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Aims and contents I

Recommended prerequisites:

basic knowledge of programming, especially in C/C++ → e.g., “Tools for Astronomers”

basic knowledge in astrophysics

How to get a certificate of attendance / 6CP/LP/ECTS (=̂ 4 semester periods per week):

without mark, e.g., Master of Astrophysics, module PHY-765: Topics in Advanced
Astrophysics (this module has in total 12 CP! and an oral exam at the end):

→ at least 1./3. of the points of the exercises

Attention!
PULS is strict: It is absolutely necessary to enroll for this lecture until 10.05.2025!

with a mark (other Master courses):
little programming project at the end of the semester

Please note that the focus for this course is on the exercises!
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Aims and contents II

Specialization track “Computational Astrophysics”

the regulations for obtaining the computational astrophysics specialization certificate are as
follows:

1 Computational Astrophysics I (4 SWS, SoSe) :
Computational Astrophysics: Introduction
Computational Astrophysics: Basic Concepts

2 Computational Astrophysics II (3 SWS, WiSe)
Advanced Computational Astrophysics: Concepts and Applications

3 Seminar Computational Astrophysics (2 SWS)
Advanced Computational Astrophysics: Seminar

4 a 4th course of the computational curriculum, e.g.,
Computational Astrophysics: Advanced Programming (2 SWS)
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Aims and contents III

Aims & Contents of CA I:

enhance existing basic knowledge in programming (C/C++)

brief introduction to Fortran → relatively common in astrophysics
work on astrophysical topics which require computer modeling:

solving ordinary differential equations

→ from the two-body problem to N-body simulations
→ stellar structure, the Lane-Emden equation

solving equations: linear algebra, root finding, data fitting

data analysis

→data analysis and simulations
simulation of physical processes

→Monte-Carlo simulations and radiative transfer
+ introduction to parallelization (e.g., OpenMP)
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Computational Astrophysics I

What are computers used for in astrophysics?

control of instruments/telescopes/satellites:

Figure: Multi Unit Spectroscopic Explorer (MUSE), Very Large Array (VLA), James Webb Space
Telescope (JWST)
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Computational Astrophysics II

data analysis / data reduction
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Figure: IDL, 3dCube / FITS, Fourier analysis
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Computational Astrophysics III

modeling / numerical simulations

Figure: N-body simulation, hydrodynamics , Monte-Carlo
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Conventions of used fonts

Meaning of the fonts / shapes

font/shape meaning example

xvzf text to be entered literally man ls
(typewriter) (e.g., commands)

argument place holder for own text file myfile
(italic)
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The computer lab I

User accounts

useful for the lecture: your own account for this computer lab
(room 0.087 & 1.100)

Please, get your own account!
Sysad: Helge Todt, room 2.004

Guest account
→ see left-hand side whiteboard
only valid per computer and in room 0.087

Attention: Unix/Linux is case sensitive!
Hint: You can choose the session type (e.g., Xfce, IceWM) at login screen.
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The computer lab II

Security advice
As soon as you got your own account:

passwd Change the user password
(Enter the command in a terminal, Xterm, Konsole, or similar.)

Change your initial NIS password(!) to a strong password, use
at least 9 characters, comprising of:
capital AND lowercase letters, but not single words
AND numbers
AND special characters (Attention! Mind the keyboard layout!)

e.g., $cPhT-25@comP2 or tea4Pollen+Ahead
But: prefer length over complexity!

The initial password expires after 14 days.
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The computer lab III

Computers:

17 NFS 1 mounted Linux computers (openSUSE 15.4/15.5),
several Intel Core i7-2600K, i7-4770, i7-7700, i7-8700
+ 1 Xeon Gold 6152 44-core compute server

home server (∼user) always-on:

bell mahler weber

room 0.087:

only for lectures

Please, do not eat or drink in this room.

student’s computer lab in room 1.100:

open during the day

b/w printer (500 pages / semester) and color printer (100 pages / semester)
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NFS home directories

NFS server

↙ ↘

NFS client NFS client

NFS server: provides (home) directories (physical on disk)

NFS clients: mount NFS (home) directories in their root directory

As also other users might have their home directory on your computer

Never switch off the computers!
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Linux

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 13 / 577



Operating system

Linux is a derivative of the operating system UNIX. It is a multi-user and multitasking
operating system.

It was written in 1991 as a UNIX for PCs, now available for (almost) every platform, e.g., as
Android or in Wireless routers and under permanent development.

Linux is . . .
for free
open source (program code can also be modified)
the combination of a monolithic1 kernel and (GNU) software
dominant in supercomputers (more than 90%)

1i.e., kernel contains also hardware driver
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Graphical desktop environments

Important X-Window based environments under Linux: GNOME and KDE,
here: Xfce

Desktop environment (session type) can be chosen during local login, e.g., Xfce (nice) or
IceWM (simple)

Desktop environment 6= Linux

Desktop environment: KDE Xfce GNOME . . .

Linux distributions: Ubuntu (Debian) openSUSE . . .
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Important tools/programs

xterm or terminal: input of Linux shell commands, e.g., cd, ls

emacs or kate: editor for ASCII text files, e.g., hello.cpp

g++ or gfortran: gcc compilers, e.g., g++ -o hello hello.cpp
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Shell and shell commands
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Shell and shell commands I

Unix provides by the shell (command line) an extremely powerful tool. Within the shell Unix
commands are executed.

Unix command syntax
command [-option] [argument] <ENTER>

Attention! Mind the blanks!

Open an xterm or similar terminal/console and enter following: (finish each line with <ENTER>):
echo hello
and
echo -n hello
What’s the difference?
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Shell and shell commands II

Tip 1:

Command history
By ↑ (arrow key up) you can repeat the last commands entered in the shell.

A list of the last commands can be shown via the command

history

Tip2:
Moreover, you can save typing by using the TAB key, it completes commands or file names:

ech TAB
is completed to

echo
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Copying text with the mouse

Tip 3:
Linux: Copy by Selection

mark the text with the mouse:

press left mouse button, keep it pressed
move mouse cursor until end of the region you want to mark
→ marked region will be highlighted

marked text was copied to the clipboard

paste the copied text:

move cursor to the intended position
press the middle(!) mouse button (or wheel)
→ the previously copied text was inserted
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Directories
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The filesystem tree

/
|
|-- /home/
| |
| |-- /home/weber/
| |
| |--/home/weber/htodt/
|
|
|-- /etc/
|
|
|-- /dev/

→ root of the FS tree

→ Home directories

→ Homes on weber

→Helge’s home

→ et cetera (config)

→ devices
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Navigation through directories I

pwd shows the current directory path (absolute)
e.g., /home/weber/htodt

cd name change to directory name

. means the current directory

.. the parent directory, e.g., cd ..

/ root of the FS tree

∼ the home directory, e.g., cd ∼ or just cd

∼user the home directory of user
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Navigation through directories II

mkdir name create directory name

rmdir name remove directory name

ls show (list) the content of the directory
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Navigation through directories III

ls show the content of the current directory

ls -a also show hidden files (starting with a .)

ls -l show the file attributes, owner, creation time

File attributes
drwxr-xr-x 2 htodt users 4096 14. Oct 13:35 Documents

d = directory r = readable
w = writeable x = executable
htodt = owner users = group
4096 = size in byte 14. Oct 13:35 = creation time
Documents = name of the file (here: of the directory)

Hint: ls -lc → time of last modification ; ls -lu → time of last access
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Navigation through directories IV

man ls Manual pages (help for the command ls)

info ls Info pages (alternative help for the command ls)

ls −−help Help for the command ls

ls −−help | less if more than one screen page

man page navigation – also less, more

q quit
<SPACE> next page b previous page
/ forward search ? backward search
n next occurrence N previous occurrence
> jump to the end < jump to the beginning
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Working with a text editor

→ to create pure ASCII files (e.g., as input for g++)

emacs file &

Starting programs in background:

The ampersand & at the end of a command let the command run in the background (bg) of the
shell.

Hence, the input line of the shell can be still used.

If forgotten: <CTRL>+z followed by bg <ENTER>.
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The text editor emacs

emacs available on almost every system (must be installed),

window- or terminal-based (emacs -nw)

<STRG>+ x <STRG>+ c close (quit/exit)

<STRG>+ x <STRG>+ s save

<STRG>+ k kill (cut, from cursor to end of line)

<STRG>+ y yank (paste)

<STRG>+ <SPACE> mark

<STRG>+ w cut marked region

<ESC> w copy marked region

<STRG>+ a go to beginning of line

<STRG>+ e go to end of line
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Files
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Files in Unix

Remark: In Linux almost everything is a file (also directories and devices, see ls -l /dev/ ).

mv source target move (rename) files

cp source target copy files

rm file remove file

rm -rf directory remove directory
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Compress files and directories

tar action archive files use action on archive

tar actions

c create archive from file/directory
x extract archive
v show executed actions (verbose)
z zipp archive
t show content of archive
f archive is a file (default: tape device)

Example: Untar a tarball
tar xvzf muCommander.tar.gz

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 31 / 577



Connecting to other

hosts (computers)
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Login on other hosts (computers) I

hostname

this command shows the name of the host
you’re currently logged in

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 33 / 577



Login on other hosts (computers) II

Connection to another host (remote host) under Linux/Unix with the secure shell, within the
same domain (e.g., within the computer lab cluster)

ssh host name

After successful login, in the same terminal/window a shell is shown that runs on the remote
host.
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Login on other hosts (computers) III

The SecureSHell

Client-server system for establishing a secure connection (encrypted), login on the remote host
(remote host = SSH server)

if SSH client and SSH server support X11:

ssh host name -Y

allows the SSH server to open a graphical window (e.g., for evince or kate) on the SSH client

Besides the interactive use of the SSH one can also just let a program run on the remote host
via ssh:

ssh hostname "ls -l"

The connection will be automatically closed after program/command is finished.
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Login on other hosts (computers) IV

Login from outside (e.g., from home):

ssh username@bell.stud.physik.uni-potsdam.de

There are SSH clients for Windows that are for free, e.g., PuTTY. Moreover, MobaXterm,
Xming, X2Go (requires also installation on the server) or with help of the Windows Subsystem
for Linux (requires the installation of Linux distribution) it is also possible to perform a
graphical SSH login from Windows to Unix/Linux.

Hint:
With help of the graphical login you can, e.g., use Mathematica on the computer lab cluster at
home.
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Login on other hosts (computers) V

For login without password:
1 run ssh-keygen on the client, answer all question just with <ENTER>
2 add the resulting ~/.ssh/id_rsa.pub from the client host to ~/.ssh/authorized_keys

on the remote host
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Remote copy I

With help of the SSH protocol it is also possible to transfer files between different computers:

scp document.txt username@bell.stud.physik.uni-potsdam.de:
secure copy to the remote host

scp username@bell.stud.physik.uni-potsdam.de:document.txt .
secure copy from the remote host (mind the dot!)

After the colon : is a path given, either absolute or relative to the home directory
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Remote copy II

To copy only files that have been modified (comparison of source and target):

rsync -rtvz username@host.domain:directory/ .
secure copy from the remote host, only modified files

some useful options:

-r recursive: also directories
-t time: keep time stamps of transferred files
-v verbose: print information during transfer
-z zip: compressed file transfer (faster for slow connections)
-c checksum: use check sums (instead of time stamps)

for comparison

Copy files via konqueror from other hosts
konqueror allows to show directories of remote hosts with help of the fish protocol. So, enter
in the address bar, e.g.,
fish://user@weber.stud.physik.uni-potsdam.de
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More Unix commands

df -h shows free space on hard drive
du -hs shows total size of current directory

ps ux shows running processes of the current user

top shows load and running processes (interactive)
htop

kill -9 PID “kills” the process with the given process ID (PID)
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Computing jobs on the stud cluster I

The ressources of the stud cluster (CPUs, RAM, disk space) can be used by all users, the users
share these ressources.

→Therefore, please, think of other users:

Log out, when leaving the computer, do not just lock the screen. Never switch
off/shutdown the computer.

Have an eye on the disk usage of you home directory (see below), delete regularly data
that are no longer required.

If you intend to start a job that will run a bit longer, then nice this job (see below).
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Computing jobs on the stud cluster II

Nice and renice jobs/processes
The command top shows the priority and the consumption of ressources of running processes:

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
26054 htodt 39 19 1103308 179636 8648 R 100,0 0,552 0:28.93 53_steal.exe
14763 htodt 20 0 1749032 358808 74328 S 3,322 1,102 12:23.34 Xvnc

Jobs that might run longer than just a few minutes and put some load on the CPU, should be
niced when started, e.g.:
nice -19 ./53_steal.exe
→The priority is decreased from 20 (default) by 19 to 39 (higher values mean actually lower
priority).
A job can also be niced when already running with help of renice and the process ID (PID),
e.g.:
renice +19 26054
The program top in its interactive mode can also renice a process by pressing the key r .
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Computing jobs on the stud cluster III

Checking disk space
The command df -hT shows an overview of the available and used disk space on the current
host:

weber/htodt> df -hT
Filesystem Type Size Used Avail Use% Mounted on
/dev/sdb1 xfs 3,7T 981G 2,7T 27% /home
bell:/home/bell nfs4 1,8T 1,1T 702G 60% /nfs/bell

Moreover, the command du -hs ˜ displays the disk usage of your own home directory.

weber/htodt> du -hs ~
30G /home/weber/htodt

Instead of the tilde ˜ you can also use other (own) subdirectories as an argument, to check
their disk usage.

→ If a disk shows a use of 100%, you cannot longer write on this disk or copy data to it.
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Computing jobs on the stud cluster IV

Show CPU performance
The type, its parameters, and its current clock rate(s) of the installed CPU are shown in the file
/proc/cpuinfo, which you can read with help of cat or less (info is duplicated for each
thread/logical core):

weber/htodt>cat /proc/cpuinfo
model name : Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
cpu MHz : 3491.946

The number of logical cores/threads (= either number of physical cores or number of physical
cores ×2 for Hyperthreading) can be also seen in the program top, if you press the key 1 .

Show available RAM
The command free -h shows the amount of free/available RAM:

weber/htodt> free -h
total used free shared buff/cache available

Mem: 187Gi 66Gi 51Gi 3,2Gi 69Gi 116Gi
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Brief introduction to
gnuplot
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Starting gnuplot

gnuplot is available for almost every platform (operating system): Linux, MacOS X,
Windows, . . .
download, e.g, from http://gnuplot.info/

under Linux: start interactive session in termial via
gnuplot

quit gnuplot by command
exit
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Plotting functions

gnuplot can plot basic functions (independent variable / dummy variable is x) and
combinations of them, default plot symbol for functions: solid line
examples

plot sin(x)
plot x**3 + 0.5*sqrt(2)

plotting more than one function by using comma separated list:
plot sin(x), cos(1/x), tanh(x+2)

plotting only over a specific x-range (also for fitting):
plot [-2.5:+3] cos(x)

plotting only over a specific y-range:
plot [] [-1:+1] sin(x)

plotting only over a specific x- and y-range:
plot [-2.5:+3] [-1:1] cos(2*x)
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Labels

x- and y-axis labels:
set xlabel "d in pc"
set ylabel "t in Ga"

key (legend): is automatically generated, can be written by option title:
plot "data.txt" title "observation (1998)" \
, f(x) t "model 17-04"

→ requires execution of previous plot command or just type replot
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Plotting data

gnuplot plots data from files in ascii table format, i.e.

# this is a comment
4.5 91 -0.5
5.6 70 0.8
19 200 1.1

Columns are separated by blanks. Can be changed before plotting, e.g.,
set datafile separator "," # (comma seprated)
set datafile separator "\t" # (separated by tabs)
plot "file.txt"
→ default: plots 2nd column over 1st column
plot 'filexyz.txt' using ($2):($3)
→ plots 3rd column over 2nd column
plot 'data.txt' u (log10($1)):(log10($2))
→ plots the decadic logarithm of the data in columns 1 and 2 (double-logarithmic plot)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 49 / 577



Creating a histogram I

Histogram

is the graphical representation of the frequency distribution of some quantity x .

→ requires the division of the data (quantity) into bins of a width ∆x (can be constant or
variable)

→ representation usually by rectangles of width ∆x and height corresponding to frequency of
occurrence

→ can be used to estimate the probability density function p(x) of a continuous random
variable x
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Creating a histogram II

Example: normal distribution / Gaussian distribution

A data set of 103 random variables drawn from a Gaussian distribution with

N(x ;µ, σ) =
1

σ
√
2π

e−
(x−µ)2

2σ2

where the mean value was set to µ = 0 and the variance to σ = 1, hence the distribution is
N(x , 0, 1) = 1√

2π
exp(−1

2 · x
2) → so-called standard normal distribution

in some file (embedded).

