel

dt2
=

d2

dt2
(~x1 − ~x2) (3)

⇒ µ =
Mm

m + M
=

m
m
M + 1

(4)

as mE � M� is µ ≈ m, i.e. motion is relative to the center of mass ≡ only motion of m. Set
point of origin (0, 0) to the source of the force field of M.
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Equations of motion III

Hence: Newton’s 2. law (with m ≈ µ):

m
d2~r

dt2
= ~F (5)

m
d2

dt2

 x
y
z

 =

 Fx
Fy
Fz

 (6)

and force field according to Newton’s law of gravitation :

~F = −GMm

r3 ~r (7) Fx
Fy
Fz

 = −GMm

r3

 x
y
z

 (8)
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Equations of motion IV

Kepler’s laws, as well as the assumption of a central force imply → conservation of angular
momentum →motion is only in a plane (→Kepler’s 1st law).
So, we use Cartesian coordinates in the xy -plane:

Fx = −GMm

r3 x (9)

Fy = −GMm

r3 y (10)

The equations of motion are then:

d2x

dt2
= −GM

r3 x (11)

d2y

dt2
= −GM

r3 y (12)

where r =
√

x2 + y2 (13)
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Excursus: Analytic solution of the Kepler problem I

To derive the analytic solution for equation of motion ~r(t) → use polar coordinates: φ, r
1 use conservation of angular momentum `:

µr2φ̇ = ` = const. (14)

φ̇ =
`

µr2 (15)

2 use conservation of total energy (~v = ṙ ~er + r φ̇ ~eφ →Ekin = µ
2 (ṙ2 + r2φ̇2)):

E =
1
2
µṙ2 +

`2

2µr2 −
GMµ

r
(16)

ṙ2 =
2E
µ
− `2

µ2r2 +
2GM
r

(17)

→ two coupled equations for r and φ
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Excursus: Analytic solution of the Kepler problem II
3 decouple Eq. (15), use the orbit equation r = α

1+e cosφ with numeric eccentricity e

(= f1 O/a, Value for circle?) and α ≡ `2

GMµ2 gives separable equation for φ̇

φ̇ =
dφ

dt
=

G 2M2µ3

`3
(1 + e cosφ)2 (18)

t =

∫ t

t0

dt ′ = k

∫ φ

φ0

dφ′

(1 + e cosφ′)2 = f (φ) (19)

right-hand side integral can be looked up in, e.g., Bronstein:

t/k =
e sinφ

(e2 − 1)(1 + e cosφ)
− 1

e2 − 1

∫
dφ

1 + e cosφ
(20)

→ e 6= 1: parabola excluded; the integral can be further simplified
for the hyperbola (e > 1):∫

dφ

1 + e cosφ
=

1√
e2 − 1

ln
(e − 1) tan φ

2 +
√
e2 − 1

(e − 1) tan φ
2 −
√
e2 − 1

(21)
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Excursus: Analytic solution of the Kepler problem III

for the ellipse (0 ≤ e < 1):∫
dφ

1 + e cosφ
=

2√
1− e2

arctan
(1− e) tan φ

2√
1− e2

(22)

→Eq. (20) with Eqn. (22)& (21): t(φ) must be inverted to get φ(t) !
(e.g., by numeric root finding)

→ only easy for e = 0 → circular orbit

t = k

∫
dφ′ = kφ→ φ(t) = k−1t =

G 2M2µ3

`3
t (23)

and from orbit equation (for e = 0) r = α = `2

GMµ2 = const.

For the general case, it is much easier to solve the equations of motion numerically.
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Excursus: The Kepler equation I

Alternative formulation for time dependency in case of an ellipse (0 ≤ e < 1):

A Π

Q

ψ

S

P

φ

O Ra

b

Orbit, circumscribed by auxiliary circle with
radius a (= semi-major axis); true anomaly φ,
eccentric anomaly ψ. Sun at S , planet at P ,
circle center at O. Perapsis (perhelion) Π and
apapsis (aphelion) A:

consider a line normal to AΠ through P on
the ellipse, intersecting circle at Q and AΠ
at R .
consider an angle ψ (or E , eccentric
anomaly) defined by ∠ΠOQ
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Excursus: The Kepler equation II

