Exercise 13
Fortran, Linear Algebra

1. Task Recursion (3 P)
 Recursion can be easily and clearly demonstrated for the example of calculating the factorial \(n! \). A small Fortran program should read in from STDIN an INTEGER number and calculate for it the factorial with help of a recursive function call.

2. Task Solving systems of linear equations (10 P)
 Let
 \[
 A = \begin{pmatrix}
 \pi & \pi & \ldots & \pi \\
 0 & \pi & \ldots & \pi \\
 0 & 0 & \pi & \ldots \\
 0 & 0 & 0 & \ldots \\
 \end{pmatrix} \in \mathbb{R}^{n \times n}
 \text{ and } \quad
 b = \begin{pmatrix}
 n \\
 \vdots \\
 \vdots \\
 n \\
 \end{pmatrix} \in \mathbb{R}^n
 \] (1)

 for different values of \(n \geq 1000 \).
 Write a program (C/C++, better in Fortran) that solves \(Ax = b \) for \(x \) numerically
 a) column-wise
 b) row-wise

 and measure the runtime of both versions with help of, e.g., `omp_get_wtime()`. Make \(n \) sufficiently large to get significant different runtimes. Explain the difference.
 \textit{Hint:} While the row-wise version might be straightforward to program (outer loop over first index \(i \) from \(n - 1 \) to 1), the column-wise implementation (outer loop over second index \(j \) from \(n - 1 \) to 1) looks in pseudo code like that:

 \begin{verbatim}
 for j = n-1 ... 1
 for i = 1 ... j
 b[i] = b[i] - a[i][j+1] * x[j]
 x[j] = b[j] / a[j][j]
 \end{verbatim}