10-DM banknote with a Gaussian distribution
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   1.890651    
 -0.8240776    
  -1.511441    
  0.3198567    
  0.7162281    
  0.4867521    
  0.1177202    
   1.484746    
 -0.3433309    
  0.7281351    
  0.7872377    
   1.427645    
  0.5752836    
 -0.4984355    
  0.4169720    
   1.850422    
 -0.2947129    
 -0.3008425    
 -0.1968195    
   1.716772    
  0.2183315    
  0.3745058    
  0.8687049    
  -2.214711    
  0.3281839    
 -0.3741374    
 -0.2098884    
 -0.7959281    
   2.018152    
   3.743876    
  8.8621788E-02
   1.462217    
  0.2637441    
 -0.4529202    
 -0.1381529    
 -0.1007152    
 -0.2731718    
  0.5360340    
  0.9836709    
  0.2017792    
  0.2914578    
  -1.007708    
 -0.3844525    
  0.6719107    
   1.392753    
  0.2301915    
  0.2264122    
 -0.4313608    
 -0.7892705    
  -1.996759    
   1.054762    
  7.0701912E-02
 -8.1349626E-02
  -1.691531    
   1.440104    
 -0.3993638    
   1.674303    
  0.8606713    
  -2.016841    
  -1.132251    
  0.8526723    
  0.6827499    
 -0.2542374    
  -1.503083    
  8.8483818E-02
  0.2488082    
  0.1872677    
  9.0627074E-02
  8.9067757E-02
   1.845242    
   1.221425    
 -0.2142413    
  0.6041411    
 -0.1939667    
   1.974239    
  0.8249081    
   1.961133    
  0.3303157    
  0.3680701    
  0.9830180    
 -0.1833428    
 -0.5951908    
 -0.4414953    
  0.9487485    
 -0.3785436    
  2.1548873E-02
 -0.9115520    
  5.5591217E-03
   1.451294    
 -0.2386374    
  0.3762825    
  -1.029591    
  0.8369731    
 -0.5273063    
   1.213378    
 -0.6405762    
   2.567322    
   1.943305    
  0.4750964    
 -8.2613848E-02
   1.774190    
  0.5688380    
 -0.3856308    
 -0.3720990    
 -0.6493177    
 -9.1684423E-02
 -0.8999872    
  0.1925619    
  0.7684916    
 -0.8190821    
 -0.6784616    
   1.021662    
  0.1181515    
 -0.7203262    
  0.6514759    
  -1.287355    
  0.1766300    
 -0.9979411    
  0.3741148    
 -0.7158002    
  0.6299160    
 -0.2426282    
 -0.8942052    
  0.5169146    
  -1.511233    
 -0.7076007    
  -3.513681    
  0.9239319    
 -0.5325425    
  0.1245127    
  0.3919946    
 -0.3260413    
   1.088462    
   1.330942    
   1.280291    
  0.6610921    
   1.336151    
  1.0320346E-02
 -0.5290810    
  0.9759411    
  4.1207252E-03
  0.3465836    
 -0.8358988    
 -0.8690476    
   1.936487    
   1.542008    
  -1.280995    
  0.6380946    
  -2.125703    
  0.2818976    
  -1.741716    
  -2.574227    
   1.063415    
  0.3960658    
  -1.379827    
  -1.605451    
  -1.210215    
 -0.9908720    
  0.6968187    
 -0.1659915    
  -1.753113    
   1.350366    
 -5.9592985E-02
 -0.6285657    
  -1.017444    
 -0.2587416    
 -0.7488212    
  0.3724437    
 -0.5021194    
  -1.775280    
  0.4452462    
  0.4317608    
  -2.305655    
  -1.622709    
 -0.4670715    
  0.2163013    
 -0.8017293    
 -0.5696003    
   2.338654    
  0.5659304    
  -2.089326    
   1.262186    
  -1.540129    
  -1.511225    
  1.5430714E-02
 -0.9379866    
 -0.5767650    
  0.6338159    
  0.7176070    
   1.054740    
  5.6557037E-02
 -0.6361480    
  -1.513317    
 -0.6154571    
  0.2856918    
  0.7570513    
  6.3699834E-02
  0.8177670    
 -0.1115922    
  0.5687173    
  0.7547088    
  0.5638092    
 -0.4318357    
   1.310158    
  0.1435079    
  2.0557662E-02
  0.6644868    
  0.2476726    
  -2.680032    
  0.1131479    
  0.4786234    
  0.1173415    
 -0.2702994    
 -0.2469856    
  9.2776500E-02
  0.6075448    
  -1.332438    
 -0.1437384    
   1.187455    
   1.043771    
   1.111032    
   1.117712    
 -0.5872326    
   1.250567    
  9.1844745E-02
  0.7439486    
  0.3008542    
 -0.8783005    
 -0.6314335    
 -4.2901155E-02
 -0.8896008    
  -1.306037    
  0.7818788    
  0.7333928    
 -0.6072106    
 -0.1663540    
 -0.6080904    
   1.781686    
   1.067775    
 -0.4896736    
  -1.329715    
 -0.7079143    
  0.4601209    
   1.385281    
   1.349076    
   1.627310    
  0.2584379    
  -1.516194    
 -0.9890904    
 -0.6872019    
  -2.564610    
  5.9134800E-02
  0.1562503    
 -0.3937141    
  0.5598806    
   1.560982    
   1.012025    
   2.226261    
 -0.3977353    
  -1.328589    
 -0.3144322    
 -0.2321616    
  -1.189895    
  0.8165438    
 -0.7372247    
   1.371728    
 -0.1925255    
  -1.281638    
 -0.2744506    
  0.1667704    
  0.6742667    
  0.7453969    
 -0.3187454    
 -0.1977728    
 -0.9042299    
   1.473143    
  1.8133840E-02
  -2.638667    
  0.7381675    
 -0.1235880    
  0.5216494    
  -2.575492    
 -0.4085782    
 -0.3148745    
   1.485595    
 -0.3639473    
   1.765435    
  0.3468131    
  0.1684050    
 -0.3365042    
  -2.655590    
   1.305481    
 -0.2041659    
  0.1747242    
  -1.193019    
  0.2687410    
  0.7621467    
 -0.9037694    
  0.6598238    
  6.0175922E-02
   1.920241    
   1.870840    
 -0.2068809    
 -0.9371731    
   1.156218    
  0.2869902    
 -8.7832086E-02
  -1.418170    
   1.920067    
  0.6609121    
 -0.7536546    
  4.9538478E-02
  -1.222332    
  0.2009058    
  0.9279263    
 -3.5907876E-02
  -1.040815    
 -0.3982623    
   1.697325    
 -0.4517359    
   1.905412    
  -1.192016    
 -0.9893349    
  0.2420657    
  0.1662497    
 -0.6378109    
  0.2298169    
  0.6949443    
 -0.4111178    
 -0.7383235    
 -1.6375389E-02
  0.4136069    
  0.8745124    
 -0.1848688    
   1.295005    
  0.2522647    
  0.1310102    
  -2.793513    
  0.9408633    
 -0.4750159    
 -0.4857158    
   1.538442    
 -0.2437041    
  -2.137693    
   1.934090    
  0.1746661    
  -1.990190    
 -0.9779176    
  0.5706700    
  -1.841899    
 -0.2400444    
  0.6096231    
  -1.574262    
 -0.1826946    
  -1.057181    
 -0.3053376    
   1.033874    
   2.015035    
 -0.3538150    
  0.9067605    
 -0.9388454    
  0.5779406    
 -0.2446244    
  0.2273646    
  0.7167783    
   1.088543    
  0.5452686    
 -0.6206489    
  0.1497708    
  -2.068955    
  -2.828580    
 -0.4184773    
  0.3774691    
  -1.239628    
  0.3704393    
  0.1873913    
 -0.2141349    
   1.471242    
   1.625327    
  -1.963045    
  0.3472711    
 -0.1939782    
 -0.6514255    
  -1.802639    
   1.435534    
 -0.2250495    
 -0.1073930    
  -1.627057    
   1.996753    
  0.2320040    
   1.856581    
  0.8980929    
  -1.463315    
  0.3699462    
 -0.1872093    
  -1.884876    
 -0.4190311    
  0.5873634    
 -0.4126749    
  0.4303228    
  0.3298254    
 -0.3756763    
 -0.4824266    
  0.9822034    
  0.3546574    
  0.5536386    
  0.4119615    
   1.084088    
  0.9545348    
  0.7002343    
   1.692024    
  -1.071461    
  0.3046037    
   1.128634    
 -0.9328805    
 -0.3123159    
  0.6076925    
  0.4365067    
  0.8395286    
  0.6398724    
 -0.4281143    
  1.9250290E-02
  -1.767356    
  -1.016323    
   1.959147    
  0.3512879    
   1.021839    
  0.5468349    
  0.8355756    
 -0.8747071    
   2.205833    
  5.8208685E-02
 -0.5761746    
  0.5729568    
 -0.1117421    
 -8.0035090E-02
  0.9492261    
   1.509760    
   1.290176    
 -0.9296815    
 -0.6275355    
 -1.0297878E-02
 -7.9712451E-02
  -1.028125    
 -7.8012168E-02
  -1.193432    
 -0.7440625    
 -0.8821475    
  0.4588783    
  0.4703340    
  -1.035807    
 -0.3729800    
 -0.4687881    
  0.2882130    
   1.220763    
  -1.073959    
  0.6561313    
   1.341890    
 -0.5449618    
  0.9913890    
  0.5175937    
  -1.068905    
 -0.3473014    
  0.4831069    
  -1.524212    
   1.330698    
  0.4667833    
  2.1042844E-02
  -1.825730    
   1.064130    
  -1.210250    
  -2.184071    
  0.7498901    
 -0.6164260    
   2.229205    
   1.557749    
   1.742806    
  0.8752102    
 -0.6732680    
 -0.6714679    
  0.3731733    
 -0.3844578    
  0.3137357    
 -0.3480702    
   1.968571    
   1.532382    
 -0.7565353    
  -1.360089    
  0.4665060    
  0.3307281    
   1.273333    
  -3.044002    
  0.6064329    
  -1.295501    
  0.5217582    
   2.071644    
   1.415438    
  -1.484856    
  -1.244921    
   1.884880    
  5.3551711E-02
  0.6160391    
  0.5475037    
 -0.3707824    
 -0.4489833    
  0.5376287    
  0.9951033    
 -0.1950219    
  -1.292443    
 -0.8457704    
   1.780981    
   1.263445    
  -1.216576    
 -0.9380875    
   1.279307    
   1.055210    
  0.6968255    
 -0.7298220    
 -0.1026421    
 -0.1588278    
  0.4591756    
  -1.694325    
 -0.2508030    
  0.3888198    
 -0.6376371    
 -0.6843138    
   2.067054    
   1.378437    
  1.3339993E-02
  0.2099173    
 -0.3906322    
   2.455069    
  -1.546854    
  -2.256617    
  -1.414604    
  0.1008017    
 -0.2353600    
   1.512169    
  0.1652471    
 -0.4454692    
 -0.8145822    
 -0.5771716    
  -2.272887    
 -0.3863915    
   1.530539    
  0.8226183    
 -0.3207561    
   1.108279    
  -1.574220    
  9.1663182E-02
  -1.420735    
  -1.118130    
  0.9959614    
 -0.9173279    
 -0.6162124    
  -1.933949    
  0.6832181    
  0.5905172    
  0.9445196    
 -0.5243184    
  -1.602468    
 -0.4919544    
 -0.6680318    
   1.621682    
  -2.054770    
   1.584987    
  -1.548155    
  2.8038559E-02
  0.8083104    
  -1.068547    
  7.7190608E-02
 -0.7461618    
  0.6890236    
   1.011937    
  4.2832017E-02
 -0.1321721    
 -0.1196195    
  0.8609276    
  0.7951955    
  0.3941343    
  -1.073669    
  -1.781033    
  0.2641169    
   1.054168    
  -1.753227    
 -2.4036398E-02
  -2.008646    
   2.070981    
  -2.096875    
  7.6170109E-02
  0.5454140    
  0.8941419    
  0.1469123    
 -0.6249871    
  -2.018940    
 -0.7341611    
 -9.0227336E-02
  0.3650388    
 -0.8031586    
  -1.252233    
  0.9116009    
   1.317575    
 -0.6046661    
  0.1027568    
  0.3942555    
  0.6698107    
  -1.045129    
  -1.454446    
   1.872882    
 -0.6774239    
 -0.3217979    
  0.8183807    
  -1.204152    
 -0.1943099    
  -1.700651    
 -6.9630735E-02
 -0.7495871    
   1.013615    
 -0.4661440    
  0.3589891    
 -0.2537489    
  6.7192920E-02
  -1.172446    
  -1.455647    
  -1.577539    
  0.6565499    
  0.2553135    
  0.1948237    
 -0.5089684    
 -0.5097720    
  -1.086450    
 -0.8461210    
  -1.423676    
  -2.360834    
  -2.677294    
 -0.9769217    
 -9.4376029E-03
  -1.068664    
  0.1587367    
 -3.8472652E-02
   2.247887    
  0.3153419    
  -1.492555    
 -0.1727437    
  0.3009517    
   1.696630    
  0.3317189    
 -0.6580579    
  -1.053416    
 -9.1820449E-02
  -1.549486    
   1.800474    
   1.354246    
  0.9514002    
 -0.4516660    
 -0.1981780    
 -0.1531242    
  -1.048772    
  0.1478850    
  6.5713294E-02
  -1.644265    
 -0.8684844    
  8.2475618E-02
 -0.9082476    
  -1.364134    
 -9.2950679E-02
   1.253982    
  0.9573919    
  0.5201322    
  0.5757535    
 -0.2971133    
  -1.445236    
  0.3884335    
   1.020693    
 -8.8162795E-02
 -0.4642057    
  0.4053775    
   1.296511    
 -0.8970908    
  -1.233937    
   2.462576    
 -0.4874286    
  0.7706240    
   1.206098    
  0.7757849    
  9.6412346E-02
  0.3083076    
 -0.4121127    
  0.9296880    
   2.425250    
  0.4400073    
 -0.4745676    
  0.4645386    
  -3.440850    
 -0.7681912    
 -0.6961365    
  0.2362190    
  0.9765241    
 -0.8794656    
 -1.2827534E-02
 -0.9543049    
 -0.8804002    
   2.070693    
  0.3290057    
 -0.8724935    
   1.036487    
 -0.1824150    
   1.058849    
  -1.118799    
  -1.230741    
 -0.4911938    
 -0.5538669    
  -1.389256    
   1.250663    
 -0.9617155    
  0.2718574    
  0.9619988    
   1.400604    
  0.6788415    
 -0.8622795    
 -0.3280857    
  -1.109535    
 -0.5838371    
  0.4030787    
  0.4871542    
  -1.351744    
 -0.2090209    
  0.9063063    
 -0.9535008    
  0.8820602    
  0.7141435    
  0.6114401    
 -0.4054602    
 -2.6448792E-02
  -2.080858    
 -0.4991176    
 -0.2857187    
  0.6661142    
 -0.3333771    
  0.5410187    
   2.578495    
 -0.3090425    
  0.1797924    
 -0.3209836    
  0.6755835    
 -7.4454598E-02
 -0.5612420    
 -0.7136326    
 -0.3207075    
   1.463315    
 -0.8532578    
  5.8396459E-02
  -1.168421    
 -0.9479159    
 -0.1663459    
  0.8976251    
  0.2799492    
   1.287406    
 -0.2612612    
 -0.9990359    
   1.095729    
  0.4931715    
  0.2401406    
 -0.6307586    
  0.7074175    
 -0.2499144    
  0.2237038    
  0.5670409    
  0.1867950    
  -1.608781    
  -1.426317    
  0.4226249    
   1.322318    
 -0.7262513    
   1.720141    
 -0.4054750    
   1.656713    
 -7.6311745E-02
 -0.7105250    
  3.5368297E-02
  -1.102314    
  0.2115748    
  -1.279219    
   1.802633    
 -0.8332563    
  7.6890059E-02
   1.809651    
  0.8577708    
 -0.8171467    
 -0.7269971    
  0.3159725    
  -1.165308    
   1.121968    
  0.1022189    
  0.8301424    
  -1.128408    
 -0.4376723    
 -9.8213509E-02
   1.327313    
  0.8489726    
   1.831044    
   1.566028    
 -0.1978915    
 -9.1981523E-02
 -0.9206387    
  0.5773888    
  4.5593005E-02
   1.209055    
   1.722517    
 -8.8688828E-02
  -1.597162    
   1.286455    
  8.2371950E-02
 -0.1761107    
 -0.1203027    
  0.3007801    
 -0.4771736    
  -1.232238    
  0.5991605    
  -1.850409    
  0.6296839    
 -0.9440453    
  0.2242775    
 -0.6417800    
  0.4791800    
   1.364254    
  -1.156549    
  -1.504291    
 -0.3817519    
 -3.3289317E-02
  0.2252177    
   2.442384    
   1.049164    
 -6.6005737E-02
   2.042011    




Creating a histogram III

Graphical representation with gnuplot:
1 Define the (constant) width of the bins (“bin width”, ∆x):

gnuplot> bw=0.2
gnuplot> set boxwidth bw

. . . and a so-called “binning” function:

gnuplot> bin(x,s)=s*ceil(x/s)

The function ceil(x) rounds up the value of x to next larger integer
2 The number of data points (for normalization):

gnuplot> N=1000

one can also use

gnuplot> stats "gauss.dat" ; N = STATS_records
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Creating a histogram IV

3 The histogram is then created via:

gnuplot> plot "gauss.dat" u (bin($1,bw)-0.5*bw):(1./(N*bw)) \
smooth frequency with boxes lc rgb "blue"

4 Plot together with the underlying probabilty density function

gnuplot> gauss(x) = 1./sqrt(2*pi) * exp(-0.5*x**2)

in the same diagram:

gnuplot> replot gauss(x) with lines linewidth 3 linecolor rgb "red"
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Creating a histogram V
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Fitting data

With help of the Levenberg-Marquardt algorithm gnuplot can fit any function with free
parameters to data:

1 define function:
f(x) = a * x + b

2 fitting examples:
fit f(x) "data.txt" via a, b
fit f(x) "data.txt" u (log10($1)):(log10($2)) via a, b

3 plotting data and function:
plot "data.txt", f(x)

If the fit should be done only for a specific x-range:
fit [100:300] f(x) "data.txt" via a, b
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Creating PDFs for output

gnuplot supports many different output formats (see → help terminal)
1 set terminal pdf enhanced color
→ sets terminal (output format) to colorized pdf with special characters

2 set output "myplot.pdf"
→ name of the file for output (don’t forget it!)

3 plot "data.txt", f(x)
or: replot

4 either: set term qt (resetting terminal to previous output format)
or: quit
→ this assures that the plot is written to the file (otherwise: empty or incomplete PDF file)
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Special characters

If output is written to PDF or PS file, via option enhanced:

Input Output in PDF/PS

T_0 T0 (subscript)
eˆ{-x} e−x (superscript)
{/Symbol Qp} Θπ
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Scripts in gnuplot

In addition to the interactive mode, gnuplot supports also non-interactive script mode
write all instructions into an ASCII text file (e.g., “myplot.gplt”)
comments begin with a # (like in makefile and shell)
line continuation via backslash \
execute gnuplot script from shell:
gnuplot myplot.gplt

→ useful for automated PDF creation
→ easy re-use of formatting and plot instructions (labels, sizes, . . . )
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Example for fitting and pdf output I

# embedded file :

set terminal pdf enhanced color

set xlabel "1/T [100/K]"
set ylabel "ln(p/p_0)"

ln_p(x) = b + a*x

set fit errorvariables

R=8.314
p_0=1.019

fit [*:*] ln_p(x) "enthalpie.dat" \
using (1./(($2)+273.15)):(log((1.019+($1))/1.019)) via a,b

set output "enthalpy.pdf"

plot "enthalpie.dat" \
using (1e2/(($2)+273.15)):(log((p_0+($1))/p_0)) \
with points ps 1 linewidth 3 title "data" \
, ln_p(1e-2*x) with lines linecolor "black" \

t sprintf("enthalpy [kJ/mol]=%5.3f +/- %5.3f",a*R*1e-3,R*a_err*1e-3)
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-0.96 41.5
-0.9  53
-0.8  63.7
-0.66 74.5
-0.56 80.3
-0.47 84.5
-0.38 88.9
-0.28 92.5
-0.14 97
-0.08 98
 0    100




Example for fitting and pdf output II

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0.265  0.27  0.275  0.28  0.285  0.29  0.295  0.3  0.305  0.31  0.315  0.32

ln
(p

/p
0)

1/T [100/K]

data
enthalpy [kJ/mol]=-46.582 +/- 0.667
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C/C++ Programming
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Programming languages I

One can, e.g., distinguish:

scripting languages

bash, csh →Unix shell

Perl, Python

IRAF, IDL, Midas → especially for data reduction in astrophysics

compiler-level languages

C/C++ → very common, therefore our favorite language

Fortran → very common in astrophysics, especially in radiative transfer
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Programming languages II

scripting language compiler-level language

examples shell (bash, tcsh), Perl, C/C++, Fortran, Pascal,
Mathematica, MATLAB, . . . . . .

source code directly executable translated to
machine code, e.g.,
0x90 → no operation (NOP)

runtime interpreter runs as a pro- error handling difficult
behavior gram → full control over → task of the program-

execution → error messages, mer, often only crash
argument testing

speed usually slow very fast by optimization
→ analysis tools → simulations, number crunching

→moreover, also bytecode compiler (JAVA) for virtual machine,
Just-in-time (JIT) compiler (JavaScript, Perl)
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C/C++ I

C is a procedural (imperative) language

C++ is an object oriented extension of C with the same syntax

C++ is because of its additional structures (template, class) � C

Basic structure of a C++ program
#include <iostream>
using namespace std ;
int main () {

instructions of the program ;
// comment
return 0 ;

}

every instruction must be finished with a ; (semicolon) !
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C/C++ II

Compiling a C++ program:

source file
.cpp, .C

⇓

compiler + linker
.o, .so, .a

⇓

executable program
a.out, program
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C/C++ III

Command for compiling + linking:

g++ -o program program.cpp

(GNU compiler for C++)
only compiling, do not link:

g++ -c program.cpp

creates program.o (object file, not executable)

option -o name defines a name for a file that contains the executable program, otherwise
program file is called: a.out
the name of the executable program can be arbitrarily chosen
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C/C++ IV

Task 2.1 Compiling

Use a text editor to create a file nothing.cpp , which contains only the empty function

int main(){ } , compile it and execute the resulting program.
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Simple program for output on screen I

Example: C++ output via streams

#include <iostream>

using namespace ::std ;

int main () {

cout << endl << "Hello world!" << endl ;

return 0 ; // all correct

}
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Simple program for output on screen II

<iostream> . . . is a C++ library (input/output)

main() . . . program (function)

return 0 . . . returns the return value 0 to main (all ok)

source code can be freely formatted, i.e., it can contain an arbitrary number of spaces and
empty lines (white space) → useful for visual structuring

comments are started with // - everything after it (in the same line) is ignored,
C has only /* comment */ for comment blocks

cout . . . output on screen/terminal (C++)

<< . . . output/concatenate operator (C++)

string "Hello world!" must be set in quotation marks

endl . . . manipulator: new line and stream flush (C++)

a block several instructions which are hold together by curly braces
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Simple program for output on screen III

Task 2.2 Hello world!

Use a text editor to create a file hello.cpp , which prints out "Hello World!" in the terminal,
compile it and execute the resulting program.
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Functions I

C/C++ is a procedural language
The procedures of C/C++ are functions.

Main program: function with specific name main(){}

every function has a type (for return), e.g.: int main (){}

functions can get arguments by call, e.g.:
int main (int argc, char *argv[]){}

functions must be declared before they can be called in the main program,
e.g., void swap(int &a, int &b) ;
or included via a header file:
#include <cmath>

within the curly braces { }, the so-called function body, is the definition of the function
(what shall be done how), e.g.:
int main () { return 0 ; }
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Functions II

Example
#include <iostream>
using namespace std ;

float cube(float x) ;

int main() {
float x = 4. ;
cout << "The cube of x is: " << cube(x) << endl ;
return 0 ;

}

float cube(float x) {
return x * x * x ;

}
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Functions III

Task 2.3 Calling a function

Use a text editor to create a file cubemain.cpp , which contains the source code from the
previous slide (copy & paste).

1 Compile it and execute the resulting program.
2 Modify the source code so that the program reads in a number from the user with the help

of cin:
float x ;
cout << "type in a number: " ;
cin >> x ;

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 73 / 577



Functions IV

inline functions

usually for compiled program: functions as code sections with own address; calling a
function = jump to this address, pass arguments → overhead for argument passing,
address for jumping back from function (return) must be stored:

Example
nm cubemain | grep " T "
00000000004008b7 T main
00000000004007de T _start
000000000040090d T _Z4cubef

→ calling many small functions is expensive
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Functions V

solution: use keyword inline → compiler replaces function call by function code, each
time the function is called → increases size of compiled code

Example
inline float cube(float x) {

return x * x * x ; }

→ definition must be in the same source text file where function is called
→ not all functions can be inlined by the compiler

methods defined in class headers are automatically inline
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The cmath-library I

In C/C++ only basic mathematical operations +,-,*,/,% available.
By including the cmath-library in the beginning:
#include <cmath>

many mathematical functions become available:

cos(); sin(); tan();

asin(); atan(); acos();

cosh(); sinh(); tanh();

exp(); fabs(); abs();

log(); . . . natural logarithm (base e)
log10(); . . . decadic logarithm (base 10)
pow(x,y); . . . xy †

sqrt(); √
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The cmath-library II

Moreover, there are also predefined mathematical constants:

M_E . . . e

M_PI . . . π

M_PI_2 . . . π/2

M_PI_4 . . . π/4

M_2_PI . . . 2/π

M_SQRT2 . . . +
√
2
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Variables

A variable is a piece of memory.
in C/C++ data types are explicit and static

We distinguish regarding visibility (“scope”):
global variables → declared outside of any function, before main

local variables → declared in a function or in a block { } , only there visible
. . . regarding data types → intrinsic data types:

int → integer, e.g., int n = 3 ;

float → floats (floating point numbers),
e.g., float x = 3.14, y = 1.2E-4 ;

char → characters, e.g., char a_character ;

bool → logical (boolean) variables, e.g., bool btest = true ;
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Integer data types I

Integer numbers are represented exactly in the memory with help of the binary number system
(base 2), e.g.

13 = 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 =̂ 1 1 0 1 1 (binary)

In the assignment
a = 3

3 is an integer literal (literal constant). Its bit pattern (3 = 1 · 20 + 1 · 21 =̂ 1 1 ) is inserted
at the corresponding positions by the compiler.