Then: position in polar coordinates (r , φ) of the body P can be described in terms of ψ:

xS(P) = r cosφ = a cosψ − ae (ae = OS) (24)

yS(P) = r sinφ = a sinψ
√

1− e2 (= PR = QR
√

1− e2 = a sinψ
√

1− e2) (25)

(with PR/QR = b/a =
√
1− e2), square both equations and add them up:

r = a(1− e cosψ) (26)

Now, to find ψ = ψ(t), need relationship between dφ and dψ, so combine Eqn. (25)& (26)

sinφ =
b sinψ

a(1− e cosψ)
|d/dt & quotient rule

(u
v

)′
=

u′v − v ′u

v2 (27)

cosφdφ =
b

a

(cosψ(1− e cosψ)dψ − e sin2 ψdψ)

(1− e cosψ)2 (28)

dφ =
b

a(1− e cosψ)
dψ (29)
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Excursus: The Kepler equation III

together with the angular momentum dφ = `
µr2

dt, where r is replaced by Eq. (26):

(1− e cosψ)dψ =
`

µab
dt (30)

= set t = 0→ ψ(0) = 0, integration: (31)

ψ − e sinψ =
`t

µab
(32)

use Kepler’s 2nd law πab
P = `

2µ with πab the area of the ellipse, we get `/(µab) = 2π/P ≡ ω
(orbital angular frequency), so:

Kepler’s equation for the eccentric anomaly ψ (or E )

ψ − e sinψ = ωt (33)

E − e sinE = M (astronomer’s version) (34)

M: mean anomaly = angle for constant angular velocity = 2π
t − tΠ

P
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Excursus: The Kepler equation IV

Kepler’s equation E (t)− e sinE (t) = M(t)

is a transcendental equation for the eccentric anomaly E (t)

can be solved by, e.g., Newton’s method
because of E = M + e sinE , also (Banach) fixed-point iteration possible (slow, but
stable), already used by Kepler (1621):

E = M ;
for (int i = 0 ; i < n ; ++i)

E = M + e * sin(E) ;

can be solved, e.g., by Fourier series →Bessel (1784-1846):

E = M +
∞∑
n=1

2
n
Jn(ne) sin(nM) (35)

Jn(ne) =
1
π

∫ π

0
cos(nx − ne sin x)dx (36)
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Circular orbits

A special case as a solution of the equations of motion (11)& (12) is the circular orbit. Then:

r̈ =
v2

r
(37)

mv2

r
=

GMm

r2 (equilibrium of forces) (38)

⇒ v =

√
GM

r
(39)

The relation (39) is therefore the condition for a circular orbit.
Moreover, Eq. (39) yields together with

P =
2πr
v

(40)

⇒ P2 =
4π2

GM
r3 (41)
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Astronomical units

For our solar system it is useful to use astronomical units (AU):
1 AU = 1.496× 1011 m

and the unit of time is the (Earth-) year
1 a = 3.156× 107 s (≈ π × 107 s),

so, for the Earth P = 1 a and r = 1AU
Therefore it follows from Eq. (41):

GM =
4π2r3

P2 = 4π2 AU3 a−2 (42)

I.e. we set GM ≡ 4π2 in our calculations.
Advantage: handy numbers!
Thus, e.g. r = 2 is approx. 3× 1011 m and t = 0.1 corresponds to 3.16 × 106 s, and v = 6.28 is
roughly 30 km/s.
cf.: our rcalc program with “solar units” for R , T , L; natural units in particle physics
~ = c = kB = ε0 = 1 → unit of m, p, T is eV (also for E )
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The Euler method I

The equations of motion (11)& (12):

d2~r

dt2
= −GM

r3 ~r (43)

are a system of differential equations of 2nd order, that we shall solve now.
Formally: integration of the equations of motion to obtain the
trajectory ~r(t).

Step 1: reduction
Rewrite Newton’s equations of motion as a system of differential equations of 1st order (here:
1d):

v(t) =
dx(t)

dt
& a(t) =

dv(t)

dt
=

F (x , v , t)

m
(44)

H. Todt (UP) Computational Astrophysics SoSe 2025, 28.5.2025 16 / 37



The Euler method II

Step 2: Solving the differential equation
Differential equations of the form (initial value problem)

dx

dt
= f (x , t), x(t0) = x0 (45)

can be solved numerically (discretization1) by as simple method:

Explicit Euler method (“Euler’s polygonal chain method”)
1 choose step size ∆t > 0, so that tn = t0 + n∆t, n = 0, 1, 2, . . .
2 calculate the values (iteration):

xn+1 = xn + f (xn, tn)∆t where xn = x(tn) etc.