1doesn’t correspond necessarily to the sequential order used by the computer → “Little Endian”: store least
significant bit first, so actually: 1011
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Integer data types II

on 64-bit systems
int compiler reserves 32 bit (= 4 byte) of memory

“1 bit for sign” (see below) and
231 = 2 147 483 648 values (incl. 0): → range:
int = −2 147 483 648 . . . + 2 147 483 647

unsigned int 32 bit, no bit for sign → 232 values (incl. 0)
unsigned int = 0 . . . 4 294 967 295

long on 64 bit systems: 64 bit (= 8 byte),
“1 bit for sign”: −9.2× 1018 . . . 9.2× 1018 (quintillions)

unsigned long 64 bit without sign: 0 . . . 1.8× 1019

and also: char (1 byte), smallest addressable (!); short (2 byte) ; long long (8 bytes)
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Integer data types III

Two’s complement

Table: Representation: unsigned value (0s), value
and sign (sig), two’s complement (2’S) for a nibble
(1/2 byte)

binary unsigned signed 2’S
0000 0 0 0
0001 1 1 1

. . .
0111 7 7 7
1000 8 -0 -8
1001 9 -1 -7

. . .
1111 15 -7 -1

Disadvantages of representation as value and
sign:
∃ 0 and -0; Which bit is sign? (→ const
number of digits, fill up with 0s);
Advantage of 2’S:
negative numbers† always with highest bit=1
→ cf. +1 +−1 bitwise for value & sign vs. 2’S

Binary arithmetic: 1+ 1 = 2

0001
+ 0001
= 0010

†How to write negative numbers in 2’S? → start with corresponding positive number, invert all bits, and add 1
ignoring any overflow

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 81 / 577



Floating point data types I

Floating point numbers are an approximate representation of real numbers.
Floating point numbers can be declared via, e.g.,:

float radius, pi, euler, x, y ;
double radius, z ;

Valid assignments are, e.g.,:

x = 3.0 ;
y = 1.1E-3 ;
z = x / y ;
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Floating point data types II

representation (normalization) of floating point numbers are described by standard IEEE
754 :

x = s ·m · be (1)

with base b = 2 (IBM Power6: also b = 10), sign s, and normalized significand (mantissa)
m, bias
So for 32 Bit (Little Endian†), 8 bit exponent, 23 bit mantissa:

MMMMMMMMMMMMMMMMMMMMMMMEEEEEEEES

bits

0781516232431

mantissaexponent

sign

(† least significant bit at start address, read each part: → )
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Floating point data types III

mantissa is normalized to the form (e.g.)
1.0100100 × 24

i.e. with a 1 before the decimal point. This 1 is not stored, so m = 1.f

Moreover, a bias (127 for 32 bit, 1023 for 64 bit) is added to the exponent (results in
non-negative integer)

Example: Conversion of a decimal number to IEEE-32-Bit

172.625 base 10
10101100.101× 20 base 2 (0.625 = 1 · 1/2 + 0 · 1/4 + 1 · 1/8)
1.0101100101× 27 base 2 normalized

add bias of 127 to exponent = 134 = 1 · 27 + . . .+ 1 · 22 + 1 · 21 + 0 · 20
0 10000110 010110010100000000000000
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Floating point data types IV

single precision (32 bit) float: exponent 8 bit, significand 23 bit

−126 ≤ e ≤ 127 (basis 2)

→≈ 10−45 . . . 1038

digits: 7-8 (= log 223+1 = 24 log 2)

for 64 bit (double precision) – double: exponent 11 bit, significand 52 bit

−1022 ≤ e ≤ 1023 (basis 2)

→≈ 10−324 . . . 10308

digits: 15-16 (= log 252+1)
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Floating point data types V

some real numbers cannot be presented exactly in the binary numeral system, e.g.:

0.1 ≈ 1.10011001100110011001101× 2−4 (2)

→ cf. 1/3 in decimal: all fractions with denominator not product of prime factors (2,5) of the
base 10, e.g., 1/3, 1/6, . . .
In binary numeral system only one prime factor: 2

Warning
Do not compare two floating point numbers blindly for equality (e.g., 0.362 * 100.0 ==
36.2), but rather use an accuracy limit:
abs( x - y ) <= eps, better: relative error
abs(1-y/x) <= eps
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Floating point data types VI

Floating point arithmetic

Subtraction of floating point numbers
consider 1.000× 25 − 1.001× 21 (only 3 bit mantissa)
→ bitwise subtraction, requires same exponent

1.000 0000 ×25
− 0.000 1001 ×25

0.111 0111 ×25 infinite precision
1.110 111 ×24 shifted left to normalize
1.111 ×24 rounded up, as last digits > 1/2 ULP†

†unit in the last place = spacing between subsequent floating point numbers
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Floating point data types VII

Properties of floating point arithmetic (limited precision):

loss of significance / catastrophic cancellation: occurs for subtraction of almost equal
numbers

Example for loss of significance
π − 3.141 = 3.14159265 . . .− 3.141 with 4-digit mantissa;
maybe expected: = 0.00059265 . . . ≈ 5.927× 10−4;
in fact: 1.0000× 10−3, because π is already rounded to 3.142

absorption (numbers of different order of magnitude): addition of subtraction of a very
small number does not change the larger number

Example for absorption
for 4-digit mantissa: 100 + 0.001 = 100:
1.000× 102 + 1.000× 10−3 = 1.000× 102 + 0.000 01× 102 = 1.000× 102 + 0.000× 102 =
1.000× 102, same for subtraction
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Floating point data types VIII

distributive and associative law usually not fulfilled, i.e. in general

(x + y) + z 6= x + (y + z) (3)
(x · y) · z 6= x · (y · z) (4)

x · (y + z) 6= (x · y) + (x · z) (5)
(x + y) · z 6= (x · z) + (y · z) (6)

solution of equations, e.g., (1 + x) = 1 for 4-bit mantissa solved by any x < 10−4 (see
absorption) → smallest float number ε with 1 + ε > 1 called machine precision

Multiplication and division of floating point numbers:
mantissas multiplied/divided, exponents added/subtracted
→ no cancellation or absorption problem
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Floating point data types IX

Guard bit, round bit, sticky bit (GRS)

in floating point arithmetic: if mantissa shifted right → loss of digits

therefore: during calculation 3 extra bits (GRS)
Guard bit: 1st bit, just extended precision
Round bit: 2nd (Guard) bit, just extended precision (same as G)
Sticky bit: 3rd bit, set to 1, if any bit beyond the Guard bits non-zero, stays then 1(!)
→ sticky
example

G R S
Before 1st shift: 1.11000000000000000000100 0 0 0
After 1 shift: 0.11100000000000000000010 0 0 0
After 2 shifts: 0.01110000000000000000001 0 0 0
After 3 shifts: 0.00111000000000000000000 1 0 0
After 4 shifts: 0.00011100000000000000000 0 1 0
After 5 shifts: 0.00001110000000000000000 0 0 1
After 6 shifts: 0.00000111000000000000000 0 0 1
After 7 shifts: 0.00000011100000000000000 0 0 1
After 8 shifts: 0.00000001110000000000000 0 0 1
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Floating point data types X

GRS bits – possible values and stored values

extended sum stored value why

1.0100 000 1.0100 truncated because of GR bits
1.0100 001 1.0100 truncated because of GR bits
1.0100 010 1.0100 rounded down because of GR bits
1.0100 011 1.0100 rounded down because of GR bits
1.0100 100 1.0100 rounded down because of S bit

1.0100 101 1.0101 rounded up because of S bit
1.0100 110 1.0101 rounded up because of GR bits
1.0100 111 1.0101 rounded up because of GR bits
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Floating point data types XI

IEEE representation of 32 bit floats:

Number name sign, exp., f value

normal 0 < e < 255 (−1)s × 2e−127 × 1.f
subnormal e = 0, f 6= 0 (−1)s × 2−126 × 0.f
signed zero (±0) e = 0, f = 0 (−1)s × 0.0
+∞ s = 0, e = 255, f = 0 +INF
−∞ s = 1, e = 255, f = 0 -INF
Not a number e = 255, f 6= 0 NaN

if float > 2128 → overflow, result may be NaN or unpredictable

if float < 2−128 → underflow, result is set to 0

If not default by compiler: enable floating-point exception handling (e.g., -fpe-all0 for ifort)
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Automatic type conversion

In C/C++ many data type conversions are already predefined, which will be invoked
automatically:

int main () {
int a = 3 ;
double b ;
b = a ; // implicit conversion of a to double
b = 1. / 3 ; // implicit conversion of 3 to double
return 0.2 ; // implicit conversion of 0.2 to integer 0

}
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Explicit type conversions (casts) I

Moreover, a type conversion/casting can be done explicitly:

C cast
int main () {

int a = 3 ;
double b ;
b = (double) a ; // type cast
return 0 ;

}

obviously possible: integer ↔ floating point

but also : pointer (see below) ↔ data types

Caution: For such C casts there is no type checking during runtime!
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Explicit type conversions (casts) II

The better way: use the functions of the same name for type conversion

int i, k = 3 ;
float x = 1.5, y ;
i = int(x) + k ;
y = float(i) + x ;

Task 2.4 Integer conversion
What is the result for i and y in this example above?
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Logical variables

bool b ;

intrinsic data type, has effectively only two different values:

bool btest, bdo ;
bdot = false ; // = 0
btest = true ; // = 1

but also:

btest = 0. ; // = false
btest = -1.3E-5 ; // = true

Output via cout yields 0 or 1 respectively. By using cout << boolalpha << b ; is also
possible to obtain f and t for output.
Note: minimum addressable piece of memory is 1 byte → bool needs more memory than necessary
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Character variables I

char character ;

are encoded as integer numbers:

char character = 'A' ;
char character = 65 ;

mean the same character (ASCII code)

Assignments of character literals to character variables require single quotation marks ':

char yes = 'Y';
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Character variables II

Character input
char character ;
int number ;
cout << "Character input: " ;
cin >> character ;
cout << "character is: " << character

<< " corresponds to " << int(character) << endl;
cout << "Number input: " ;
cin >> number ;
cout << "Number " << number

<< " corresponds to " << char(number) << endl;

Task 2.5 Characters
Complete this code example to a C++ program, compile and execute it. Which (decimal)
ASCII code have }, Y and 1 ? Which character has the code 97 ?
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Execution control - for-loops I

Executable control constructs modify the program execution by selecting a block for repetition
(loops, e.g., for) or branching to another statement (conditional, e.g., if/ unconditional, e.g.,
goto).

Repeated execution of an instruction/block:

for loop
for (int k = 0 ; k < 6 ; ++k ) sum = sum + 7 ;

// also possible: non-integer loop variable -> not recommended
for (float x = 0.7 ; x < 17.2 ; x = x + 0.3) {

y = a * x + b ;
cout << x << " " << y << endl;

}
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Execution control - for-loops II

Structure of the loop control (header) of the for loop:

There are (up to) three arguments, separated by semicolons:
1 initialization of the loop variable (loop counter), if necessary with declaration, e.g.:

int k = 0 ; †

→ is executed before the first iteration
2 condition for termination of the loop, usually via arithmetic comparison of the loop

variable, e.g.,
k < 10 ;

is tested before each iteration
3 expression: incrementing/decrementing of the loop variable, e.g.,

++k or --k or k += 3
is executed after each iteration

†interestingly also: int k = 0, j = 1;, i.e. multiple loop variables of same type
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Increment operators

sum += a
→ sum = sum + a

++x
→ x = x + 1 (increment operator)

--x
→ x = x - 1 (decrement operator)

Note that there is also a post increment/decrement operator: x++, x--, i.e. incrementing/decrementing is done
after any assignment, e.g., y = x++.
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Logical operators I - Comparisons/inequalities

→ return either(!) true or false:

a > b greater than

a >= b greater than or equal

a == b equal

a != b not equal

a <= b less than or equal

a < b less than

Caution!
The exact equality == should not be used for float-type variables because of the limited
precision in the representation.
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Logical operators II - Logical operations

!(a < b) not (2)

(a < b) && (c != a) and (14)

(a < b) || (c != a) or (15)

It is recommend to use parentheses ( ) for combination of operations for unambiguousness.

Otherwise: Operator Precedence (incomplete list)

Precedence Operator
5 ∗ / %
6 + −
9 < <= > >=

10 == ! =
14 &&
15 ||
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Loops I

Moreover, there exist also:

while loops

while (x < 0.) x = x + 2. ;

do x = x + 2. ; // do loop is executed
while (x < 0.) ; // at least once!

Instructions for loop control
break ; // stop loop execution / exit current loop
continue ; // jump to next iteration
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Loops II

In C/C++: no real “for loops”

→ loop variable (counter, limits) can be changed in loop body
slow, harder to optimize for compiler/processor

Recommendation: local loop variables

→ declaration in loop header
→ scope limited to loop body

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 105 / 577



Loops III

Our example with the float loop variable

for (float x = 0.7 ; x < 17.2 ; x = x + 0.3) { // = 55 iterations
y = a * x + b ;
cout << x << " " << y << endl;

}

can be rewritten with integer loop variables (number of iterations clear)

float x = 0.7 , x_inc = 0.3, x_max = 17.2 ;
int it_max = ((x_max - x) / x_inc) + 0.5 ; // +0.5 for correct rounding
for (int i = 0 ; i < it_max ; ++i) { // it_max = 54

y = a * x + b ;
cout << x << " " << y << endl;
x+= x_inc ;

}

→ note that when converting float → int, digits after decimal point just cut off → add +0.5
before conversion for correct rounding
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Execution control – conditional statements I

Conditional execution via if:

if (z != 1.0) k = k + 1 ;

Conditional/branching
if (a == 0) cout << "result" ; // one-liner

if (a == 0) a = x2 ; // branching
else if (a > 1) {

a = x1 ;
}
else a = x3 ;
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switch (...) case I

If the variable used for branching has only discrete values (e.g., int, char, but not floats!), it is
possible to formulate conditional statements via switch/case:

Branching II
switch (epxression) {

case value1 : instruction ; break ;
case value2 : instruction1 ;

instruction2 ; break ;
default : instruction ;

}

Heads up!
Every case instruction section should be finished with a break, otherwise the next case
instruction section will be executed automatically.
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switch (...) case II

Example: switch
int k ;

cout << "Please enter number, 0 or 1: " ;
cin >> k ;

switch (k) {
case 0 : cout << "pessimist" << endl ; break ;
case 1 : cout << "optimist" << endl ; break ;
default : cout << "neutral" << endl ;

}
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Arrays in C/C++

Static array declaration for a one-dimensional array of type double:

double a[5] ; one-dimensional array with 5 elements of type double
(e.g., vectors)

Access to individual elements:

total = a[0] + a[1] + a[2] + a[3] + a[4] ;

Heads up!
In C/C++ the index for arrays starts always at 0 and runs in this example until 4, so the last
element is a[4].

A common source of errors in C/C++ !!!

Note: While the size of the array can be set during runtime, the size cannot be changed after
declaration (static declaration).
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Two-dimensional arrays I

an m × n matrix (rows × columns) :

n columns →


m a11 a12 . . . a1n
rows a21 . . .
↓ . . .

am1 amn

int a[m][n] . . . static allocation of two-dimensional array, e.g., for matrices (m, n
must be constants)

access via, e.g., a[i][j]

i is the index for the rows,
j for the columns.
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Two-dimensional arrays II

e.g., a =

[
1 2 3
4 5 6

]
Note that in C/C++ the second (last) index runs first, i.e. the entries of a[2][3] are in this
order in the memory :

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2]
1 2 3 4 5 6

(row-major order → stored row by row)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 112 / 577



Two-dimensional arrays III

Task 2.6 Internal order of arrays
The cache, which is the memory closest to the CPU and usually on the same chip, is limited
(∼MB). Therefore it is important to design programs in a way that for a specific task data
that must be read into the cache are in a subsequent order.
Let’s assume for a cosmological simulation with 106 particles, for each particle the coordinates
and velocities (3D) should be saved in an array particle[][]. A function loops over all
particles and needs to access for each particle all ~x , ~v -data.
How should this array be dimensioned in C/C++: particle[6][1000000] or
particle[1000000][6] ?

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 113 / 577



Initialization of arrays

An array can be initialized by curly braces:

int array[5] = {0, 1, 2, 3, 4} ;

short field[] = {0, 1} ; // array field is automatically
// dimensioned

float x[77] = {0} ; // set all values to 0
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Strings I

There are no string variables in C. Therefore strings are written to one-dimensional character
arrays:

char text[6] = "Hello" ;

The string literal constant "Hello" consists of 5 printable characters and is terminated
automatically by the compiler with the null character \0, i.e. the array must have a length of 6
characters! Note the double quotation marks!

Example
char text[80] ;
cout << endl << "Please enter a string:" ;
cin >> text ;
cout << "You have entered " << text << " ." << endl ;
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Strings II

Task 2.7
1 What is the difference between 'Y' and "Y"?
2 Which of these two literals is correct: 'Yes' oder "Yes"?
3 What’s wrong here: char text[2] = "No" ;?

String comparison
C-Strings (character arrays) cannot be compared directly with ==, in this case the operator
would compare the start addresses of the arrays.
Instead: Use strcomp(string1,string2) from library string.h, this will return 0 if strings
are equal (arrays can have different lengths).
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Declaration and visibility of variables I

Declarations of variables should be at the beginning of a block, exception: loop variables

float x, y ; // declaration of x and y
int n = 3 ; // declaration and initialization of n

Local variables / variables in general

are only visible within the block (e.g., in int main() { }), where they have been
declared → scope

are local regarding this block, can only be accessed within this block

are unknown outside of this block, i.e., they don’t exist there

are automatically deallocated when leaving the scope,
except those with modifier static
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Declaration and visibility of variables II

Global variables

must be declared outside of any function, e.g., before main()

are visible/known to all following functions within the same program

have file wide visibility (i.e., if you split your source code into different files, you have to
put the declaration into every file)

are only removed from memory when execution of the program is ended

A locally declared variable will hide a global variable of the same name. The global variable can be still accessed
with help of the scope operator ::, e.g., cout << ::m ;

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 118 / 577



Declaration and visibility of variables III

Global and local variables
int m = 0 ; // global variable

void calc() {
int k = 0; // local variable
m = 1 ; // ok, global variable
++j ; // error, as j only known in main

}

int main() {
int j = 3 ;
++j ; // ok
for (int i = 1 ; i < 10 ; ++i) {

j = m + i ; // ok, all visible
}
m = j - i ; // error: i not visible outside loop
return j ;

}
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Defining constants

Values (e.g., numbers) that do not change during the program execution, should be defined as
constants:

const float e = 2.71828 ;

const int prime[] = {2,3,5,7} ;

Constants must be initialized during declaration.

After initialization their value cannot be changed.

Use const whenever possible!
(The compiler will replace any occurrence of the constant name by the value before
“translation” → no memory addressing necessary as for variables.)
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Pointer I

Pointer variables – or pointer for short – allow a direct access (i.e. not via the name) to a
variable.

Declaration of pointers
int *pa ; // pointer to int
float *px ; // pointer to float

int **ppb ; // pointer to pointer to int
int ***pppb ; // pointer to pointer to pointer to int

...

C++ standard : at least 255 (static) ; in C: at least 12 (static)
but: infinite dynamic (linked lists)
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Pointer II

A pointer is a variable that contains an address, i.e. it points to a specific part of the memory.
As every variable in C/C++ a pointer variable must have a data type.
The value at address (memory) to which the pointer points, must be of the declared data type.

address value variable
1000 0.5 x
1004 42 n
1008 3.141. . . d
1012 . . . 5926
1016 H E Y ! salutation
1020 1000 px
1024 1008 pd
1028 1004 pn
1032 1016 psalutation
1036 1028 pp
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Pointer III

Pointers must be always initialized before usage!

Initialization of pointers
int *pa ; // pointer to int

int b ; // int

pa = &b ; // assigning the address of b to a

The character & is called the address operator (“address of”)
(not to be confused with the reference int &i = b ;).

Declaration and initialization
int b ;
int *pa = &b ;

→ content of pa = address of b
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Pointer IV

With help of the dereference operator * it is possible to get access to the value of the variable
b, one says, pointer pa is dereferenced:

Dereferencing a pointer
int b, *pa = &b ;
*pa = 5 ;

Here, * . . . is the dereference operator and means “value at address of . . . ”.
The part of the memory to which pa points, contains the value 5, that is now also the value of
the variable b.

cout << b << endl ; // yields 5
cout << pa << endl ; // e.g., 0x7fff5fbff75c

// and with pointer to int-pointer:
int **ppa ; ppa = &pa ; cout << **ppa << endl ; // yields also 5
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Pointer V

Once again:

Pointer declaration:

float *pz, a = 2.1 ;

Pointer initialization:

pz = &a ;

Result – output:

cout << "address of variable a (content of pz): "
<< pz << endl ;

cout << "content of variable a: "
<< *pz << endl ;

*pz = 5.2 ; // change value of a
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References

int &n = m ;
m2 = n + m ;

A reference is a new name, an alias for a variable. So, it is possible to address the same
part of the memory (variable) by different names within the program. Every modification
of the reference is a modification of the variable itself - and vice versa.
References are declared via the & character (reference operator) and must be initialized
instantaneously:

int a ;
int &b = a ;

This initialization cannot be changed any more within the program!

(At this stage a reference seems to be rather useless.)
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Passing variables to functions I

Structure of functions – definition
type name (arg1, ...) { ... }

example: int main (int argc, char *argv[]) { }

in parentheses (): arguments of the function / formal parameters

when function is called: copy arguments (values of the given variables) to function context
→ call by value / pass by value

setzero (float x) { x = 0. ; }
int main () {

float y = 3. ;
setzero (y) ;
cout << y ; // prints 3. }
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Passing variables to functions II

Call by value

Pros:

the value of a passed variable cannot be changed unintentionally within the function

Cons:

the value of a passed variable can also not be changed on purpose

for every function call all value must be copied
→ extra overhead (time)
(exception: if parameter is an array, only start address is passed → pointer)
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Passing variables to functions II

Call by reference (C++)

void swap(int &a, int &b) ;

Passing arguments as references:

The variables passed to the function swap are changed in the function and keep these values
after returning from swap.

void swap (int &a, int &b) {
int t = a ; a = b ; b = t ; }

→ and called via: swap (n, m) ;

Thereby we can pass an arbitrary number of values back from a function.

Hint: The keyword const prevents that a passed argument can be changed within the function:
sum (int const &a, int const &b) ;
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Passing variables to functions

Call by pointer

A function for swapping two int variables can also be written by using pointers:

void swap(int *a, int *b) { // pointers as formal parameters int tmp ;
int t = *a ; *a = *b ; *b = t ; // remember: *a -> value at address of a

}

Call in main():

swap (&x, &y) ; // Passing addresses(!) of x and y

Passing arrays to functions
In contrast to (scalar) variables, arrays are automatically passed by address (pointer) to
functions (see below), e.g.,
myfunc ( float x[] )
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Pointers and references

Pointer variables
store addresses
must be dereferenced (to use the value of the spotted variable)
can be assigned as often as desired to different variables (of the same, correct type) within
the program

References
are alias names for variables,
can be used by directly using their names (without dereferencing)
the (necessary!) initialization at declaration cannot be changed later
(actually only useful as function arguments or result)
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Passing arrays to functions in C++ I

Declaration of a 1d-array:

int m[6] ; // statically dimensioned†

Declaration of a function with an array type argument:

int sumsort (int m[], int n) ; // n = length of m

Calling a function with an array type argument:

sum = sumsort (m, 6) ;

→ passing the array is implicitly done by a pointer, i.e. only the start address of the array will
be passed to the function

†an array can also be declared dynamically, so with size fixed at runtime, but only locally and arrays with more
than 1 dimension must have fixed sizes at compile time if they are passed to functions (see below)
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Passing arrays to functions in C++ II

Correspondence of pointers and arrays
→ see exercise

the assignment

a[i] = 1 ;

is equivalent to

*(a + i) = 1 ;

when passing 1d-arrays to functions the start address and the data type (size of the
entries) is sufficient
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Passing arrays to functions in C++ III

Problem:
When using multi-dimensional arrays, passing of the start address alone is not sufficient.
Every dimensioning after the first one must be explicitly (integer constant!) written.

Therefore:

float absv (float vector[], int n) ; // 1d-array
float trace (float matrix[][10]) ; // 2d-array
float maxel (float tensor[][13][13]) ; // 3d-array

→more flexibility by using pointers as arguments, e.g., for an array a[3][4]:
float *a[3] ; ... ; a[i] = new float[4] ; float function (float **a, ...)

→ special matrix-classes simplify the passing to functions
→ in Fortran, passing arrays to functions is much easier (i.e. only start address is passed)
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Structs and classes – defining new data types I

Besides the intrinsic (/basic) data types there are many other data types, which can be defined
by the programmer

struct
struct complex {

float re ;
float im ;

} ; a

aNote the necessary semicolon after the } for structs

In this example the data type complex is defined, it contains the member variables for real and
imaginary part.

struct vs. class
The constructs struct and class are identical in C++ with the exception that access to
struct is public by default and for class it is private. They can be defined outside or inside a
function (e.g., main).
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Structs and classes – defining new data types II

Structs can be imagined as collections of variables.

struct
struct star {

char full_name[30] ;
unsigned short binarity ;
float luminosity_lsun ;

} ;

These (self defined) data types can be used in the same way as intrinsic data types:

Declaration of struct objects
complex z, c ;
star sun ;
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Structs and classes – defining new data types III

Concrete structs which are declared in this way are called instances or objects
(→ object-oriented programming) of a class (struct).

Declaration and initialization
complex z = {1.1 , 2.2} ;
star sun = {"Sun", 1, 1.0 } ;

The access to member variables is done by the
member selection operator . (dot):

Access to members
real_part = z.re ;
sun.luminosity_lsun = 1.0 ;
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Structs and classes – defining new data types IV

It is also possible to define functions (so-called methods) within structs:

Member functions
struct complex {

...
float absolute () {

return (sqrt(re*re + im*im)) ;
}

} ;
complex c = {2., 4.} ;

cout << c.absolute() << endl ;

The call of the member function is also done with the . , the function (method) is associated
with the object.
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Structs and classes – defining new data types V

And even operators:

Operator overloading

complex operator+ (const complex & c) {
complex z ;
// calling object is referenced with this->
z.re = this->re + c.re ;
z.im = this->im + c.im ;
return z ;

}
...

complex w, z, c ;
...

w = z + c ;
// object on left side (z) of operator calls +
// object on the right side (c) is "argument" for call
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Structs and classes – defining new data types VI

In our example for the absolute of a complex number, the call is c.absolute() instead of the
common absolute(c)
The latter call can be achieved with help of a static member function, that is shared by all
objects and exists independently of them

Static member functions
static double abs (const complex & c)

return ( sqrt(c.re * c.re + c.im * c.im) ) ;

...
complex::abs(c) ;

Static functions must be called with the class name (here: complex) and the scope operator ::
Static functions have no this-> pointer
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Classes – Example: writing/reading files I

Output to a file by using library fstream:
1 #include <fstream>
2 create an object of the class ofstream:

ofstream fileout ;
3 method open of the class ofstream:

fileout.open("graphic.ps") ;
4 writing data: e.g.

fileout << x ;
5 close file via method close:

fileout.close() ;

Simple alternative (Unix): Use cout and redirection operator > or >> of the shell:
./program > output.txt
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Classes – Example: writing/reading files II

By including the <fstream> library, one can also read from a file

Input from a file
char line[132] ;
ifstream filein ; // create ifstream object
filein.open("data.txt") ; // open the file
while ( filein.good() ) {

filein.getline(line,132) ; // read in line;
// use buffer size (132)

x[i] = atof(line) ; // read into float array
}

The method good() checks, whether the end of file (EOF) is reached or an error occurred.

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 142 / 577



Private and public

class : by default all members are private → accessible elements must be declared as
public

class complex {
float real, imag ; // implicitly private
public : getreal () { return this->real ; }

};

member variables usually set private, access to them via public methods (e.g., get. . . ,
set. . . )
keywords public and private (with :) valid until next of those occurs
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Constructors

each class has a default constructor with empty argument list if no constructor is
explicitly defined:

struct complex {
...

};
...
complex z ; // default constructor
z = {x , 1.} ; // initialization (only if constructor is public)

one may define more constructors, e.g.:

struct complex {
public : complex (double x, double y) {real = x ; imag = y ;}
...

};
complex z (x, y) ; // constructor initializes real and imaginary part
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Templates I

Templates allow to create universal definitions of certain structures. The final realization for a
specific data type is done by the compiler.

Function templates
template <class T> // instead of keyword ’class’ also ’typename’ allowed
T sqr (const T &x) {
return x * x ; }

The keyword template and the angle brackets < > signalize the compiler that T is a template
parameter. The compiler will process this function if a specific data type is invoked by a
function call, e.g.,

double w = 3.34 ; int k = 2 ;
cout << sqr(w) << " " << sqr(k) ;

→ for full convenience, templates must be already defined before the call, e.g., already in the
header file (i.e. the compiler needs to know which concrete versions must be created)
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Templates II

Moreover, templates can be used to create structs/classes. For example, the class complex of
the standard C++ library (#include <complex>) is realized as template class:

Class templates
template <class T>
class std::complex {

T re, im ;
public:

...
T real() const return re ;

}

Therefore, the member variables re and im can be arbitrary (numerical) data types.
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Templates III

We can also have function templates of different types

Function template for multiple types

template <class T, class U>
auto max (const T &x, const U &y) {
return (x > y) ? x : y ; // return maximum of both arguments

}
...

cout max(2, 1) << " " << max(3.3, 4.4) << " " << max(1, 2.) << endl ;
...

→ max( , ) can now be called with mixed arguments, e.g., int and double: max(1, 2.)
→ keyword auto instructs compiler to select return type automatically, e.g., double if
arguments are double and int
In C++20 the function header above can be shorter written as

auto max (const auto &x, const auto &y)
? is the ternary conditional operator, meaning condition ? result_if_true : result_if_false
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Typ definitions via typedef

By using typedef datatype alias name one can declare new names for data types:

typedef unsigned long large ;
typedef char* pchar ;
typedef std::complex<double> complex_d ;

These new type names can then be used for variable declarations:

large mmm ;
pchar Bpoint ;
complex_d z = complex_d (1.2, 3.4) ;

In the last example, the constructor for the class template complex gets the same name as the
variable through the typedef command.
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Exception handling – exceptions I

A major strength of C++ is the ability to handle runtime errors, so called exceptions:

Throwing exceptions: try – throw – catch
try {

cin >> x ;
if ( x < 0.) throw string("Negative value!") ;
y = g(x) ;

}
catch (string info) { // catch exception from try block

cout << "Program stops, because of: " << info << endl ;
exit (1) ;

}
...

double g (double x) {
if (x > 1000.) throw string("x too large!") ; ... }
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Exception handling – exceptions II

try { ...}

within a try block an arbitrary exception can be thrown

throw e ;

throw an exception e

the data type of e is used to identify to the corresponding catch block to which the
program will jump

exceptions can be intrinsic or self defined data types
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Exception handling – exceptions III

catch ( type e ) { ...}

after a try one or more catch blocks can be defined

from the data type of e the first matching catch block will be selected

any exception can be caught by catch (...)

if after a try no matching catch block is found, the search is continued in the next higher
call level

if no matching block at all is found, the terminate function is called; its default is to call
abort
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Exception handling – exceptions IV

Data types for exception throwing
In contrast to the simple example above, it is recommended to use specific (not built-in) data
types e for throw, e.g., from class exception.

#include <exception>
...
try {

cin >> x ;
if ( x < 0.) throw runtime_error("Negative Number!");
y = g(x) ;

}
catch (const runtime_error& ex) { // catch exception from try block

cout << "Program stops, because of: " << ex.what() << endl ;
exit (1) ;

}
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Reading arguments from program call

Sometimes it is more convenient to pass the parameters the program needs directly at the call
of the program, e.g,
./rstarcalc 3.5 35.3

this can be realized with help of the library stdlib.h

Read an integer number from command line call
#include "stdlib.h"
int main (int narg, char *args[]) {

int k ;
// convert char array to integer
if (narg > 1) k = atoi(args[1]) ;

}

if the string cannot be converted to int, the returned value is 0
there exist also atol and atof for conversion to long and float
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Summary

Common mistakes in C/C++:
forgotten semicolon ;

wrong dimensioning/access of arrays
int m[4] ; imax = m[4] ; → imax = m[3] ;

wrong data type in instructions / function calls
float x ; ... switch (x) → int i ; ... switch (i)
void swap (int *i, int *j) ; ... int m, n ; ... swap(n, m) ;
→ swap(&n, &m) ;

confusing assignment operator = with the equality operator ==
if(i = j) → if(i == j)

forgotten function parenthesis for functions without parameters
clear ; → clear();

ambiguous expressions
if (i == 0 && ++j == 1)
no increment of j, if i 6= 0
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Some recommendations I

use always(!) the . for floating point literals: x = 1. / 3. instead of x = 1 / 3

white space is for free → use it extensively for structuring your source code (indentation,
blank lines)

comment so that you(!) understand your source code in a year

use self-explaining variable names, e.g., Teff instead of T (think about searching for this
variable in the editor)

use integer loop variables:
for (int i = 1; i < n ; ++i) {
x = x + 0.1 ; ... }

instead of
for (float x = 0.; x < 100. ; x = x + 0.1) {... }

take special care of user input, usually: tinput � tcalc, so exception catching for input is
never wasted computing time
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Some recommendations II

Tips for High Performance Computing / Number Crunching

The more flexible your program is, the harder it is for the compiler to optimize it.
Hence:

Use const whenever possible (values, arguments).

Avoid pointers (except for argument passing).

(Avoid dynamic allocations.)

Use keyword inline (see Sect. 1) for small functions (vs. code size see below).
Avoid many (nested) function calls.

Keep loops simple, avoid too many branchings and jumps. Use matrix classes/functions
instead of looping over elements.

Execution speed vs. flexibility:
→ flexibility increases →

Assembler Fortran C C++ Python
← speed increases ←
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Some recommendations III

Table: Latencies of memory operations in relation to each other, see github

operation real time scaled time (×109)

Level 1 cache access 0.5 ns 0.5 s (∼ heart beat)
Level 2 cache access 7 ns 7 s
Multiply two floats 10 ns 10 s (estimated)
Devide two floats 40 ns 40 s (estimated)
RAM access 100 ns 1.5 min
Send 2kB over Gigabit network 20 000 ns 5.5 h
Read 1MB from RAM 250 000 ns 2.9 d
Read 1MB from SSD 1 000 000 ns 11.6 d
Read 1MB from HDD 20 000 000 ns 7.8 months
Send packet DE→US→DE 150 000 000 ns 4.8 years
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Numerical precision
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Machine precision I

as seen for float x = 7 + 1.E-7: because of only 23 bit for mantissa result is 7

therefore: machine precision εm is maximum possible number for which
1c + εm = 1c, where c means computer representation

hence: for any number xc
xc = x(1± ε), |ε| ≤ εm
remember: for all 32 bit floats → error in ' 6th decimal place,
for 64 bit doubles → error in ' 15th place
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Machine precision II

Determining machine precision
float eps = 1.f ;
for (int i = 1 ; i < 100 ; ++i){

eps = eps / 2.f ; // float literal 2.f
cout << i << " " << eps << " "

<< setprecision(9)
<< 1.f + eps << endl ;

}

e.g., for float:
23 1.1920929e-07 1.00000012
24 5.96046448e-08 1

Similarly for double:
52 2.2204460492503130808e-16 1.000000000000000222
53 1.1102230246251565404e-16 1
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Types of errors I

We may distinguish:
1 random errors: caused by non-perfect hardware, e.g., aging of RAM cells; can be

minimized by using “checksums”, e.g., by ECC (Error correction code) techniques (corrects
1 bit errors, recognizes 2 bit errors), checksums in protocol headers (e.g., TCP/UDP),
Btrfs scrub on RAID1 against Bit rot on HDD (typical bit error rate 1:1014)
→ likelihood increases with runtime

2 approximation errors: because of finiteness of computers, e.g., stopping series calculation,
finite integration steps, . . .

e−x =
∞∑
n=0

(−x)n

n!
≈

N∑
n=0

(−x)n

n!
= e−x + E(x ,N) (7)

where E vanishes for N → ∞, hence we require N � x , expecting here large E for x ≈ N
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Types of errors II

3 roundoff errors: limitation in the representation of real numbers (finite number of digits),
e.g., if only three decimals are stored: 1/9=0.111 and 5/9=0.556, hence

5
(
1
9

)
− 5

9
= 0.555− 0.556 = −0.001 6= 0 (8)

→ error is intrinsic and accumulates with the number of calculation steps
→ some algorithms unstable because of roundoff errors

again: for a float number like

x = 11223344556677889900. = 1.1223344556677889900× 1019 (9)

only the first part (32 bit: 1.12233) is stored, while exponent is stored exactly
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Absorption and subtractive cancellation I

Absorption

adding floating point numbers of very different magnitude may result in absorption, e.g.,
float x = 7. + 1.E-7 gives 7

absorption may even result in instable behavior in combination with floating point loop
counters (therefore never use them!)

float y = 100000010., inc = 1. ;
for (float x = 100000001. ; x <= y ; x += inc) { ... }

→ loop may run infinitely
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Absorption and subtractive cancellation II

absorption may lead to saturation in summation schemes, hence:

Kahan summation algorithm
E.g., summing over an array input[n]:

float y, t, sum = 0.,
c = 0. ; // compensation

for (int i = 0 ; i < n ; ++i) {
y = input[i] - c ; // c is zero in 1st iteration
t = sum + y ; // sum >> y
c = (t - sum) - y ; // (t - sum) cancels high-order part of y;

// subtracting y recovers negative (low part of y)
sum = t ;

}

→ alternatively: higher precision (double),
pairwise summation (e.g., default in NumPy, used in many FFT algorithms)
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Absorption and subtractive cancellation III

Subtractive cancellation

consider computer representation xc of an exact number x :

xc ' x(1 + εx) (10)

with relative error εx in xc (similar to machine precision)

so for subtraction

a = b − c → ac ' bc − cc ' b(1 + εb)− c(1 + εc) ' b − c + bεb − cεc | : a (11)

→ ac
a
' b − c

a
+ εb

b

a
− εc

c

a
' 1 + εb

b

a
− εc

c

a
(12)

(weighted errors) and if b ' c

ac
a

=1 + εa ' 1 +
b

a
(εb − εc) ' 1 +

b

a
max(|εb|, |εc |) (13)

as b ' c → b
b−c � 1→ b

a � 1 → relative error in a blown up
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Absorption and subtractive cancellation IV

Warning
When subtracting two large numbers resulting in a small number, significance is lost.

Examples:

computation of derivatives according to f (x+h)−f (x)
h

the original Verlet method: vn =
xn+1 − xn−1

2∆t
solution of quadratic equation for b � 4ac :

x1,2 =
−b ±

√
b2 − 4ac
2a

or x1,2 =
−2c

b ±
√
b2 − 4ac

(14)

in e−x for large x : the first terms (1− x + x2/2− . . .) are large → as result is small
→ subtraction by other large terms → improve algorithm by calculating 1/ex
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Errors in algorithms I

Roundoff error accumulation, e.g., for multiplication:

a = b ∗ c → ac = bc ∗ cc = b(1 + εb) ∗ c(1 + εc) | : a (15)

→ ac
a

= (1 + εb)(1 + εc) ' 1 + εb + εc (16)

(neglecting very small ε2 terms) → as for physical error-propagation: adding up relative errors
(no cancellation)
So, model for error-propagation: similar to random-walk (see later) where accumulated distance
after N computation steps of length ` is ≈

√
N`, roundoff error may accumulate randomly:

εroundoff ≈
√
N εm (17)

→ if no detailed error analysis available;
otherwise, if not random: εroundoff ≈ Nε
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Errors in algorithms II

Usually: if A is correct result and numerical approximation is A(N), accuracy of A(N) improves
by adding more terms, i.e. approximation error drops with larger N

εappr '
α

Nβ
(18)

with some constants α, β depending on algorithm
However, each calculation step might increase roundoff error, so

εtot = εappr + εroundoff '
α

Nβ
+
√
Nεm (19)

Hopefully: εappr dominant, but εroundoff grows slowly
→ stop calculation (optimum N) for minimum εtot
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Errors in algorithms III

Minimize the error
Let’s assume that some algorithm behaves like

εappr '
1
N2 → εtot '

1
N2 +

√
N εm (20)

Then the best result (minimum total error) is achieved for an N from

dεtot

dN
= 0 = −2N−3 +

1
2
N−1/2εm → N

5
2 =

4
εm

(21)

So, for single precision (εm ' 10−7)

N
5
2 =

4
10−7 → N ' 1099→ εtot = 4× 10−6 (22)

→ total error dominated by εm, typical for single precision
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Errors in algorithms IV

Minimize the error II
So, if another algorithm

εappr '
2
N4 → εtot '

2
N4 +

√
N εm (23)

And again minimum error obtained for an N

dεtot
dN

= 0→ N
9
2 =

16
εm
→ N ' 67→ εtot = 9× 10−7 (24)

So, need less steps and also obtain better precision

The better algorithm is not more elegant but needs less calculation steps and achieves a better
precision.
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Libraries

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 171 / 577



Excursus: Libraries I

→ collection of functions, variables, operators

#include <iostream>

already seen: even simple input/output needs an additional library (e.g., iostream)

idea of C/C++ in contrast to many other languages: only a few builtin instructions
(e.g., return),
everything else realized by corresponding libraries
⇒ high flexibility because of “outsourcing”

also mathematical functions only available by corresponding libraries (e.g., cmath
for sin and power)

libraries allow easily the reuse of functions in different programs
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Excursus: Libraries II

Including libraries in C++:
at compile time:
automatic call of the C preprocessor (cpp) by g++:
read all instructions which start with a number sign #, especially

#include <iostream>

→ look in the specified (default) directory paths (e.g.,/usr/include/)
for header files, usually with extension .h,
here: iostream

→ include the corresponding header file
→ pass output to compiler

The <iostream> header
The header file for the iostream library is in /usr/include/c++/x.x/iostream, where x.x
depends on the specific version. It basically contains further include instructions.

→ for compilation the header file must be present, in openSUSE usually the corresponding
libname-devel package must be installed manually
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Excursus: Libraries III

The C preprocessor
CPP statements start with #, no semicolon ; at the end, but can be commented out via //

If the preprocessor is called explicitly:
cpp rcalc.cpp output

then from the source file rcalc.cpp, it generates an output file output, in which, e.g.,
#define instructions are resolved

at link time:
look for the libraries which belong to the header files, translate the names (symbols)† used
in the library to (relative) memory addresses;
static linking: include the necessary library symbols in the program

† the list of symbol names of the compiled code can be printed out with nm file.o
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Excursus: Libraries IV

Dynamic libraries

The Unix command ldd lists the dynamically linked-in libraries for a given program (or object
file/library), e.g., ldd -v rcalc:
linux-vdso.so.1 (0x00007fff72bff000) †

libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00007ff2d9c0b000)

The path to the library and the memory address is printed.

at runtime:
dynamic linking: loading program and libraries to memory (RAM)
advantage (over static linking): library is loaded only once and can be used by other
programs

†vdso = virtual dynamic shared object

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 175 / 577



Excursus: Libraries V

C Preprocessor
(cpp)

⇓

Compiler
(g++)

⇓

Linker
(ld)
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Excursus: Libraries VI

Overview: Unix commands for developers
cpp: C preprocessor for the #-instructions

g++: C++ compiler

ld: link editor (usually called by the compiler)

ldd: lists the used libraries of an object file (also program or library)

nm: lists the symbols of an object file (etc.)

Symbols
In a C++ program main belongs to the symbols labeled with letter T. I.e., it is a symbol from
the text (code) section of the file.
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Linking and libraries I

sometimes necessary for using some specific libraries: explicit specification (name) of the
library at link time

specification of a library libpthread.so via lower case l:

-lpthread

when calling the compiler for creation of the executables

Example: g++ -o programm program.cpp -lX11

specification of the path to the library via upper case L:

-L/usr/lib/ -lpthread

when calling the compiler for creation of the executables
Heads up: The path must be given before the library!

Important: the corresponding header file must be in a standard path, the current directory,
or the path is specified via -Ipath-to-include-file
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Linking and libraries II

dynamic libraries must be located in a default system path (e.g., /lib) or the the path
must be added to the environment variable

LD_LIBRARY_PATH

E.g. for the bash via

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:.

and for the csh respectively

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:.

→ extending the path to dynamic libraries for the current working directory
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Static linking I

static libraries (file extension .a) are archives of object files

these objects files are fixed included in the binary output during the procedure of static
linking → can lead to large program files

possible advantage: compact binaries with lean libraries (e.g., diet libc)

Sequence for static linking
If a library/program libA needs symbols from the library libB, the name of libA must be
given before that of libB at link time for static linking: -lA -lB

(complete) static linking isn’t supported anymore by modern OSs (e.g. MacOS) at normal
developer level

but against some libraries (e.g., libgfortran, MKL) it can be selectively statically linked
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Graphics with X11
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Graphical output with X11

there are many libraries for graphical output:
Qt, e.g., for Mathematica
Simple DirectMedia Layer for simple games
. . .

Pros: large support, comprehensive literature, often platform independent (e.g. via ports)
Cons: often huge frameworks even for simplest tasks, huge libraries (memory
consumption), usually high thresholds for beginners
always available under Unix/Linux: X11 or just X with many abilities:

creation of windows incl. internal structures (panels)
simple routines for drawing lines, circles, colors
keyboard and mouse inquiry
graphical forwarding (ssh -Y)

→We want to use X11 more or less directly with help of the library Xgraphics.
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make
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make I

Purpose of make:
automatic determination of the program parts (usually source files) that must be
re-compiled via

a given definition of the dependencies / prerequisites (implicit, explicit)
comparison of time stamps (file system)

calling the required commands for re-compilation:

typical use: ./configure ; make ; make install
useful especially for large programs with many source files
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make II

Main idea of make is the rule:

Target : Dependencies
<TAB> command for creation of the target

e.g.,

myprogram : myprogram.o
<TAB> g++ -o $@ $?

Note
explicit rules are defined via an ASCII file, the so-called makefile
every command belonging to a rule must start with a <TAB> !
the macros $@ and $? are called automatic variables, i.e., they are replaced by make:
$@ is replaced by the target,
$? by the dependencies that are newer than the target
$ˆ → all dependencies (separated by blanks)
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make III

Implicit rules:

some rules for compilation are re-occurring, e.g., for C++ .o files are always created from
.cpp files

make has therefore a number of implicit rules, hence make can also be used without a
makefile

Example
echo 'int main() {}' > myprog.cpp
make myprog

executes g++ -o myprog myprog.cpp 1

make uses implicit rules if no explicit rule for creation of the target has been found

1make invokes g++ automatically, or the C++ compiler that is specified in the environment variable CXX

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 186 / 577



make IV

Explicit rules

an explicit rule is usually specified in a text file that has one of the following default
names: makefile, Makefile

every rule must define at least one target

it is possible to define several dependencies for one target

a rule can contain an arbitrary number of commands

Moreover, explicit rules overwrite implicit rules:

.c.o :
<TAB> $CPP -c $?