Obvious: The smaller the step size ∆t, the more steps are necessary, but also the more
accurate is the result.

1I.e. we change from calculus to algebra, which can be solved by computers.
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The Euler method III

Why “polygonal chain method”?

x0

x1

x2

x3

x4

x5

x6

x7

x8

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10

t

x

Exact solution (–) and numerical solution (–).
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The Euler method IV

Derivation from the Fundamental theorem of calculus

integration of the ODE
dx

dt
= f (x , t) from t0 till t0 + ∆t (46)∫ t0+∆t

t0

dx

dt
dt =

∫ t0+∆t

t0

f (x , t)dt (47)

⇒ x(t0 + ∆t)− x(t0) =

∫ t0+∆t

t0

f (x(t), t)dt (48)

apply rectangle rule for the integral:∫ t0+∆t

t0

f (x(t), t)dt ≈ ∆t f (x(t0), t0) (49)

Equating (48) with (49) yields Euler step

x(t0 + ∆t) = x(t0) + ∆t f (x(t0), t0) (50)

H. Todt (UP) Computational Astrophysics SoSe 2025, 28.5.2025 19 / 37



The Euler method V

Derivation from Taylor expansion

x(t0 + ∆t) = x(t0) + ∆t
dx

dt
(t0) +O(∆t2) (51)

use
dx

dt
= f (x , t) (52)

x(t0 + ∆t) = x(t0) + ∆t f (x(t0), t0) (53)

while neglecting term of higher order in ∆t

(In which step did we neglect these higher order terms in the derivation from the fundamental theorem of
calculus?)
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The Euler method VI

For the system Eqn. (44)

v(t) =
dx(t)

dt
& a(t) =

dv(t)

dt
=

F (x , v , t)

m

this means

Euler method for solving Newton’s equations of motion

vn+1 = vn + an∆t = vn + an(xn, t)∆t (54)
xn+1 = xn + vn∆t (55)

We note:

the velocity at the end of the time interval vn+1 is calculated from an, which is the
acceleration at the beginning of the time interval

analogously xn+1 is calculated from vn
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The Euler method VII

Example: Harmonic oscillator F = ma = −kx
#include <iostream>
#include <cmath>
using namespace std ;

// set k = m = 1
int main () {

int n = 10001, nout = 500 ;
double t, v, v_old, x ;
double const dt = 2. * M_PI / double(n-1) ;

x = 1. ; t = 0. ; v = 0. ;

for (int i = 0 ; i < n ; ++i) {
t = t + dt ; v_old = v ;
v = v - x * dt ;
x = x + v_old * dt ;
if (i % nout == 0) // print out only each nout step

cout << t << " " << x << " " << v << endl ;
}

return 0 ;
}
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The Euler-Cromer method

We will slightly modify the explicit Euler method, but such that we obtain the same differential
equations for ∆t → 0.
For this new method we use vn+1 for calculating xn+1:

Euler-Cromer method (semi-implicit Euler method)

vn+1 = vn + an∆t (as for Euler) (56)
xn+1 = xn + vn+1∆t (57)

Advantage of this method:
as for Euler method, x , v need to be calculated only once per step
especially appropriate for oscillating solutions, as energy is conserved much better (see
below)
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Excursus: Proof of stability for the Euler-Cromer method I

Proof of stability (Cromer 1981):

vn+1 = vn + Fn∆t (= vn + a(xn)∆t, m = 1) (58)
xn+1 = xn + vn+1∆t (59)

Without loss of generality, let v0 = 0. Iterate Eq. (58) n times:

vn = (F0 + F1 + . . .+ Fn−1)∆t = Sn−1 (60)
xn+1 = xn + Sn∆t (61)

Sn := ∆t
n∑

j=0

Fj (62)

Note that for explicit Euler Eq. (61) is xn+1 = xn + Sn−1∆t.
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Excursus: Proof of stability for the Euler-Cromer method II