$(PROJECT) : $(OBJECTS)
<TAB> $(CPP) $(CPPLAGS) -o $(@) $(OBJECTS)
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make V

Usual run of a make call:
1 after calling make the makefile is parsed (read)
2 read and substitute variables (see below) and determination of the highest target(s) (given

in the beginning), evaluation of the dependencies
3 creation of a tree of dependencies
4 determination of the time stamps for all dependencies of the corresponding files and

comparison with those of the next step in the tree
5 targets whose dependencies are newer than the targets are re-compiled
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make VI

Variables

during processing of the rules make uses automatic variables, e.g., $@ and $? (see above)

variables can also be defined explicitly before the first rule, syntax is shell-like:

CC = gcc
CFLAGS = -O3
PROJECT = galaxy

variables can, as in the shell, be held together with help of curly braces ${OBJECTFILES},
or alternatively with help of round parentheses $(CFLAGS)
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make VII

Usual pseudo targets →Call via make pseudo target

don’t create a file, or don’t have dependencies, e.g.

clean, for make clean, defines explicitly how the intermediate and final products
(targets) of the compilation shall be removed

all creates all project files

install if the targets (programs, libraries) shall be copied to a specific directory (or
similar), it should be stated in install

Pseudo targets (e.g., clean) can only be used if defined in the makefile.
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make VIII

Example of a makefile
CXX = g++ -O3
CPFLAGS = -Wall
LIBRARIES = -lX11

OBJECTS = componentA.o componentB.o
PROJECT = myprogram

$(PROJECT) : $(OBJECTS)
${CXX} $(CPFLAGS) $(OBJECTS) -o $@ ${LIBRARIES}

.cpp.o :
${CXX} -c ${CPFLAGS} $?

clean :
rm -f $(OBJECTS)
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make IX

Makefile uses a shell-like syntax:

comments are started with a #:
# a comment

one command per line, multiple commands via ; and line continuation via \
$FC $? ; ldconfig

every command corresponds to a shell command, and is printed before execution:

.c.o :
echo "Hello ${USER}"

the print-out of commands can be suppressed with @ before the command

@echo "Hi ${DATE}"

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 192 / 577



make X

variables are set without $ and used/referenced with a $

progname = opdat
PROJECT = $(progname).exe

Variable names that contain multiple characters should always be held together with
parentheses () or curly braces {}.
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make XI

Special targets:

problem: pseudo target clean is not executed, if a file with that name exists (why?)

solution: pseudo targets can be marked as such via the special target .PHONY:

.PHONY: clean install

special targets start with a .
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make XII

Some more special targets:

.INTERMEDIATE : dependencies are only created if another dependency before the target is
newer, or if a dependency of an intermediate file is newer than the actual target. The
intermediate target is deleted after the target was created:

.INTERMEDIATE : colortable.o

xapple.exe : xapple.cpp colortable.o
$(CXX) -o xapple.exe xapple.cpp colortable.o

colortable.o : colortable.cpp
$(CXX) -c colortable.cpp

Here, colortable.o is only created if xapple.cpp or if colortable.cpp are newer than
xapple.exe. After the creation of xapple.exe the target colortable.o will be
removed.
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make XIII

.SECONDARY : like .INTERMEDIATE, but the dependencies are not removed automatically

.IGNORE : errors during creation of the specified dependencies will not lead to an abort of
the make procedure

Hint
The tool make is not bound to programming languages, but can also be used for, e.g.,
automatic compilation of .tex files etc.

Advantage of using make
A Makefile

can save compilation time
documents the compiler options and necessary files of the project
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The two-body problem
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Equations of motion I

We remember (?)

The Kepler’s laws of planetary motion (1619)

1 Each planet moves in an elliptical orbit where the Sun is
at one of the foci of the ellipse.

2 The velocity of a planet increases with decreasing
distance to the Sun such, that the planet sweeps out
equal areas in equal times. (Consequence of which law?)

3 The ratio P2/a3 is the same for all planets orbiting the
Sun, where P is the orbital period and a is the semimajor
axis of the ellipse. (What defines value of ratio?)

SOa

The 1. and 3. Kepler’s law describe the shape of the orbit (Copernicus: circles), but not the
time dependence ~r(t). This can in general not be expressed analytically by elementary
mathematical functions (see below).
Therefore we will try to find a numerical solution.
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Equations of motion II

Earth-Sun system
Step 1: → two-body problem → one-body problem via reduced mass of lighter body (partition
of motion) via Newton’s 3. & 2. law:

~F12 = −~F21 ⇒ m1~a1 = −m2~a2 ⇒ ~a2 = −m1

m2
~a1 (25)

~arel := ~a1 − ~a2 =

(
1 +

m1

m2

)
~a1 =

m2 + m1

m1m2
m1~a1 = µ−1 ~F12 (26)

=
d2~xrel
dt2

=
d2

dt2
(~x1 − ~x2) (27)

⇒ µ =
Mm

m + M
=

m
m
M + 1

(28)

as mE � M� is µ ≈ m, i.e. motion is relative to the center of mass ≡ only motion of m. Set
point of origin (0, 0) to the source of the force field of M.
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Equations of motion III

Hence: Newton’s 2. law (with m ≈ µ):

m
d2~r

dt2
= ~F (29)

m
d2

dt2

 x
y
z

 =

 Fx
Fy
Fz

 (30)

and force field according to Newton’s law of gravitation :

~F = −GMm

r3
~r (31) Fx

Fy
Fz

 = −GMm

r3

 x
y
z

 (32)
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Equations of motion IV

Kepler’s laws, as well as the assumption of a central force imply → conservation of angular
momentum →motion is only in a plane (→Kepler’s 1st law).
So, we use Cartesian coordinates in the xy -plane:

Fx = −GMm

r3
x (33)

Fy = −GMm

r3
y (34)

The equations of motion are then:

d2x

dt2
= −GM

r3
x (35)

d2y

dt2
= −GM

r3
y (36)

where r =
√

x2 + y2 (37)
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Excursus: Analytic solution of the Kepler problem I

To derive the analytic solution for equation of motion ~r(t) → use polar coordinates: φ, r
1 use conservation of angular momentum `:

µr2φ̇ = ` = const. (38)

φ̇ =
`

µr2
(39)

2 use conservation of total energy (~v = ṙ ~er + r φ̇ ~eφ →Ekin = µ
2 (ṙ2 + r2φ̇2)):

E =
1
2
µṙ2 +

`2

2µr2
− GMµ

r
(40)

ṙ2 =
2E
µ
− `2

µ2r2
+

2GM
r

(41)

→ two coupled equations for r and φ

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 202 / 577



Excursus: Analytic solution of the Kepler problem II
3 decouple Eq. (39), use the orbit equation r = α

1+e cosφ with numeric eccentricity e

(= f1O/a, Value for circle?) and α ≡ `2

GMµ2 gives separable equation for φ̇

φ̇ =
dφ

dt
=

G 2M2µ3

`3
(1 + e cosφ)2 (42)

t =

∫ t

t0

dt ′ = k

∫ φ

φ0

dφ′

(1 + e cosφ′)2
= f (φ) (43)

right-hand side integral can be looked up in, e.g., Bronstein:

t/k =
e sinφ

(e2 − 1)(1 + e cosφ)
− 1

e2 − 1

∫
dφ

1 + e cosφ
(44)

→ e 6= 1: parabola excluded; the integral can be further simplified
for the hyperbola (e > 1):∫

dφ

1 + e cosφ
=

1√
e2 − 1

ln
(e − 1) tan φ

2 +
√
e2 − 1

(e − 1) tan φ
2 −
√
e2 − 1

(45)
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Excursus: Analytic solution of the Kepler problem III

for the ellipse (0 ≤ e < 1):∫
dφ

1 + e cosφ
=

2√
1− e2

arctan
(1− e) tan φ

2√
1− e2

(46)

→Eq. (44) with Eqn. (46)& (45): t(φ) must be inverted to get φ(t) !
(e.g., by numeric root finding)

→ only easy for e = 0 → circular orbit

t = k

∫
dφ′ = kφ→ φ(t) = k−1t =

G 2M2µ3

`3
t (47)

and from orbit equation (for e = 0) r = α = `2

GMµ2 = const.

For the general case, it is much easier to solve the equations of motion numerically.
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Excursus: The Kepler equation I

Alternative formulation for time dependency in case of an ellipse (0 ≤ e < 1):

A Π

Q

ψ

S

P

φ

O Ra

b

Orbit, circumscribed by auxiliary circle with
radius a (= semi-major axis); true anomaly φ,
eccentric anomaly ψ. Sun at S , planet at P ,
circle center at O. Perapsis (perhelion) Π and
apapsis (aphelion) A:

consider a line normal to AΠ through P on
the ellipse, intersecting circle at Q and AΠ
at R .
consider an angle ψ (or E , eccentric
anomaly) defined by ∠ΠOQ
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Excursus: The Kepler equation II

Then: position in polar coordinates (r , φ) of the body P can be described in terms of ψ:

xS(P) = r cosφ = a cosψ − ae (ae = OS) (48)

yS(P) = r sinφ = a sinψ
√

1− e2 (= PR = QR
√

1− e2 = a sinψ
√

1− e2) (49)

(with PR/QR = b/a =
√
1− e2), square both equations and add them up:

r = a(1− e cosψ) (50)

Now, to find ψ = ψ(t), need relationship between dφ and dψ, so combine Eqn. (49)& (50)

sinφ =
b sinψ

a(1− e cosψ)
|d/dt & quotient rule

(u
v

)′
=

u′v − v ′u

v2
(51)

cosφdφ =
b

a

(cosψ(1− e cosψ)dψ − e sin2 ψdψ)

(1− e cosψ)2
(52)

dφ =
b

a(1− e cosψ)
dψ (53)
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Excursus: The Kepler equation III

together with the angular momentum dφ = `
µr2

dt, where r is replaced by Eq. (50):

(1− e cosψ)dψ =
`

µab
dt (54)

= set t = 0→ ψ(0) = 0, integration: (55)

ψ − e sinψ =
`t

µab
(56)

use Kepler’s 2nd law πab
P = `

2µ with πab the area of the ellipse, we get `/(µab) = 2π/P ≡ ω
(orbital angular frequency), so:

Kepler’s equation for the eccentric anomaly ψ (or E )

ψ − e sinψ = ωt (57)

E − e sinE = M (astronomer’s version) (58)

M: mean anomaly = angle for constant angular velocity = 2π
t − tΠ

P
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Excursus: The Kepler equation IV

Kepler’s equation E (t)− e sinE (t) = M(t)

is a transcendental equation for the eccentric anomaly E (t)

can be solved by, e.g., Newton’s method
because of E = M + e sinE , also (Banach) fixed-point iteration possible (slow, but
stable), already used by Kepler (1621):

E = M ;
for (int i = 0 ; i < n ; ++i)

E = M + e * sin(E) ;

can be solved, e.g., by Fourier series →Bessel (1784-1846):

E = M +
∞∑
n=1

2
n
Jn(ne) sin(nM) (59)

Jn(ne) =
1
π

∫ π

0
cos(nx − ne sin x)dx (60)
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Circular orbits

A special case as a solution of the equations of motion (35)& (36) is the circular orbit. Then:

r̈ =
v2

r
(61)

mv2

r
=

GMm

r2
(equilibrium of forces) (62)

⇒ v =

√
GM

r
(63)

The relation (63) is therefore the condition for a circular orbit.
Moreover, Eq. (63) yields together with

P =
2πr
v

(64)

⇒ P2 =
4π2

GM
r3 (65)
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Astronomical units

For our solar system it is useful to use astronomical units (AU):
1 AU = 1.496× 1011m

and the unit of time is the (Earth-) year
1 a = 3.156× 107 s (≈ π × 107 s),

so, for the Earth P = 1 a and r = 1AU
Therefore it follows from Eq. (65):

GM =
4π2r3

P2 = 4π2 AU3 a−2 (66)

I.e. we set GM ≡ 4π2 in our calculations.
Advantage: handy numbers!
Thus, e.g. r = 2 is approx. 3× 1011m and t = 0.1 corresponds to 3.16 × 106 s, and v = 6.28 is
roughly 30 km/s.
cf.: our rcalc program with “solar units” for R , T , L; natural units in particle physics
~ = c = kB = ε0 = 1 → unit of m, p, T is eV (also for E )
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The Euler method I

The equations of motion (35)& (36):

d2~r

dt2
= −GM

r3
~r (67)

are a system of differential equations of 2nd order, that we shall solve now.
Formally: integration of the equations of motion to obtain the
trajectory ~r(t).

Step 1: reduction
Rewrite Newton’s equations of motion as a system of differential equations of 1st order (here:
1d):

v(t) =
dx(t)

dt
& a(t) =

dv(t)

dt
=

F (x , v , t)

m
(68)
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The Euler method II

Step 2: Solving the differential equation
Differential equations of the form (initial value problem)

dx

dt
= f (x , t), x(t0) = x0 (69)

can be solved numerically (discretization1) by as simple method:

Explicit Euler method (“Euler’s polygonal chain method”)
1 choose step size ∆t > 0, so that tn = t0 + n∆t, n = 0, 1, 2, . . .
2 calculate the values (iteration):

xn+1 = xn + f (xn, tn)∆t where xn = x(tn) etc.

Obvious: The smaller the step size ∆t, the more steps are necessary, but also the more
accurate is the result.

1I.e. we change from calculus to algebra, which can be solved by computers.
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The Euler method III

Why “polygonal chain method”?

x0

x1

x2

x3

x4

x5

x6

x7

x8

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10

t

x

Exact solution (–) and numerical solution (–).
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The Euler method IV

Derivation from the Fundamental theorem of calculus

integration of the ODE
dx

dt
= f (x , t) from t0 till t0 + ∆t (70)∫ t0+∆t

t0

dx

dt
dt =

∫ t0+∆t

t0

f (x , t)dt (71)

⇒ x(t0 + ∆t)− x(t0) =

∫ t0+∆t

t0

f (x(t), t)dt (72)

apply rectangle rule for the integral:∫ t0+∆t

t0

f (x(t), t)dt ≈ ∆t f (x(t0), t0) (73)

Equating (72) with (73) yields Euler step

x(t0 + ∆t) = x(t0) + ∆t f (x(t0), t0) (74)
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The Euler method V

Derivation from Taylor expansion

x(t0 + ∆t) = x(t0) + ∆t
dx

dt
(t0) +O(∆t2) (75)

use
dx

dt
= f (x , t) (76)

x(t0 + ∆t) = x(t0) + ∆t f (x(t0), t0) (77)

while neglecting term of higher order in ∆t

(In which step did we neglect these higher order terms in the derivation from the fundamental theorem of
calculus?)
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The Euler method VI

For the system Eqn. (68)

v(t) =
dx(t)

dt
& a(t) =

dv(t)

dt
=

F (x , v , t)

m

this means

Euler method for solving Newton’s equations of motion

vn+1 = vn + an∆t = vn + an(xn, t)∆t (78)
xn+1 = xn + vn∆t (79)

We note:

the velocity at the end of the time interval vn+1 is calculated from an, which is the
acceleration at the beginning of the time interval

analogously xn+1 is calculated from vn
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The Euler method VII

Example: Harmonic oscillator F = ma = −kx
#include <iostream>
#include <cmath>
using namespace std ;

// set k = m = 1
int main () {

int n = 10001, nout = 500 ;
double t, v, v_old, x ;
double const dt = 2. * M_PI / double(n-1) ;

x = 1. ; t = 0. ; v = 0. ;

for (int i = 0 ; i < n ; ++i) {
t = t + dt ; v_old = v ;
v = v - x * dt ;
x = x + v_old * dt ;
if (i % nout == 0) // print out only each nout step

cout << t << " " << x << " " << v << endl ;
}

return 0 ;
}
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The Euler-Cromer method

We will slightly modify the explicit Euler method, but such that we obtain the same differential
equations for ∆t → 0.
For this new method we use vn+1 for calculating xn+1:

Euler-Cromer method (semi-implicit Euler method)

vn+1 = vn + an∆t (as for Euler) (80)
xn+1 = xn + vn+1∆t (81)

Advantage of this method:
as for Euler method, x , v need to be calculated only once per step
especially appropriate for oscillating solutions, as energy is conserved much better (see
below)
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Excursus: Proof of stability for the Euler-Cromer method I

Proof of stability (Cromer 1981):

vn+1 = vn + Fn∆t (= vn + a(xn)∆t, m = 1) (82)
xn+1 = xn + vn+1∆t (83)

Without loss of generality, let v0 = 0. Iterate Eq. (82) n times:

vn = (F0 + F1 + . . .+ Fn−1)∆t = Sn−1 (84)
xn+1 = xn + Sn∆t (85)

Sn := ∆t
n∑

j=0

Fj (86)

Note that for explicit Euler Eq. (85) is xn+1 = xn + Sn−1∆t.
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Excursus: Proof of stability for the Euler-Cromer method II

The change in the kinetic energy K between t0 = 0 and tn = n∆t is because of Eq. (82) and
v0 = 0

∆Kn = Kn − K0 = Kn =
1
2
S2
n−1 (87)

The change in the potential energy U:

∆Un = −
∫ xn

x0

F (x)dx (88)
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Excursus: Proof of stability for the Euler-Cromer method III

Now use the trapezoid rule for this integral

∆Un = −1
2

n−1∑
i=0

(Fi + Fi+1)(xi+1 − xi ) (89)

= −1
2

∆t
n−1∑
i=0

(Fi + Fi+1)Si (→ Eq. 85) (90)

= −1
2

∆t2
n−1∑
i=0

i∑
j=0

(Fi + Fi+1)Fj (→ Eq. 86) (91)
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Excursus: Proof of stability for the Euler-Cromer method IV

As j runs from 0 to i (instead of i − 1):
→∆Un has same squared terms as ∆Kn, using Sn = ∆t

∑n
j=0 Fj :

∆Un = −1
2

∆t2

n−1∑
i=0

F 2
i +

n−1∑
i=0

i−1∑
j=0

FiFj +
n∑

i=1

i−1∑
j=0

FiFj

 (92)

= −1
2

∆t2

n−1∑
i=0

F 2
i + 2

n−1∑
i=0

i−1∑
j=0

FiFj + Fn

i−1∑
j=0

Fj

 (93)

= −1
2
S2
n−1 −

1
2

∆t FnSn−1 (94)

Hence the total energy changes as

∆En = ∆Kn + ∆Un =
1
2
S2
n−1 −

1
2
S2
n−1 −

1
2

∆t FnSn−1 (95)

= −1
2

∆t FnSn−1 = −1
2

∆t Fnvn (96)
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Excursus: Proof of stability for the Euler-Cromer method V

For oscillatory motion: vn = 0 at turning points, Fn = 0 at equilibrium points
→∆En = −1

2∆t Fnvn is 0 four times of each cycle →∆En oscillates with T/2.
As Fn and vn are bound →∆En is bound, more important: average of ∆En over half a cycle
(T )

〈∆En〉 =
∆t2

T

1
2T/∆t∑
n=0

Fnvn '
∆t

T

∫ T
2

0
F v dt =

∆t

T

∫ x(T
2 )

x(0)
F dx (97)

= −∆t

T
(U(T/2)− U(0)) = 0 (98)

as U has same value at each turning point
→ energy conserved on average with Euler-Cromer for oscillatory motion

�
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Excursus: Proof of stability for the Euler-Cromer method VI

For comparison: with explicit Euler method ∆En contains term
∑n−1

i=0 F 2
i which increases

monotonically with n and

∆En = −1
8

∆t2
(
F 2
0 − F 2

n

)
(99)

with v0 = 0 →F 2
0 ≥ F 2

n →∆En oscillates between 0 and −1
8∆t2F 2

0 per cylce.
Energy is bounded as for Euler-Cromer, but 〈∆En〉 6= 0
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Stability analysis of the Euler method I

Consider the following ODE
dx

dt
= −cx (100)

with c > 0 and x(t = 0) = x0. Analytic solution is x(t) = x0 exp(−ct). The explicit Euler
method gives:

xn+1 = xn + ẋn∆t = xn − cxn∆t = xn(1− c∆t) (101)

So, every step will give (1− c∆t) and after n steps:

xn = (1− c∆t)nx0 = (a)nx0 (102)

But, with a = 1− c∆t:

0 < a < 1 ⇒ ∆t < 1/c monotonic decline of xn (correct)
−1 < a < 0 ⇒ 1/c < ∆t < 2/c oscillating decline of xn

a < −1 ⇒ ∆t > 2/c oscillating increase of xn !
(103)
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Stability analysis of the Euler method II

---- a = 0.5

---- a = -0.5

---- a = -1.01

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

1 2 3 4 5 6 7 8 9 10

n
x

n

Stability of the explicit Euler method for different a = 1− c∆t

In contrast, consider implicit Euler method (Euler-Cromer):

xn+1 = xn + ẋn+1∆t = xn − cxn+1∆t (104)

⇒ xn+1 =
xn

1 + c∆t
(105)

declines for all ∆t (!)
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Higher-Order Taylor series method I

In Taylor approximation Eq. (463) for x ′ = f (x , t) we neglected terms of O(∆t2):

x(t0 + ∆t) = x(t0) + ∆t x ′(t0) +
∆t2

2!
x ′′(t0) +

∆t3

3!
x (3)(t0) +

∆t4

4!
x (4)(ζ0) (106)

with t0 < ζ0 < t1, nectlect this term, then difference equation:

→ x(t0 + ∆t) = x(t0) + ∆t f (x0, t0) +
∆t2

2
f ′(x0, t0) +

∆t3

6
f ′′(x0, t0) (107)

Using chain rule for f ′ with partial derivatives ft etc.:

x ′ = f (x , t) (108)

x ′′ = f ′ = ft
dt

dt
+ fx x

′ = ft + fx f (109)

x (3) = f ′′ = ftt + 2ftx f + fxx f
2 + ft fx + f 2x f (110)

→ replace f ′, f ′′ in Eq. (107) → third-order Taylor’s method
problem: compute and find partial derivatives of f (for Newton: ∂x ,v ,tF (x , v , t))
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Higher-Order Taylor series method II

Hence: replace
∑p

j
∆t j

j! f (j−1)(tn, xn) with some function ak1 + bk2:

xn+1 = xn + ak1 + bk2 (111)
k1 = ∆t f (tn, xn) (112)
k2 = ∆t f (tn + α∆t, xn + βk1) (113)

and determine constants a, b, α, β so that error in Eq. (111) is minimum
→Eq. (111) =̂ Taylor series:

xn+1 = xn + ∆t f (tn, xn) +
∆t2

2
f ′(tn, xn) + . . . (114)

with f ′ = ft + fx f : (115)

xn+1 = xn + ∆t f +
∆t2

2
(ft + fx f ) +O(∆t3) (116)

Now, Taylor expansion of f (tn + α∆t, xn + βk1):

f (tn + α∆t, xn + βk1) = f (tn, xn) + α∆t ft + βk1fx +O(∆t2) (117)
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Higher-Order Taylor series method III
→ combine Eq. (117) with Eqn. (111 - 113)

xn+1 = xn + ak1 + bk2 = a∆t f (tn, xn) + b∆t f (tn + α∆t, xn + βk1) (118)

= xn + ∆t(a + b)f + b∆t2(αft + βfx f ) (119)

!
= xn + ∆t f +

∆t2

2
(ft + fx f ) (→Eq. (463)) (120)

⇒ a + b = 1 & α = β =
1
2b

(121)

→ 3 equations for 4 unknowns → one variable can be chosen arbitrarily, e.g.,

a = b =
1
2

& α = β = 1 (122)

→modified Euler method (so-called Runge-Kutta method of order 2)

xn+1 = xn +
1
2

(k1 + k2) = xn +
1
2

(∆t f (tn, xn) + ∆t f (tn + ∆t, xn + ∆t k1)) (123)

xn+1 = xn +
∆t

2
(f (tn, xn) + f (tn + ∆t, xn + ∆t f (tn, xn))) (124)

(analogously: construct RK4-method → see later)
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Higher-Order Taylor series method IV

Alternative choice: α = β = 1/2, a = 0, b = 1 →midpoint method

xn+1 = xn + ak1 + bk2 (125)

= xn + k2 = xn + ∆t f

(
tn +

1
2

∆t, xn +
1
2
k1

)
(126)

xn+1 = xn + ∆t f

(
tn +

∆t

2
, xn +

∆t

2
f (tn, xn)

)
(127)

→ also known as Euler-Richardson method
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The Euler-Richardson method

Sometimes it is better, to calculate the velocity for the midpoint of the interval:

Euler-Richardson method (“Euler half step method”)

an = F (xn, vn, tn)/m (128)

vM = vn + an
1
2

∆t (129)

xM = xn + vn
1
2

∆t (130)

aM = F

(
xM, vM, tn +

1
2

∆t

)
/m (131)

vn+1 = vn + aM∆t (132)
xn+1 = xn + vM∆t (133)

We need twice the number of steps of calculation, but may be more efficient, as we might
choose a larger step size as for the Euler method.
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The (special)
three-body problem
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The (special)† three-body problem I
We will not solve the general case of the three-body problem, but consider only the following
configuration (m1,m2 < M):

M

r1

m1

r21

m2

r2

x

y

m1
d2~r1
dt2

= −GMm1

r31
~r1 +

Gm2m1

r321
~r21 (134)

m2
d2~r2
dt2

= −GMm2

r32
~r2 −

Gm1m2

r321
~r21 (135)

†not to be confused with the restricted three-body problem, where
m1 ≈ m2 � m3

→ Lagrangian points, e.g, L1 for SOHO, L2 for JWST
see also “The Three-Body Problem” (Novel)

60°

60° L1 L2L3

L4

L5
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The (special)† three-body problem II
It is useful to divide the Eqn. (134)& (135) each by m1 and m2 respectively:

d2~r1
dt2

= −GM

r31
~r1 +

Gm2

r321
~r21 (136)

d2~r2
dt2

= −GM

r32
~r2 −

Gm1

r321
~r21 (137)

Moreover we can set – using astronomical units – again:

GM ≡ 4π2 (138)

The terms

+
Gm2

r321
~r21 & − Gm1

r321
~r21 (139)

can be written with help of mass ratios

m2

M
& − m1

M
(140)
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The (special)† three-body problem III

so that

ratio[0] =
m2

M
GM & ratio[1] = −m1

M
GM (141)

The accelerations are then calculated like this (in C/C++):

dx = x[1] - x[0]
...

dr3 = pow(dx * dx + dy * dy , 3./2. )
...

ax = -GM * x[i] / r3 + ratio[i] * dx / dr3
ay = -GM * y[i] / r3 + ratio[i] * dy / dr3
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Methods for solving
the Newtonian

equations of motion
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Numerical Integration I

Review →Newtonian equations of motion (2nd order ODE → reduction to 1st order)

dv

dt
= a(t) &

dx

dt
= v(t) (142)

Numerical solution from Taylor expansion:

vn+1 = vn + an ∆t +O((∆t)2) (143)

xn+1 = xn + vn ∆t +
1
2
an(∆t)2 +O((∆t)3) (144)

Euler method: account only for O(∆t) (for ∆t → 0):

vn+1 = vn + an ∆t (145)
xn+1 = xn + vn ∆t (146)

therefore, only having O(∆t):
→ local truncation error in one time step: ∼ (∆t)2

→ global error over t: ∼ (∆t), because n steps with n = t
∆t ∼

1
∆t ,
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Numerical Integration II

→ so order of global error reduced by 1
∆t

A method is of n th order, if the global (truncation) error is of the order of (∆t)n.
The Euler method is of of 1st order.

Note, the Euler-Cromer method (semi-implicit Euler method) is also of 1st order, but conserves
energy (symplectic integrator):

vn+1 = vn + an(xn)∆t (147)
xn+1 = xn + vn+1∆t (148)

but there is also a 2nd variant of the (semi-implicit) Euler method

xn+1 = xn + vn∆t (149)
vn+1 = vn + an+1(xn+1)∆t (150)

→ used for Verlet integration (see below Eqn. (160) & (161))
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Numerical Integration III

Possible improvement: use velocity from the midpoint of the interval

cf. Heun’s method (Karl Heun, 1859-1929)

vn+1 = vn + an∆t (as for Euler) (151)

xn+1 = xn +
1
2

(vn + vn+1)∆t (152)

= xn + vn ∆t +
1
2
an∆t2 (153)

tn

xn

tn+1

xn+1

xn+1 (vn+1 )

xn+1 (vn )

t

→ accuracy of position is of 2nd order and velocity is of 1st order (only good for constant
acceleration, not more accurate than Euler, as error increases with each time step)
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Numerical Integration IV

Better (stable for oscillatory motions with const. ∆t ≤ 2/ω, therefore common, error bounded):

Halfstep method / Leapfrog integration

vn+ 1
2

= vn− 1
2

+ an∆t (154)

xn+1 = xn + vn+ 1
2
∆t (155)

t0 t1 ... tn tn+1

x0 x1 ... xn xn+1

v1/2 v3/2 ... vn/2 vn/2+1
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Numerical Integration V

→ 2nd order with same number of steps as Euler (1st order), time-reversable, exact
conservation of momenta, energy conserved up to 3rd order

But: not self starting, i.e. from Eq. (154) 9 v 1
2

therefore Euler method for the first half step:

v 1
2

= v0 +
1
2
a0∆t (156)

Moreover, velocity steps can be eliminated by using Eq. (154) & (155):

(xn+1 − xn)− (xn − xn−1) = (vn+ 1
2
− vn− 1

2
)∆t (157)

xn+1 − 2xn + xn−1 = an∆t (158)

→ xn+1 = 2xn − xn−1 + an∆t2 (Størmer’s method†) (159)

with start values x0, x1 = x0 + v0 + 1
2a0(x0)∆t2 (so v0 is still required!)

† Carl Størmer (1874-1957), Norwegian physicist, theoretical description of aurora borealis → trajectories of
charged particles in magnetic field
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Numerical Integration VI
Or, by interpolation of intermediate values as combination of symplectic, semi-implicit Euler
methods (Eq. (147)-(150))

vn+ 1
2

= vn + an
1
2∆t

xn+ 1
2

= xn + vn+ 1
2

1
2∆t

}
(160)

xn+1 = xn+ 1
2

+ vn+ 1
2

1
2∆t

vn+1 = vn+ 1
2

+ an+1
1
2∆t

}
(161)

by substituting system (160) into system (161) one obtains Leapfrog with integer steps:

xn+1 = xn + vn∆t +
1
2
an∆t2 (162)

vn+1 = vn +
1
2

(an + an+1)∆t (163)

→ so-called Verlet integration† (see next slides)

†Loup Verlet (1931-2019), french physicist, pioneered computer simulations
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Numerical Integration VII
Higher order methods
for that purpose: Taylor expansion of xn−1 (negative time step −∆t):

xn−1 = xn − vn∆t +
1
2
an(∆t)2 −O((∆t)3) (164)

+ xn+1 = xn + vn ∆t +
1
2
an(∆t)2 +O((∆t)3) (165)

= xn+1 + xn−1 = 2xn + an(∆t)2 +O((∆t)4) (166)

⇒ xn+1 = 2xn − xn−1 + an(∆t)2 (167)

Analogously:

xn+1 = xn + vn ∆t +
1
2
an(∆t)2 +O((∆t)3) (168)

− (xn−1 = xn − vn∆t +
1
2
an(∆t)2 −O((∆t)3)) (169)

= xn+1 − xn−1 = 2vn∆t +O((∆t)3) (170)

⇒ vn =
xn+1 − xn−1

2∆t
(Verlet) (171)
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Numerical Integration VIII
→method of 2nd order in v and 3rd order in x
But:

not self starting (needs start values x0, x1 = x0 + v0 + 1
2a0∆t2, see above)

Eq. (171) contains differences of two values of same order of magnitude and expected
∆x � x → round-off errors possible (subtractive cancelation)

Therefore, from Eq. (170)

xn−1 = xn+1 − 2vn∆t insert in Eq. (167): (172)

xn+1 = 2xn − xn+1 + 2vn∆t + an(∆t)2 (173)

Solve for xn+1, yields:

Velocity Verlet

xn+1 = xn + vn∆t +
1
2
an(∆t)2 (174)

vn+1 = vn +
1
2

(an+1 + an)∆t (see below for derivation) (175)
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Numerical Integration IX

→ self-starting
→minimizes round-off errors (no differences)
→ 4th order in x (why? →Eq. (168) & (169))
Eq. (175) results from Eq. (171) for vn+1:

vn+1 =
xn+2 − xn

2∆t
(176)

and xn+2 = 2xn+1 − xn + an+1(∆t)2 from Eq. (167) (177)

⇒ vn+1 =
2xn+1 − xn + an+1(∆t)2 − xn

2∆t
(178)

=
xn+1 − xn

∆t
+

1
2
an+1(∆t)2 & xn+1 from Eq. (174)

=
xn + vn∆t + 1

2an(∆t)2 − xn

∆t
+

1
2
an+1∆t (179)

= vn +
1
2

(an+1 + an)∆t (180)
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Numerical Integration X

Alternatively:
(developed for liquid particles in a Lennard-Jones potential)

Beeman method (Schofield 1973; Beeman 1976)

xn+1 = xn + vn∆t +
1
6

(4an − an−1)(∆t)2 (181)

vn+1 = vn +
1
6

(2an+1 + 5an − an−1)∆t (182)

→ not self-starting
→ locally: O(∆t)4 in x and O(∆t)3 in v , globally O(∆t)3

→ better energy conservation than for Verlet, but more calculation steps

even better: →Runge-Kutta method of 4th order
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The Runge-Kutta method
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Runge-Kutta method of 4th order I

Remember:

Euler-Richardson method (Euler-halfstep method)

an = F (xn, vn, tn)/m (183)

vM = vn + an
1
2

∆t (184)

xM = xn + vn
1
2

∆t (185)

aM = F

(
xM, vM, tn +

1
2

∆t

)
/m (186)

vn+1 = vn + aM∆t (187)
xn+1 = xn + vM∆t (188)

→ calculation of F or a, respectively, for the whole step at the “midpoint” of the interval,
instead of using the values from the beginning
≡ Runge-Kutta method 2nd order

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 248 / 577



Runge-Kutta method of 4th order II

We will refine the halfstep method by using more supporting points:
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Runge-Kutta method of 4th order III

With the Runge-Kutta method† the initial value problem

dy/dx = y ′ = f (x , y), y(x0) = y0 (189)

is solved by calculating approximate values yi at selected supporting points xi to obtain the
wanted y(x). These yi are calculated with help of the following scheme (cf. Bronstein), where
also only linear terms are calculated, but in form of a “polygonal line”:

supporting point at the beginning and at the end of the interval
two additional supporting points in the middle of the interval with doubled weight

Derivation: include higher order terms in Taylor expansion, replace partial derivatives with
coefficients to be determined . . .

†Carl Runge (1856-1927), Wilhelm Kutta (1867-1944)
H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 250 / 577



Runge-Kutta method of 4th order IV

Move from x0 to xi = x0 + ih (step size h, i = 0, 1, 2, . . .) → single step method

x y k = h · f (x , y) = h · dy/dx
x0 y0 k1
x0 + h/2 y0 + k1/2 k2
x0 + h/2 y0 + k2/2 k3
x0 + h y0 + k3 k4

x1 = x0 + h y1 = y0 + 1
6(k1 + 2k2 + 2k3 + k4)

Cf.: Simpson’s rule† (actually Kepler’s rule , “Keplersche Fassregel”, 1615) for integration of
y ′(x) via a parabola:∫ b

a
y ′(x)dx ≈ b − a

6

(
y ′(a) + 4 y ′

(
a + b

2

)
+ y ′(b)

)
(190)

†Thomas Simpson (1710-1761)
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Runge-Kutta method of 4th order V

For the equations of motion this means therefore:

~k1v = ~a(~xn, ~vn, t) ∆t (= ~agrav.(~xn) ∆t in our case) (191)
~k1x = ~vn ∆t (192)

~k2v = ~a

(
~xn +

~k1x

2
, ~vn +

~k1v

2
, tn +

∆t

2

)
∆t (193)

~k2x =

(
~vn +

~k1v

2

)
∆t (194)

~k3v = ~a

(
~xn +

~k2x

2
, ~vn +

~k2v

2
, tn +

∆t

2

)
∆t (195)

~k3x =

(
~vn +

~k2v

2

)
∆t (196)

~k4v = ~a(~xn + ~k3x , ~vn + ~k3v , t + ∆t) ∆t (197)
~k4x = (~vn + ~k3v ) ∆t (198)
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Runge-Kutta method of 4th order VI

So, finally

vn+1 = vn +
1
6

(k1v + 2k2v + 2k3v + k4v ) (199)

xn+1 = xn +
1
6

(k1x + 2k2x + 2k3x + k4x) (200)

→Runge-Kutta methods are self-starting
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Numerical integration: Improvements I

Adaptive stepsize: step doubling
1 calculate new coordinates (~x , ~v) via two Runge-Kutta steps each with ∆t

2 calculate new coordinates (~x , ~v)′ via one Runge-Kutta step with 2∆t

→ calculation overhead increases only by 11/8, because of same derivatives on the beginning of
the interval
Now, if

|(x , v)− (x , v)′|
|(x , v)|

≥ εmax (201)

with an accuracy criterion εmax → decrease stepsize ∆t
If

|(x , v)− (x , v)′|
|(x , v)|

≤ εmin mit εmin < εmax (202)

→ increase ∆t
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Numerical integration: Improvements II

Predictor-corrector method
First prediction of the new position, e.g.:

xp = xn−1 + 2vn∆t (203)

→ yields accleration ap → corrected position by trapezoidal rule:

v0n+1 = vn +
1
2

(ap + an)∆t (204)

x0n+1 = xn +
1
2

(vn+1 + vn)∆t (205)

→ yields better value for an+1 and hence

v1n+1 = vn + an+1∆t (206)
x1n+1 = xn + vn+1∆t (207)

repeated iteration until |xk+1
n+1 − xkn+1| < ε with intended accuracy ε
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Bulirsch-Stoer method I
Especially interesting for interactions of several bodys (few-body problem):

resonances in planetary systems
influence by one-time passage of a star
influence of the galactic gravitational
potential

→Requires:
high numerical accuracy
flexibility
high computation rate

Idea: combination of
modified midpoint method
Richardson extrapolation
extrapolation via rational functions

→Bulirsch-Stoer method (Stoer & Bulirsch 1980)†

cf. Numerical Recipes

†Roland Bulirsch (1932-2022), Josef Stoer (∗1934)
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Bulirsch-Stoer method II

1. Modified midpoint method

For an ODE dx/dt = f (t, x) over a time step H = Nh with N equidistant sub-steps

x0 = x(t) (208)
x1 = x0 + hf (t, x0) (209)

. . . (210)
xi = xi−2 + 2hf (t + [i − 1]h, xi−1) i = 2, . . . ,N (211)

x(t + H) ≈ x̃ =
1
2

[xN + xN−1 + hf (t + H, xN)] (212)

→ 2nd order method, but with only one derivative per h-(sub)step
(where 2nd order Runge-Kutta has two derivatives per step)
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Bulirsch-Stoer method III

Gragg† (1965): error in Eq. (212) → even power series:

x̃ − x(t + H) =
∞∑
i=1

αih
2i (213)

→ for even N (so, N = 2, 4, 6, . . .) all odd error terms cancel out → accuracy increases two
orders at a time when combining two crossings of interval H with increasing N:
Let xN/2 the result for x(t + H) with half the number of steps:

x(t + H) ≈
4x̃N − x̃N/2

3
(214)

→ 4th order accuracy (as for RK4), but only with 1.5 derivatives
(RK4: 4)

†William B. Gragg (1936-2016)
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Bulirsch-Stoer method IV

2. Richardson extrapolation

Idea: result x(t + H) is an analytic function of h with h = H/N:
1 calculate xt+H(h = 2, 4, 6, . . .)
2 fit function xt+H(h) to xt+H(N = 2), xt+H(N = 4), . . .
3 extrapolate xt+H(h→ 0), corresponding to N →∞

h
H/6 H/4 H/20

x
(t

+
H

)
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Bulirsch-Stoer method V

3. Extrapolation via polynomial

Compute k-times xt+H with N = 2, 4, 6, . . .:

xt+H(h) = a0 + a1h + a2h
2 + . . .+ akh

k−1 (215)

where following Lagrange

xt+H(h) =
(h − h2)(h − h3) . . . (h − hk)

(h1 − h2)(h1 − h3) . . . (h1 − hk)
xt+H(h1) (216)

+
(h − h1)(h − h3) . . . (h − hk)

(h2 − h1)(h2 − h3) . . . (h2 − hk)
xt+H(h2) (217)

+ . . .+
(h − h1)(h − h2) . . . (h − hk−1)

(hk − h1)(hk − h2) . . . (hk − hk−1)
xt+H(hk) (218)

In the original Bulirsch-Stoer method: rational function (P(h)/Q(h)) instead of Lagrange
polynomial →much better approximation for functions with poles
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Regularization I

Consider an N-body system with

d2~xi
dt2

= −
N∑

j=1;j 6=i

Gmj(~xi − ~xj)
|~xi − ~xj |3

= −
N∑

j=1;j 6=i

Gmj(~ei − ~ej)
r2ij

(219)

problem: aij ∝
1
r2ij

for very small distances rij (close encounters)

→ small distances → large accelerations → requires small ∆t
→ slows down calculations & increases numerical accumulation error

possibly uncomplicated for one time encounters

But in star clusters:
→ formation of close binaries → periodic
so-called “binary hardening”: transfer of the energy of the binary system to the cluster by
consecutive close encounters
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Regularization II

M62 (NGC6266). Left: optical HST. Right: X-ray CHANDRA

→ above-average rate of close binary systems (e.g., low-mass X-ray binaries) in globular clusters
(Pooley et al. 2003)
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Regularization III

obvious (and inaccurate) idea: “softening” term in Eq. (219):

~ai =
G mj(~xi − ~xj)

(ε2 + |~xi − ~xj |2)3/2
(220)

such that (221)

max |~ai | =
2G mj

33/2 ε2
at r =

1√
2
ε (222)

→ adaptive ∆t not arbitrarily small; but: close binary orbits and passages not resolvable

When is “softening” applicable?
→ if close encounters are irrelevant
→ collisionless systems, e.g., galaxy
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Regularization IV

Illustration: distances in a galaxy
Galaxy: Ø≈ 1023 cm with 1011 stars with R∗ ≈ 1011 cm → d ≈ 1019 cm

1011 sand grains

→
100×
width
of

→ average distance between sand grains ≈ 10 km
→ t∗,coll � tHubble → collisionless

stars perceive only the average gravitational potential of the galaxy

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 264 / 577



Regularization V

Better: regularization (technique in physics to avoid ∞) with help of transformation of
spacetime coordinates.
Consider vector ~R between two particles (center of mass frame):

d2 ~R

dt2
= −G (m1 + m2)

~R

|~R|3
+ ~F12 (223)

with external force ~F12 = ~F1 − ~F2 per mass, by other particles
1. regularized time τ

dt = Rndτ (224)
d2

dt2
=

1
R2n

d2

dτ2
− n

R2n+1
dR

dτ

d

dτ
(225)

d2 ~R

dτ2
=

n

R

dR

dτ

d ~R

dτ
− G (m1 + m2)

~R

R3−2n + R2n ~F12 (226)

for n = 1 →R ∝ dt/dτ and without R−2- singularity,
but with ~R/R term (indefinite for R → 0)
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Regularization VI
therefore:
2. regularized distance u, initially only for 1 dimension (already known by Euler), without
external force (see Aarseth 2003):

d2R

dτ2
=

1
R

(
dR

dτ

)2

− G (m1 + m2) (227)

(228)

and with conservation of energy, total energy h per reduced mass µ = m1m2/(m1 + m2):

h =
1
2

(
dR

dt

)2

− G

R
(m1 + m2) (229)

→ h is fixed without external force, and with

dR

dt
=

1
R

dR

dτ
(230)

⇒ d2R

dτ2
= 2hR + G (m1 + m2) (231)
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Regularization VII

→ no more singularities. With u2 = R :

d2u

dτ2
=

1
2
hu (232)

→ harmonic oscilator (h is const.)
→ easy to integrate
→method: change from (x , t) to (u, τ) below some distinct distance (for 1d collision!)
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Regularization VIII
in 2 dimensions (Levi-Civita 1904)†:

x = u21 − u22 (233)
y = 2u1u2 (234)

or ~R = L~u (235)

where L = L(~u) =

(
u1 −u2
u2 u1

)
(236)

With the following properties:

L(~u)T L(~u) = RI (237)
d

dt
L(~u) = L

(
d~u

dt

)
(238)

L(~u)~v = L(~v)~u (239)
~u · ~uL(~v)~v − 2~u · ~vL(~u)~v + ~v · ~vL(~u)~u = 0 (240)

† Tullio Levi-Civita (1873-1941), Italian mathematician and physicist
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Regularization IX

With help of Eqn. (238 & 239) coordinates change to

d ~R

dτ
= 2L(~u)

d~u

dτ
(241)

d2 ~R

dτ2
= 2L(~u)

d2~u

dτ2
+ 2L

(
d~u

dτ

)
d~u

dτ
(242)

Hence in Eq. (226) with n = 1 and with Eq. (240) and some transformations:

2~u · ~uL(~u)
d2~u

dτ2
− 2

d~u

dτ
· d
~u

dτ
L(~u)~u + G (m1 + m2)L(~u)~u = (~u · ~u)3 ~F12 (243)

further transformations lead to a form without singularities and indefinitenesses:

d2~u

dτ2
=

1
2
h~u +

1
2
RLT (~u)~F12 (244)
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Regularization X

Binary star without external forces ~F12 → energy h conserved
Binary star with external forces:

h =

[
2
d~u

dτ
· d
~u

dτ
− G (m1 + m2)

]/
R (245)

The time evolution in usual coordinates

d

dt

[
1
2

(
dR

dt

)2

− G

R
(m1 + m2)

]
=

d ~R

dt
· ~F12 (246)

after transformation

dh

dτ
= 2

d~u

dτ
· L(~u)~F12 (247)

can be solved continuously for R = 0 simultaneously with Eq. (244)
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Regularization XI

Application of the 2d solution to the so-called Pythagoraian three-body problem (~L = 0) in
Szebehely & Peters (1967):

because of ~L = 0 three-body collision possible → does not occur (3rd body gives perturbation
~F12)
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Regularization XII

Regularization for 3 dimensions (Kustaanheimo & Stiefel 1965) requires transformation to 4d
coordinates:

R1 = u21 − u22 − u23 + u24 (248)
R2 = 2(u1u2 − u3u4) (249)
R3 = 2(u1u3 + u2u4) (250)
R4 = 0 (251)

and ~R = L(~u)~u, such that

L =


u1 −u2 −u3 u4
u2 u1 −u4 −u3
u3 u4 u1 u2
u4 −u3 u2 −u1

 (252)

→ yields again equations similar to (244) & (247)

see Bodenheimer et al. (2007) and Aarseth (2003)
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N-body simulations for large N I

Problems:
1 number of interactions is N(N − 1)/2 ∝ O(N2)

2 multiple timescales for adaptive time steps for each particle i :

∆ti ' k

√
1
|~ai |

(253)

with acceleration ~ai and small factor k
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N-body simulations for large N II

possible solutions:
1 Tree method (Barnes & Hut 1986, 1989)
→ hierarchical structure and calculation of
multipoles of the potential →O(N logN)

Holmberg (Lund, 1941) even O(N) with help of light bulbs
on 2d grid (flux ∝ 1/r2)

2 Fourier transformation: compute potential Φ(~x)
with FFT →CA 2

3 Leapfrog method (2nd order integ.):

~r
n+1/2
i = ~r

n−1/2
i + ∆ti~v

n
i (254)