The change in the kinetic energy K between t0 = 0 and tn = n∆t is because of Eq. (58) and
v0 = 0

∆Kn = Kn − K0 = Kn =
1
2
S2
n−1 (63)

The change in the potential energy U:

∆Un = −
∫ xn

x0

F (x)dx (64)
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Excursus: Proof of stability for the Euler-Cromer method III

Now use the trapezoid rule for this integral

∆Un = −1
2

n−1∑
i=0

(Fi + Fi+1)(xi+1 − xi ) (65)

= −1
2

∆t
n−1∑
i=0

(Fi + Fi+1)Si (→ Eq. 61) (66)

= −1
2

∆t2
n−1∑
i=0

i∑
j=0

(Fi + Fi+1)Fj (→ Eq. 62) (67)
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Excursus: Proof of stability for the Euler-Cromer method IV

As j runs from 0 to i (instead of i − 1):
→∆Un has same squared terms as ∆Kn, using Sn = ∆t

∑n
j=0 Fj :

∆Un = −1
2

∆t2

n−1∑
i=0

F 2
i +

n−1∑
i=0

i−1∑
j=0

FiFj +
n∑

i=1

i−1∑
j=0

FiFj

 (68)

= −1
2

∆t2

n−1∑
i=0

F 2
i + 2

n−1∑
i=0

i−1∑
j=0

FiFj + Fn

i−1∑
j=0

Fj

 (69)

= −1
2
S2
n−1 −

1
2

∆t FnSn−1 (70)

Hence the total energy changes as

∆En = ∆Kn + ∆Un =
1
2
S2
n−1 −

1
2
S2
n−1 −

1
2

∆t FnSn−1 (71)

= −1
2

∆t FnSn−1 = −1
2

∆t Fnvn (72)
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Excursus: Proof of stability for the Euler-Cromer method V

For oscillatory motion: vn = 0 at turning points, Fn = 0 at equilibrium points
→∆En = −1

2∆t Fnvn is 0 four times of each cycle →∆En oscillates with T/2.
As Fn and vn are bound →∆En is bound, more important: average of ∆En over half a cycle
(T )

〈∆En〉 =
∆t2

T

1
2T/∆t∑
n=0

Fnvn '
∆t

T

∫ T
2

0
F v dt =

∆t

T

∫ x(T
2 )

x(0)
F dx (73)

= −∆t

T
(U(T/2)− U(0)) = 0 (74)

as U has same value at each turning point
→ energy conserved on average with Euler-Cromer for oscillatory motion

�
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Excursus: Proof of stability for the Euler-Cromer method VI

For comparison: with explicit Euler method ∆En contains term
∑n−1

i=0 F 2
i which increases

monotonically with n and

∆En = −1
8

∆t2
(
F 2

0 − F 2
n

)
(75)

with v0 = 0 →F 2
0 ≥ F 2

n →∆En oscillates between 0 and −1
8∆t2F 2

0 per cylce.
Energy is bounded as for Euler-Cromer, but 〈∆En〉 6= 0
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Stability analysis of the Euler method I

Consider the following ODE
dx

dt
= −cx (76)

with c > 0 and x(t = 0) = x0. Analytic solution is x(t) = x0 exp(−ct). The explicit Euler
method gives:

xn+1 = xn + ẋn∆t = xn − cxn∆t = xn(1− c∆t) (77)

So, every step will give (1− c∆t) and after n steps:

xn = (1− c∆t)nx0 = (a)nx0 (78)

But, with a = 1− c∆t:

0 < a < 1 ⇒ ∆t < 1/c monotonic decline of xn (correct)
−1 < a < 0 ⇒ 1/c < ∆t < 2/c oscillating decline of xn

a < −1 ⇒ ∆t > 2/c oscillating increase of xn !
(79)
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Stability analysis of the Euler method II

---- a = 0.5

---- a = -0.5

---- a = -1.01

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

1 2 3 4 5 6 7 8 9 10

n
x

n

Stability of the explicit Euler method for different a = 1− c∆t

In contrast, consider implicit Euler method (Euler-Cromer):

xn+1 = xn + ẋn+1∆t = xn − cxn+1∆t (80)