~vn+1
i = ~vni + ∆ti~a

n+1/2
i (255)

with time step doubling ∆ti = ∆tmax/2ni for each
particle i

Star A

r1
d1

d2

Star cluster

Star B

Star B

Star cluster

r2

The gravitational effect excerted by the star
cluster and the single star B on star A can be
approximated by a point mass. (from
Barnes-Hut Galaxy Simulator)
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N-body simulations for large N III

Example: time step doubling with → leapfrog method
particle A: time step ∆t/2, particle B : time step ∆t
starting via

~r
n+1/2

i = ~r n
i +

1
2

∆ti~v
n

i +
1
8

∆t2i ~a
n
i for i = A,B . (256)

1) Hence, we get ~rA(∆t/4) and ~rB(∆t/2) and from that
2) ~aA(A[∆t/4],B[∆t/2]) and analogously ~aB → time asymmetry
3) ~aA → ~vA(∆t/2) →~rA(3/4∆t)
4) ~aA(A[3/4∆t],B[∆t/2]) → ~vA(∆t) → reversed time asymmetry
5) Averaging of ~rA(∆t/4), ~rA(3/4∆t) to ~rA(∆t/2), then
6) → ~aB(A[∆t/2],B[∆t/2]) → ~vB(∆t)

7) from ~vA(∆t), ~vB(∆t) →~rA(5/4∆t)
i.e. next cycle starts, cf. 1) ~rA(∆t/4) & ~rB(∆t/2))
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Summary

Methods to solve N-body interactions:
Runge-Kutta (RK4): standard for any ODE
2nd order leapfrog: reasonable accuracy for extremely large number of particles,
integration only over a few dynamical times (e.g., Sun orbiting Galactic center)
Bulirsch-Stoer†: highly accurate, for few-body systems
predictor-corrector: reasonable accuracy for moderate up to large number of particles
for close encounters: softening (collisionless) or accurate regularization (collisions)

†alternatively for long-term evolution of few-body systems, e.g., over lifetime of Sun and whithout close
encounters: symplectic map → split Hamiltonian H = HKepler + Hinteraction, where analytic solution (ellipse) is
used for HKepler, requires transformation to Jacobi coordinates
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Outlook: Interacting galaxies I

Arp 271 (Gemini South)
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Outlook: Interacting galaxies II

NGC4676 “Mice” (HST / NASA)
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Galactic “Bridges” and “Tails” I

Toomre & Toomre (1972):

bridges (connections between galaxies) and tails (structures on the opposite site of the
interaction point) as the result of tidal forces between galaxies

simplified model:

encounter of only two galaxies, parabolic
(unbound)

galaxies as disks of non-interacting “test
particles”, initially on circular orbits around a
central point mass

result: mutual distortion of the galaxies just by gravitation, kinematic evolution to narrow,
elongated structures
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Galactic “Bridges” and “Tails” II

simulation of NGC4676 from Toomre & Toomre (1972)
→ two identical galaxies
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Galactic “Bridges” and “Tails” III

NGC4676 as before, but now seen edge-on
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Applications:
The Lane-Emden equation
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The Lane-Emden Equation I

We remember: Stellar structure equations

Example: Boundary values
First two equations of stellar structure (e.g., for white dwarf), with mass coordinate m
(Lagrangian description)

∂r

∂m
=

1
4πr2ρ

mass continuity, cf. shell dm = 4πr2ρdr (257)

∂P

∂m
= − GM

4πr4
hydrostatic equilibrium (258)

+ equation of state P(ρ) (e.g., ideal gas P(ρ,T ) = RTρ/µ), and boundary values

center m = 0 : r = 0 (259)
surface m = M : ρ = 0 → P = 0 (260)

→ solve for r(m), specifically for R∗ = r(m = M∗), i.e. for given M∗
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The Lane-Emden Equation II

Derivation of the Lane-Emden equation
(see also Hansen & Kawaler 1994)
→ if equation of state (EOS) for pressure is only function of density, e.g., completely
degenerate, nonrelativistic, electron gas (e.g., white dwarf)

Pe = 1.004× 1013
(
ρ[g cm−3]

µe

)5/3

dyn cm−2 (261)

so, P ∝ (ρ/µe)
5/3 power law ...

(µe = [
∑

Zi Xi yi/Ai ]
−1 mean molecular weight per electron, e.g., µe ≈ ( 1·0.7·1

1 + 2·0.3·1
4 ) ≈ 1.2 for fully ionized

H-He plasma; Zi : nucleus charge and Xi mass fraction of element i , yi its relative ionziation fraction, i.e., 1 for
fully inonized)

Polytropes are pseudo-stellar models where a power law for P(ρ) is assumed a priori without
reference to heat transfer/thermal balance

→ only hydrostatic and mass continuity equation taken into account
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The Lane-Emden Equation III

define a polytrope as

P(r) = Kρ1+ 1
n (r) (262)

with some constant K and the polytropic index n.
→ polytrope must be in hydrostatic equlibrium, so hydrostatic equation (function of r only)

dP

dr
= −GMr

r2
ρ | · r

2

ρ
| d/dr (263)

with the continuity equation dMr
dr = 4πr2ρ and the mass variable Mr =

∫ r
0 dm(r), i.e., Mr = 0

→ center (r = 0, ρ = ρc) and Mr = M∗ → surface (r = R∗, ρ = 0)

d

dr

(
r2

ρ

dP

dr

)
= −G dMr

dr
= −4πGr2ρ (264)

so finally:
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The Lane-Emden Equation IV

1
r2

d

dr

(
r2

ρ

dP

dr

)
= −4πGρ (265)

→Poisson’s equation of gravitation with g(r) = dΦ/dr = GMr/r
2, and dP

dr = −GMr
r2
ρ

hence → ∇2Φ = 4πGρ in spherical coordinates

find transformations to make Eq. (265) dimensionless. Define dimensionless variable θ by

ρ(r) = ρcθ
n(r) (266)

→ then, power law for pressure from our definition of the polytrope Eq. (262)

P(r) = Kρ1+1/n(r) = Kρ
1+1/n
c θn+1(r) = Pc θ

1+n(r) (267)

and → Pc = Kρ
1+1/n
c (268)

inserting Eqs. (266)& (268) into Eq. (265)
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The Lane-Emden Equation V

(n + 1)Pc

4πGρ2c

1
r2

d

dr

(
r2
dθ

dr

)
= −θn (269)

together with dimensionless radial coordinate ξ

r = rn ξ with (const.) scale length r2n =
(n + 1)Pc

4πGρ2c
(270)

our Poisson’s equation (265) becomes

→ so called
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The Lane-Emden Equation VI

Lane-Emden equation (Lane 1870; Emden 1907)

1
ξ2

d

dξ

(
ξ2

dθ

dξ

)
= −θn (271)

with solutions “polytropes of index n” θn(ξ)

Applications:
describe i.g. self-gravitating spheres (of plasma)
Bonnor-Ebert sphere (n→ ∞, so u, e−u instead of θ, θn): stable, finite-sized, finite-mass
isothermal cloud with P 6= 0 at outer boundary →Bonnor-Ebert mass (Ebert 1955;
Bonnor 1956)
characterize (full) stellar structure models, e.g., Bestenlehner (2020) (n = 3, removing
explicit M∗-dependance of Ṁ-CAK desription)
composite polytropic models for modeling of massive interstellar clouds with a hot ionized
core, stellar systems with compact, massive object (BH) at centre
generalized-piecewise polytropic EOS for NS binaries (P. Biswas 2021)
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The Lane-Emden Equation VII

Remarks:
if EOS is ideal gas P = ρNAkT/µ, one can get

P(r) = K ′T n+1(r), T (r) = Tcθ(r) (272)

with K ′ =

(
NAk

µ

)n+1

K−n, Tc = Kρ
1/n
c

(
NAk

µ

)−1
(273)

→ polytrope with EOS of ideal gas and mean molecular weight µ gives temperature profile,
radial scale factor is

r2n =

(
NAk

µ

)2 (n + 1)T 2
c

4πGPc
=

(n + 1)Kρ
1/n−1
c

4πG
(274)
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The Lane-Emden Equation VIII

Requirements for physical solutions:
+ central density ρc → θ(ξ = 0) = 1 (because of Eq. (266): ρ(r) = ρcθ

n(r))
+ spherical symmetry at center (dP/dr |r=0) → θ′ ≡ dθ/dξ = 0 at ξ = 0
→ suppresses divergent solutions of the 2nd order system → regular solutions (E-solutions)

+ surface P = ρ = 0 → θn = 0 (first occurrence of that!) at ξ1

Boundary conditions for polytropic model
θ(0) = 1, θ′(0) = 0 at ξ = 0 (center)
θ(ξ1) = 0 at ξ = ξ1 (surface)

So stellar radius

R = rnξ1 =

√
(n + 1)Pc

4πGρ2c
ξ1 (275)

for given K ,n, and either ρc or Pc (Pc = Kρ
1+1/n
c )
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The Lane-Emden Equation IX

Analytic E-solutions
→ analytic regular solutions exist for n = 0, 1, 5

n = 0 constant density sphere, ρ(r) = ρc θ
n(ξ) = ρc, and

θ0(ξ) = 1− ξ2

6
→ ξ1 =

√
6 (276)

so P(ξ) = Pc θ
1+n(ξ) = Pc θ(ξ) = Pc

[
1− (ξ/ξ1)2

]
.

For Pc we need M,R from Eq. (275): Pc = 3
8π

GM2

R4 (Proof!)

n = 1 solution θ1 is sinc function

θ1 =
sin ξ

ξ
with ξ1 = π (277)

→ ρ = ρc θ
n(ξ) = ρc θ(ξ) and P = Pc θ

1+n(ξ) = Pc θ
2(ξ)
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The Lane-Emden Equation X
n = 5 finite central density ρc but infinite radius ξ1 → ∞ :

θ5(ξ) =
1√

1 + ξ2

3

(278)

contains finite mass (there is also a solution with oscillatory behavior for ξ → 0, see
Srivastava 1962)

n = 0

n = 1

n = 5

0.0

0.5

1.0

0 2 4 6 8 10

ξ

θ
(ξ

)

→ solutions with n > 5 have infinite radius too, but also infinite mass
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Numerical solution I

For the interesting cases 0 ≤ n ≤ 5 → numerical solution

1
ξ2

d

dξ

(
ξ2

dθ

dξ

)
=

2
ξ

dθ

dξ
+

d

dξ

dθ

dξ
= −θn (279)

Reduction: set x = ξ, y = θ, z = (dθ/dξ) = (dy/dx) → 2
x z + d

dx (dydx ) = −yn

y ′ =
dy

dx
= z , (280)

z ′ =
dz

dx
=

d

dx

(
dy

dx

)
= −yn − 2

x
z (281)

Assume that we have values yi , zi at a point xi , so that we can get with some step size h:
yi+1 & zi+1 at xi+1 = xi + h
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Numerical solution II

Then with RK4:

k1 = h · y ′(xi , yi , zi ) = h · (zi ) (282)

`1 = h · z ′(xi , yi , zi ) = h · (−yni −
2
xi
zi ) (283)

k2 = h · y ′(xi + h/2, yi + k1/2, zi + `1/2) = h · (zi + `1/2) (284)
`2 = h · z ′(xi + h/2, yi + k1/2, zi + `1/2) (285)

= h ·
(
−(yi + k1/2)n − 2

xi + h/2
(zi + `1/2)

)
(286)

k3 = h · y ′(xi + h/2, yi + k2/2, zi + `2/2) (287)
`3 = h · z ′(xi + h/2, yi + k2/2, zi + `2/2) (288)

k4 = h · y ′(xi + h, yi + k3, zi + `3) (289)
`4 = h · z ′(xi + h, yi + k3, zi + `3) (290)

→ yi+1 = yi + . . . and zi+1 = zi + . . .
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Numerical solution III

Although z ′ = −yn − 2
x z (Eq. (281)) is indeterminate for ξ = 0, integration can in principle be

started for ξ = 0 for regular solutions (Cox & Giuli 1968; Hansen & Kawaler 1994) with help of
power series expansion around ξ = 0:

θn(ξ) = 1− ξ2

6
+

n

120
ξ4 − n(8n − 5)

15120
ξ6 + . . . (291)

→ θ′n(ξ) = −1
3
ξ +

n

30
ξ3 − n(8n − 5)

2520
ξ5 + . . . (292)

So for ξ → 0 then y ′ → −1/3 ξ = 0.
However, better: choose 0 < ξ � 1 and compute with help of Eq. (291) y , y ′(= z), z ′ (should
also work for irregular solutions)
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Applying the Lane-Emden equation to stars I

construct polytropes for n < 5 and given M, R
→ possible as long as K not fixed
because of definition of θ from ρ(r) = ρcθ

n(r) (Eq. (266)) and r = rn ξ
(Eq. (270))→ dr = rndξ

m(r) =

∫ r

0
4πρr2dr = 4πρc

∫ r

0
θnr2dr = 4πρc

r3

ξ3

∫ ξ

0
θnξ2dξ (293)

note that r3/ξ3 = r3n is constant. From Lane-Emden equation (271)
1
ξ2

d
dξ

(
ξ2 dθdξ

)
= −θn → θnξ2 = − d

dξ

(
ξ2 dθdξ

)
follows direct integration, so

m(r) = 4πρc
r3

ξ3

∫ ξ

0
− d

dξ

(
ξ2

dθ

dξ

)
dξ = 4πρcr3

(
−1
ξ

dθ

dξ

)
(294)

→Eq. (294) contains ξ and r , related by Eq. (270): r/ξ = rn = R/ξ1, so for the surface:
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Applying the Lane-Emden equation to stars II

M = 4πρcR3
(
−1
ξ

dθ

dξ

)
ξ=ξ1

(295)

With help of the mean density ρ := M/(43πR
3) this can be written as

ρ

ρc
=

(
−3
ξ

dθ

dξ

)
ξ=ξ1

(296)

Note the right hand side depends only on n, can be computed. E.g., for n = 0
→ (−3

ξ
dθ
dξ )ξ=ξ1 = 1, and for n = 1 → ρ

ρc
= 3

π2

the larger n → the smaller ρ
ρc
→ the higher the density concentration towards center.
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Differential equations
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Types of differential equations I

One can classify differential equations regarding their

order, so the degree of the highest derivative. Note: y ≡ y(t)
General form of a first-order differential equation:

dy

dt
= f (y , t) (297)

for any arbitrary function f , e.g., dy
dt = 2ty8 − t5 + sin(y).

A second-order differential equation has the form:

d2y

dt2
+ λ

dy

dt
= f (t,

dy

dt
, y) (298)

and so on.
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Types of differential equations II

Reduction
By introducing auxillary variables/functions, every higher order differential equation can be
reduced to a set of first-order differential equations

y (m)(x) = f (x , y(x), y (1)(x), . . . , y (m−1)(x)) (299)
introduce functions z

→ z1(x) := y(x) (300)

z2(x) := y (1)(x) (301)
... (302)

zm(x) := y (m−1)(x) (303)

→ z ′ =

 z ′1
...
z ′m

 =

 z2
...

f (x , z1, z2, . . . , zm)

 (304)
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Types of differential equations III

One can distinguish

ordinary diffential equations (ODE), where only one independent variable is explicitly
involved (typically time or location), e.g., hydrostatic equation for P(r):

dP

dr
= −ρ(r) g(r) (305)

partial differential equations (PDE), where derivatives with respect to at least two
variables occur, e.g., Poisson equation:

∆ρ =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ρ(x , y , z) = f (x , y , z) (306)

→The theory and (numerical) solution of PDEs is more complicated than for ODE.
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Types of differential equations IV

Moreover, there are the classes of

linear differential equations: only the first power of y or dny/dtn occurs, e.g. wave
equation: (

1
c2

∂

∂t
−∆

)
u = 0 (307)

→ special property: law of linear superposition, linear combinations of solutions are also
solutions:

u2(x , y , z , t) = au0(x , y , z , t) + bu1(x , y , z , t) (308)

→ unperturbed superposition of waves
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Types of differential equations V

nonlinear differential equations: contain higher powers or other functions of y or dny/dtn,
e.g., simple gravity pendulum:

dθ2

dt2
=

l

g
sin θ (309)

→ clear: linear combinations of solutions are not automatically solutions too, e.g.

dy

dt
= λy(t)− λ2y2(t) (310)

y(t) =
a

1 + be−λt
one solution (311)

y1(t) =
a

1 + be−λt
+

c

1− de−λt
not a solution (312)

→ nonlinear differential equations in general became feasible with the rise of computers
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Boundary values I

As general solution of (ordinary) differential equation contains arbitrary constant per order,
problems involving differential equations can be characterized by the type of conditions:

1 initial values/conditions must be given: constant for 1st order differential equation (usually
time-dependent) fixed by giving y(t) for some time t0, so giving y0 = y(t0); for 2nd order
by giving additionaly y ′(t0) and so on (Note, that we solve usually for t > t0, but this is
not a requirement), e.g., Kepler problem

~v(t) = ~̇r(t) & ~a(t) = ~̇v(t) = ~FG(r)/m (313)
x(t0) = x0, y(t0) = 0; vx(t0) = 0, vy (t0) = vy ,0 (314)

For the initial value problem (Cauchy problem), the theorem by Picard-Lindelöf guarantees
a unique solution:
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Boundary values II

Existence and uniqueness of the solution for the initial value problem

y ′ = f (y , x), y(x0) = y0 (315)

If f is continuous on the stripe S := {(x , y)|a ≤ x ≤ b, y ∈ Rn} with finite a, b and a constant
L, such that

||f (x , y1)− f (x , y2)|| ≤ L||y1 − y2|| (316)

for all x ∈ [a, b] and for all y1, y2 ∈ Rn (Lipschitz continuous), then exists for all x0 ∈ [a, b] and
for all y0 ∈ Rn a unique function y(x) for x ∈ [a, b] with

1 y(x) is continuous and continuously differentiable for x ∈ [a, b] ;

2 y ′(x) = f (x , y(x)) for x ∈ [a, b] ;

3 y(x0) = y0
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Boundary values III

Note that the Lipschitz condition (bounded slope) of f (y , x) is required for uniqueness,
e.g., y ′(x) =

√
|x | with y(0) = 0 is fulfilled by y1(x) ≡ 0 and also by y2(x) = x2

4 , that is
because f ′(y , x) = 1√

|x |
and hence limx→ 0 f

′ =∞.

Without Lipschitz condition the Peano existence theorem guarantees at least the existence
of a solution.

Proof concept
Integrating Eq. (315) gives a fixed point equation:

y(x)− y(x0) =

∫ x

x0

f (s, y(s))ds (317)

with Picard-Lindelöf iteration

φ0(x) = y0 and φk+1 = y0 +

∫ x

x0

f (s, φk(s))ds (318)
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Boundary values IV

Example: Picard iteration
For the Cauchy problem

y ′(x) = 1 + y(x)2, y(x0) = y(0) = 0 (319)
φ0(x) = 0 (320)

φ1(x) = 0 +

∫ x

0
(1 + 02)ds = x (321)

φ2(x) = 0 +

∫ x

0
(1 + s2)ds = x +

1
3
x3 (322)

→Taylor series expansion of y(x) = tan(x)

so following Banach fixed point theorem φk converges uniquely to the solution y(x). The
existence of y(x) (Peano) is proven by constructing a piecewise continuous function with
help of the Euler method (polygonal curve) that converges uniformly for ∆x → 0.
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Boundary values V

2 boundary values/conditions can be given, (additionally to initial conditions) to restrict
further the solutions, i.e., constrain it to fixed values at the boundaries of the solution
space, usually for 2nd order differential equation

u′′(x) = f (u, u′, x) (323)

where u or u′ is given at boundaries, by transformation, e.g.,

x ′ = (x − x1)/(x2 − x1) (324)

at x = 0 and x = 1. Then → 4 possible types of boundary conditions
1 u(0) = u0 and u(1) = u1
2 u(0) = u0 and u′(1) = v1
3 u′(0) = v0 and u(1) = u1
4 u′(0) = v0 and u′(1) = v1
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Boundary values VI

Usually: reduce to set of 1st order differential equations and start integration with given
u(0) and u′(0). But for boundary-value problem: only u(0) or u′(0) given, → not
sufficient for any initial-value algorithm

Example: Boundary values
First two equations of stellar structure (e.g., for white dwarf)

∂r

∂m
=

1
4πr2ρ

mass continuity (325)

∂P

∂m
= −G M

4πr4
hydrostatic equilibrium (326)

+ equation of state P(ρ) (e.g., ideal gas P = RTρ/µ), and boundary values

center m = 0 : r = 0 (327)
surface m = M : ρ = 0 → P = 0 (328)

→ solve for r(m), specifically for R∗ = r(m = M∗)
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Boundary values VII

3 eigenvalue problems: solution for selected parameters (λ) in the equations; usually even
more complicated and solution not always exist, sometimes trial-and-error search necessary.
E.g.,

u′′ = f (u, u′, x , λ) (329)

for eigenvalue λ plus a set of boundary conditions. Eigenvalue λ can only have some
selected values for valid solution.
E.g., Schrödinger equation for particle confined in a potential:
eigenfunctions →wavefunction φk ;
eigenvalues → discrete energies Ek → Ĥφk = Ekφk
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Boundary values VIII

Eigenvalue problem: Stationary elastic waves
Displacement u(x) by

u′′ = −k2u (330)

Allowed values of wavevector k = ω/c → eigenvalues of the problem
both ends fixed: u(0) = u(1) = 0 or one end fixed, other end free: u(0) = 0 and u′(1) = 0.
Fortunately, analytical solutions:

un(x) =
√
2 sin(kn x) & kn = nπ n = ±1,±2, . . . (331)

Moreover, complete solution of longitudinal waves along elastic rod: linear combination of all
eigenfunctions with their initial solutions (fixing cn)

u(x , t) =
∞∑

n=−∞
cnun(x)e inπct (332)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 311 / 577



The shooting method I

Simple method for boundary-value and eigenvalue problems: shooting method (origin from
artillery), cf. Pang (1997)
e.g., for boundary-value problem u′′ = f (u, u′, x) with y1 ≡ u and y2 ≡ u′

dy1
dx

= y2 (333)

dy2
dx

= f (y1, y2, x) (334)

plus boundary conditions, e.g., u(0) = y1(0) = u0 and u(1) = y1(1) = u1.
Idea: introduce adjustable parameter δ, so that we have an initial value problem. E.g.,
u′(0) = δ → together with given u(0) = u0; integrate for given intial values up to x = 1 with
result u(1) = uδ(1), so that

F (δ) = uδ(1)− u1
!