⇒ xn+1 =
xn

1 + c∆t
(81)

declines for all ∆t (!)
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Higher-Order Taylor series method I

In Taylor approximation Eq. (51) for x ′ = f (x , t) we neglected terms of O(∆t2):

x(t0 + ∆t) = x(t0) + ∆t x ′(t0) +
∆t2

2!
x ′′(t0) +

∆t3

3!
x (3)(t0) +

∆t4

4!
x (4)(ζ0) (82)

with t0 < ζ0 < t1, nectlect this term, then difference equation:

→ x(t0 + ∆t) = x(t0) + ∆t f (x0, t0) +
∆t2

2
f ′(x0, t0) +

∆t3

6
f ′′(x0, t0) (83)

Using chain rule for f ′ with partial derivatives ft etc.:

x ′ = f (x , t) (84)

x ′′ = f ′ = ft
dt

dt
+ fx x

′ = ft + fx f (85)

x (3) = f ′′ = ftt + 2ftx f + fxx f
2 + ft fx + f 2

x f (86)

→ replace f ′, f ′′ in Eq. (83) → third-order Taylor’s method
problem: compute and find partial derivatives of f (for Newton: ∂x ,v ,tF (x , v , t))
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Higher-Order Taylor series method II

Hence: replace
∑p

j
∆t j

j! f (j−1)(tn, xn) with some function ak1 + bk2:

xn+1 = xn + ak1 + bk2 (87)
k1 = ∆t f (tn, xn) (88)
k2 = ∆t f (tn + α∆t, xn + βk1) (89)

and determine constants a, b, α, β so that error in Eq. (87) is minimum
→Eq. (87) =̂ Taylor series:

xn+1 = xn + ∆t f (tn, xn) +
∆t2

2
f ′(tn, xn) + . . . (90)

with f ′ = ft + fx f : (91)

xn+1 = xn + ∆t f +
∆t2

2
(ft + fx f ) +O(∆t3) (92)

Now, Taylor expansion of f (tn + α∆t, xn + βk1):

f (tn + α∆t, xn + βk1) = f (tn, xn) + α∆t ft + βk1fx +O(∆t2) (93)
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Higher-Order Taylor series method III
→ combine Eq. (93) with Eqn. (87 - 89)

xn+1 = xn + ak1 + bk2 = a∆t f (tn, xn) + b∆t f (tn + α∆t, xn + βk1) (94)

= xn + ∆t(a + b)f + b∆t2(αft + βfx f ) (95)

!
= xn + ∆t f +

∆t2

2
(ft + fx f ) (→Eq. (51)) (96)

⇒ a + b = 1 & α = β =
1
2b

(97)

→ 3 equations for 4 unknowns → one variable can be chosen arbitrarily, e.g.,

a = b =
1
2

& α = β = 1 (98)

→modified Euler method (so-called Runge-Kutta method of order 2)

xn+1 = xn +
1
2

(k1 + k2) = xn +
1
2

(∆t f (tn, xn) + ∆t f (tn + ∆t, xn + ∆t k1)) (99)

xn+1 = xn +
∆t

2
(f (tn, xn) + f (tn + ∆t, xn + ∆t f (tn, xn))) (100)

(analogously: construct RK4-method → see later)
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Higher-Order Taylor series method IV

Alternative choice: α = β = 1/2, a = 0, b = 1 →midpoint method

xn+1 = xn + ak1 + bk2 (101)

= xn + k2 = xn + ∆t f

(
tn +

1
2

∆t, xn +
1
2
k1

)
(102)

xn+1 = xn + ∆t f

(
tn +

∆t

2
, xn +

∆t

2
f (tn, xn)

)
(103)

→ also known as Euler-Richardson method
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The Euler-Richardson method

Sometimes it is better, to calculate the velocity for the midpoint of the interval:

Euler-Richardson method (“Euler half step method”)

an = F (xn, vn, tn)/m (104)

vM = vn + an
1
2

∆t (105)

xM = xn + vn
1
2

∆t (106)

aM = F

(
xM, vM, tn +

1
2

∆t

)
/m (107)

vn+1 = vn + aM∆t (108)
xn+1 = xn + vM∆t (109)

We need twice the number of steps of calculation, but may be more efficient, as we might
choose a larger step size as for the Euler method.
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