= 0 (335)

→ use root search algorithm to determine (approximative) δ

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 312 / 577



The shooting method II

Shooting method for boundary value problem (Stoer & Bulirsch 2005)

u′′(x) =
3
2
u2, u(0) = 4, u(1) = 1 (336)

set y1 ≡ u and y2 ≡ u′ y1(0) = 4, y2(0) = δ = −1, . . .− 70 (337)
→ y1,k+1 = y1,k + ∆x · y2,k (338)

y2,k+1 = y2,k + ∆x · 3./2. ∗ y21,k (339)

plot F (δ) = y1,n − u(1), roots give
missing initial values u′(0)
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The shooting method III

Similarly, for given

u′(0) = v0 and u(1) = u1 → u(0) = δ, find root of F (δ) = uδ(1)− u1

u′(0) = v0 and u′(1) = v1 →F (δ) = u′δ(1)− v1

Moreover, for eigenvalue problem:

if u(0) = u0 and u(1) = u1 given, start integration with u′(0) = δ with small δ

search root F (λ) = uλ(1)− u1 → approximated eigenvalue λ and eigenvector from
normalized solution uλ(x) → δ automatically modified to be correct u′(0) through
normalization of eigenfunctions
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Direct solution of 2nd order ODE I

Although, always possible → reduce 2nd order ODE to set of coupled 1st order ODEs, however,
sometimes direct solution has advantages

Example: Radiative Transfer Equation
For the 1d case:

dI±

dτ
= ±(S − I±), dτ = κdz (340)

with inward (−) and outward (+) intensities I = dE/dΩ dA dt dν, optical depth τ and source
function S = η/κ.
Introducing Feautrier variables (Schuster 1905; Feautrier 1964):

u =
1
2

(I+ + I−) (intensity-like) (341)

v =
1
2

(I+ − I−) (flux-like) (342)
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Direct solution of 2nd order ODE II

we get system of two coupled 1st order ODE:

du

dτ
= v and

dv

dτ
= u − S (343)

or, combining them:

d2u

dτ2
= u − S (344)

discretization on a τ grid (τi ) with numerical derivatives (see below):

d2u

dτ2

∣∣∣∣
τi

≈
du
dτ

∣∣
τi+1/2

− du
dτ

∣∣
τi−1/2

τi+1/2 − τi−1/2
≈

ui+1−ui
τi+1−τi −

ui−ui−1
τi−τi−1

1
2(τi+1 − τi )− 1

2(τi − τi−1)
(345)
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Direct solution of 2nd order ODE III

→ set of linear equations for ui for i = 2, . . . , imax − 1:

−Aiui−1 + Biui − Ciui+1 = Si (346)

with the coefficients

Ai =

(
1
2

(τi+1 − τi−1)(τi − τi−1)

)−1
(347)

Ci =

(
1
2

(τi+1 − τi−1)(τi+1 − τi )
)−1

(348)

Bi = 1 + Ai + Ci (349)
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Direct solution of 2nd order ODE IV

→ tridiagonal matrix, efficiently solvable by standard linear algebra solvers (e.g., Gauß-Seidel
elimination)



B1 −C1
−A2 B2 −C2
...

−Ai Bi −Ci

...
Bimax −Cimax

 ◦


u1
u2
...
ui
...

uimax

 =



W1
W2
...
Wi

...
Wimax

 (350)

Note: Wi = Si exept for i = 1 and imax → boundary conditions
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Direct solution of 2nd order ODE V

Advantage of Feautrier scheme

direct solution of 2nd order ODE saves memory

at large optical depths I+ ≈ I− → radiative flux ∼ I+ − I− inaccurate because of roundoff
error, Feautrier scheme uses instead averaged quantities u, v for higher accuracy
(→ stability in an iterative scheme for S(I ), τ(I ))
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Root finding –
Iterative techniques
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Transcendent equations I

Problem: Finding roots for equations that cannot be solved analytically, i.e. finding x0 for
f (x0) = 0

Transcendent equation: quantum states in a square well
The 1d potential V (x) for the Schrödinger equation

V (x) =

{
−V0 , |x | ≤ a
0 , |x | ≥ a

(351)

has bound states with energies E = −EB < 0√
2m(V0 − EB) tan

[
a
√

2m(V0 − EB)
]

=
√

2mEB (352)

→ e.g., for 2m = 1, a = 1 we want to find the roots EB of

f (EB) =
√

V0 − EB tan
(√

V0 − EB

)
−
√
EB

!
= 0 (353)
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Transcendent equations II

Hints: Transcendent equation: quantum states in a square well
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)

E

sqrt(V0 - E) * tan(sqrt(V0-E)) - sqrt(E); V0=50

Note: the function f (EB)

is not continuous
has multiple roots
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Transcendent equations III

Roots of numerically derived functions
Some functions cannot even be written analytically, e.g.

x(t) for the Kepler problem
solutions of the Lane-Emden equation θn(ξ) for n 6= {0, 1, 5}

→ roots can be found numerically by trial-and-error algorithms, i.e. iteratively until some
specified level of precision is reached
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Bisection I

→ very stable (root is always found if conditions fulfilled), but also very slow iterative procedure
→ needs two start values [x1, x2] for estimating x0
If f (x) continuous on [a, b] and f (a) · f (b) < 0, then the intermediate value theorem
guarantees the existence of an x0 ∈ [a, b] with f (x0) = 0.

Bisection algorithm
1 start with interval [x1, x2] on which f (x) changes sign (so f (x1) · f (x2) < 0)
→ contains root

2 choose new x3 as the midpoint of the interval x3 = x1+x2
2 (Beware of round-off errors!)

3 calculate f (x3): either f (x3) is sufficiently close to 0 → root is x3
or x3 is a new interval endpoint:
if f (x3) · f (x1) > 0 → new interval is [x3, x2]
or if f (x3) · f (x1) ≤ 0 → new interval is [x1, x3]

4 goto step 2

→ nested intervals enclosing the root
→ as interval is halved every step, gain ≈ 1 digit each 3 steps (23)
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The secant method I

→ similar to Newton’s method (see below), actually approximation with finite differences

Requirement: f (x) continuous and ∃x0 ∈ [a, b]
with f (x0) = 0.
Then: line trough (x0, f (x0)) and (x1, f (x1)),
so that

y =
f (x1)− f (x0)

x1 − x0
(x − x1) + f (x1)

with root

x = x1 − f (x1)
x1 − x0

f (x1)− f (x0)

→ new point (x2, f (x2)) repeat with x1, x2
instead of x0, x1 f(x)

x x
0 x x

123
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The secant method II

Secant method
1 start with interval x1 6= x2 close to the root
2 iterate

xn+1 = xn −
xn − xn−1

f (xn)− f (xn−1)
f (xn) (354)

→ superlinear convergence, per iteration about 1.6 more correct digits
→ convergence not assured
→ numerically limited by subtractive cancelation, as fraction → 0/0
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Regula falsi method I

→ refinement of bisection by combining it with the secant method

Regula falsi (False position method)
1 as for bisection: start with interval [x1, x2] with f (x1) · f (x2) < 0
2 calculate the zero of the secant

x3 = x1 −
x2 − x1

f (x2)− f (x1)
f (x1) =

x1f (x2)− x2f (x1)

f (x2)− f (x1)
(355)

3 if f (x3) = 0 → stop, else
4 if f (x1) · f (x3) > 0 → replace x1 = x3

if f (x2) · f (x3) > 0 → replace x2 = x3
5 goto 2

→ superlinear convergence (usually more than one significant digit per iteration)
→ advantage: numerically stable (converges always), no evaluation of derivatives required,

computation of function values is reused
→ preferred method for 1d problems
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Newton’s method I

or Newton-Raphson method (Newton 1669, Raphson 1690) to solve numerically non-linear
equations or systems of equations
→ faster convergence than for bisection, but sometimes problematic
Idea: start with approximation x0, draw tangent at (x0, f (x0)), determine intersection with
x-axis → new approximation for root
Derivation: evaluate function f (x) around x0 (Taylor expansion)

f (x0 + ∆x) ' f (x0) + f ′(x0) ·∆x (356)
(linear approximation = tangent t on x0 shall vanish) (357)

→ t(x) = f (x0) + f ′(x0) ·∆x
!

= 0 (358)

→ ∆x = − f (x0)

f ′(x0)
(359)

the correction ∆x added on x0 gives improved guess for root
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Newton’s method II

Newton’s method

xn+1 = xn −
f (xn)

f ′(xn)
(360)

Convergence:
If f : [a, b]→ R is a C2 function with

1 f has a root ξ in [a, b]

2 f ′(x) 6= 0 for x ∈ [a, b]

3 f is either convex (f ′′ ≥ 0) or concave (f ′′ ≤ 0) in [a, b]

4 the iterated x1 for x0 = a and x0 = b are in [a, b]

Then: For any x0 ∈ [a, b] the values x1, x2, . . . from Eq. (360) are in [a, b] and the sequence
converges monotonically to ξ.
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Newton’s method III

Remarks:
only locally convergent,

i.e. result depends on start
approximation for x0
→Newton fractal for z3 − 1 = 0

in some situations Newton’s method may fail (see requirements):
if xn is at local extremum

with f (xn) 6= 0 → tangent with slope 0,
i.e. f ′(xn) = 0 → infinite correction
→ solution: start over with different x0

x

f(
x
)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 330 / 577



Newton’s method IV

infinite loop,

e.g., f (x) = x3 − 2x + 2
with x0 = 0 → f (0) = 2, f ′(0) = −2
→ x1 = 0− 2

−2 = 1 and
for x0 = 1 → f (1) = 1, f ′(1) = 1
→ x1 = 1− 1

1 = 0

→ happens if x0 in region where f (x) not
“linear enough” (vizualization may help
to find better initial guess)

-5

0

5

-4 -2 0 2 4

x

f(
x
)

convergence is quadratic, i.e. with every step two more significant digits

instead of analytic f ′(x) numeric approximation f ′(xn) ' f (xn+h)−f (xn)
h sufficient

→ even rough (or constant!) approximation may be sufficient

if convergent, method is stable
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Newton’s method V

Backtracing
→ solution to some problems (i.e. infinite loop) with large corrections
So: if for new guess x0 + ∆x

|f (x0 + ∆x)|2 > |f (x0)|2 (361)

→ backtrack, try smaller guess, e.g., x0 + ∆x/2, if still condition (361), try x0 + ∆x/4 and so
on
→ because tangent line will lead to decrease in f (x), even small step ∆x sufficient
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Newton’s method VI
Extension to multidimensional case
for multidimensional function f : Rn → Rn

f (x + h) = f (x) + J(x) · h +O(||h||2) (362)

where J(x) = f ′(x) = ∂f
∂x (x) the Jacobi matrix, the matrix of the partial derivatives w.r.t. x :

J(x) :=

(
∂fi
∂xj

(x)

)
ij

=

 ∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

. . .
∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn

 (363)

Therefore

xn+1 = xn − J−1(x) f (xn)→ ∆xn = −J−1(xn)f (xn) (364)

As direct inversion of J is expensive (see lin. algebra), usually solve system of linear equations:

J(xn)∆xn = −f (xn) (365)

to get ∆xn and then xn+1 = xn + ∆xn
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Newton’s method VII

→Newton-Raphson method in n dimensions (i.e. system of equations) is expensive, therefore
often used: quasi Newton methods

Example: statistical equilibrium
In the non-LTE case population numbers of ions n from statistical equations with transition
rates Pij , stationary:

∑
i 6=j ni Pij =

∑
j 6=i nj Pji with Pii := −

∑
i Pji → n · P(n, J,Te) = 0,

matrix has block structure (but coupling extra line from charge conservation / electron density):

P =

 H
He

N

 (366)

together with J = ΛS(n). When using net-radiative brackets or accelerated Λ iteration:
→ non-linear system of N equations →N3 derivatives (N derivatives for N × N rates)
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Quasi Newton’s methods: Broyden method I

Instead of calculating n3 derivatives use modified secant equation

xk+1 = xk − f (xk)B−1k (367)

with "slope" Bk+1 =
f (xk+1)− f (xk)

xk+1 − xk
=

∆yk
∆xk

→ ∆yk = Bk+1∆xk (368)

But: Eq. (368) defines B only as n − 1 dimensional subspace → need further constraints.
Broyden (1965): use updating algorithm

Bk+1 = Bk +
∆xTk ⊗ (∆yk −∆xkBk)

|∆xk |2
(369)

with dyadic product of two vectors (columns × rows) yielding matrix elements:
(uT ⊗ v)ij = uivj
Advantage: Broyden’s formula (369) can be inverted analytically by help of

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 335 / 577



Quasi Newton’s methods: Broyden method II

Sherman-Morrison-Woodbury lemma

(A + uT ⊗ v)−1 = A−1 − A−1uT ⊗ vA−1

1 + v A−1uT
(370)

with row-vectors u, v and an invertible matrix A the required B−1k+1 can be directly obtained
from previous B−1k :

B−1k+1 = B−1k +
(B−1k ∆xTk )⊗ (∆xk −∆ykB

−1
k )

(∆ykB
−1
k ) ·∆xTk

(371)

→ no operations between full matrices involved → only ∼ N2 multiplications
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Quasi Newton’s methods: Broyden method III

Broyden method
1 select starting point x0 (e.g., initial guess on n from LTE population numbers) and starting

matrix B−10 = (f ′)−1 (Newton step)
2 xk+1 = xk − f (xk)B−1k

3 stop if |∆x| < ε

4 else update Broyden matrix Eq. (371)

B−1k+1 = B−1k +
(B−1k ∆xTk )⊗ (∆xk −∆ykB

−1
k )

(∆ykB
−1
k ) ·∆xTk

5 k = k + 1 goto 2
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Interpolation
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Interpolating data I

Consider following measurement of a cross section

Ei [MeV] 0 25 50 75 100 125 150 175 200

σ(Ei ) [Mb] 10.6 16.0 45.0 83.5 52.8 19.9 10.8 8.25 4.7
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 [

M
b

] The cross section can be described by
Breit-Wigner formula

f (E ) =
fr

(E − Er)2 + Γ2/4
(372)
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Interpolating data II

Interpolation problem
Task: Determine σ(E ) for values of E which lie between measured values of E

By, e.g.,
numerical interpolation (assumption of data representation by polynomial in E ):

piecewise constant → step function (easy to implement, error goes as ∼ y ′i (xi+1 − xi ))
piecewise linear (special case of polynomial)
polynomial (Lagrange)
piecewise Lagrange, cubic spline

→ ignores errors in measurement (noise)

fitting parameters of an underlying model, e.g., Breit-Wigner with fr , Er , Γ, (taking errors
into account), i.e., minimizing χ2

Fourier analysis
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Interpolating data III
Linear interpolation
tabulated function yi = y(xi ), i = 1 . . .N, e.g., for interval xi , xi+1, linear interpolation in this
interval is by

y = A(x)yi + B(x)yi+1 (373)

A ≡ xi+1 − x

xi+1 − xi
B ≡ 1− A =

x − xi
xi+1 − xi

(374)
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M
b

]

or:
y = yi + (yi+1 − yi )

x−xi
xi+1−xi

disadvantages:
not differentiable at nodes xi
error ∼ y ′′i (xi+1 − xi )

2
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Interpolating data IV
Cosine interpolation
a smoother transition between intervals can be achieved by piecewise cosine functions:

t =
x − xi

xi+1 − xi
(mapping on unit interval [0, 1]) (375)

B = (yi+1 + yi )/2 ; A = yi − B (376)
y = A cos(π t) + B (377)
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]

note, that at the nodes xi because of
cos′(0) = 0 = cos′(π) → y ′i = 0
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Interpolating data V

Lagrange interpolation (global)

fit (n − 1)th degree polynomial through n data points (xi , yi )

p(x) = y1λ1(x) + y2λ2(x) + . . .+ ynλn(x) (378)

λi (x) =
n∏

j=1,j 6=i

x − xj
xi − xj

=
x − x1
xi − x1

x − x2
xi − x2

· · · x − xn
xi − xn

(379)

where
∑n

i=1 λi (x) = 1

practical: the λi are independent from the values of the function values fi → for same
nodes xi → same λi s (e.g., when measuring different yi s for same xi s)

so, for n = 9 → (n − 1) = 8th degree polynomial

note that λi (xj) = δij
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Interpolating data VI

Example: Lagrange interpolation polynomial n = 3
n = 3 data points → n − 1 = 2 degree polynomial, e.g., for points P1 = (−1; 4),P2 = (0; 1),P3 = (2; 5)
(x1 = −1; x2 = 0; x3 = 2)

λ1 =
x − x2

x1 − x2
· x − x3

x1 − x3
=

(x − 0)
(−1− 0)

· (x − 2)
(−1− 2)

=
x2 − 2x

3
(380)

λ2 =
x − x1

x2 − x1
· x − x3

x2 − x3
=

(x − (−1))
(0− (−1)) ·

(x − 2)
(0− 2)

=
x2 − 2− x

−2 (381)

λ3 =
x − x1

x3 − x1
· x − x2

x3 − x2
=

(x − (−1))
(−2− (−1)) ·

(x − 0)
(2− 0)

=
x2 + x

6
(382)

p(x) = y1 · λ1 + y2 · λ2 + y3 · λ3 = 4 · x
2 − 2x
3

+ 1 · x
2 − 2− x

−2 + 5 · x
2 + x

6
(383)

=
5
3
x2 − 4

3
x + 1 (384)

Check: λ1 + λ2 + λ3 = x2−2x
3 + x2−2−x

−2 + x2+x
6 = 1

0

1

2

3

4

5

6

-2 -1 0 1 2 3

x

y
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Interpolating data VII
Application: Newton-Cotes formulae for integration

Idea: interpolate f (x) in
∫ b
a f (x)dx with polynomial of degree n and integrate this polynomial

exactely (note: now n =degree, start with j = 0):∫ b

a
f (x)dx ≈

∫ b

a
pn(x)dx =

∫ b

a

n∑
i=0

f (xi ) · λi (x) (385)

λi (x) =
n∏

j = 0
j 6= i

x − xj
xi − xj

x=a+ht−→ φi (t) :=
n∏

j = 0
j 6= i

t − j

i − j
(386)

Note that the transformation x = a + ht means that x0 = a + h · 0, x1 = a + h · 1, . . .
(equidistant subintervals h on x-axis)
Therefore the integration of pn(x) yields∫ b

a

n∑
i=0

f (xi ) · λi (x) = h
n∑

i=0

fi

∫ n

0
φi (t)dt = h

n∑
i=0

fiwi (387)
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Interpolating data VIII

Example: Newton-Cotes formula n = 1

w0 =

∫ n

0
φ0(t)dt =

∫ 1

0

t − 1
0− 1

dt =

∫ 1

0
(1− t)dt =

1
2

(388)

w1 =

∫ n

0
φ1(t)dt =

∫ 1

0

t − 0
1− 0

dt =

∫ 1

0
t dt =

1
2

(389)∫ b

a

p1(x)dx = h
1∑

i=0

fiwi = h (f0
1
2

+ f1
1
2

) =
h

2
(f0 + f1) (390)

→ trapezoid rule

Analogously for n = 2, e.g.,

w0 =

∫ 2

0

t − 1
0− 1

· t − 2
0− 2

dt =
1
2

∫ 2

0
(t2 − 3t + 2)dt =

1
3

(391)

and w1 = 4
3 , w2 = 1

3 →
∫ b
a p2(x)dx = h

3 (f0 + 4f1 + f2) → Simpson’s rule
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Interpolating data IX

→ closed Newton-Cotes formulae with nodes ti on [0, 1] : t0 = 0, ti = i
n , tn = 1, use mapping

xi = a + ti (b − a), so∫ b

a
f (x)dx =

∫ b

a
pn(x)dx + Ef = (b − a)

n∑
i=0

wi f (xi ) + Ef (392)

n name nodes ti weights wi Ef

1 trapezoid rule 0 1 1
2

1
2 − (b−a)3

12 f ′′

2 Simpson’s rule 0 1
2 1 1

6
4
6

1
6 − (b−a)5

2880 f (4)

3 3/8 rule 0 1
3

2
3 1 1

8
3
8

3
8

1
8 − (b−a)5

6480 f (4)

4 Milne rule 0 1
4

2
4

3
4 1 7

90
32
90

12
90

32
90

7
90 − (b−a)7

1935360 f
(6)

. . .

for n ≥ 8 some weights wi are also negative → subtractive cancellation → useless

Note, again:
∑

wi = 1. The error: Ef = hp+1 · K · f (p)(ξ), ξ ∈ (a, b)
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Interpolating data X

Trick: Neville’s algorithm (sometimes confused with Aitken’s method)
Instead of computing the whole Lagrange polynomial: nested linear interpolations

x1 f1
f12

x2 f2 f123

f23

x3 f3

Where the fi ...j are recursively computed, e.g.,

fi ...j =
x − xj
xi − xj

fi ...j−1 +
x − xi
xj − xi

fi+1...j (393)

f123 =
x − x3
x1 − x3

f12 +
x − x1
x3 − x1

f23 (394)

→ sequence of . . . linear interpolations = interpolation with polynomial of n − 1 degree
→ error can be estimated from |fi...j−fi..j−1|+|fi...j−fi+1..j |

2 ,
e.g, |f12345−f1234|+|f12345−f2345|

2
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Interpolating data XI

Neville’s algorithm: code

// input : given points xi[], fi[], value of x for interpolation
// output: f at position x, error estimate df

for (i = 1 ; i <= n ; ++i) ft[i] = fi[i] ;

for (i = 1 ; i <= n-1 ; ++i) {
for (j = 1 ; j <= n-i ; ++j) {

x1 = xi[j] ; x2 = xi[j+1] ;
f1 = ft[j] ; f2 = ft[j+1] ;
ft[j] = (x - x1)/(x2 - x1) * f2 + (x - x2)/(x1 - x2) * f1

}
}
f = ft[1] ;
df = (fabs(f - f1) + fabs(f - f2))/2. ;
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Interpolating data XII

Runge’s phenomenon:
polynomials → ±∞ for x → ±∞.
If function has different behavior (e.g.,
asymptotically constant) ⇒ oscillations at
intervall limits (e.g., for Runge’s function 1

1+x2 )
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Interpolating data XIII

one possible solution for the problem of Runge’s phenomenon: piecewise polynomials
here: 2nd degree polynomials (parabola, requires 3 points)
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Problem:
not differentiable at xi
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Interpolating data XIV

better: Cubic Hermite spline

remember: piecewise linear interpolation with functions

A(x) =
xi+1 − x

xi+1 − xi
B(x) = 1− A =

x − xi
xi+1 − xi

(395)

→ y(x) = A(x) yi + B(x) yi+1 (396)

→ 2nd derivative=0 in interval and undefined/infinite at interval points

idea: get interpolation with smooth 1st derivative and continuous in 2nd derivative

A flat spline (lath) with fixed
points (ducks) has minimum
energy of bending → e.g., used
for construction of hulls

Burmester stencils are splines of
3rd degree
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Interpolating data XV

if (assume!): not only yi given, but also y ′′i → add cubic polynomial with 2nd derivative
varying linearly between y ′′i to y ′′i+1 and zero values for xi and xi+1 (so yi , yi+1 unchanged):

y(x) = A(x) yi + B(x) yi+1 + C (x) y ′′i + D(x) y ′′i+1 (397)

C (x) ≡ 1
6

(A3(x)− A(x))(xi+1 − xi )
2 D(x) ≡ 1

6
(B3(x)− B(x))(xi+1 − xi )

2 (398)

→ x dependence only through A(x), B(x) → cubic x-dependence in C (x), D(x)

check: now y ′′i is 2nd derivative of interpolating polynomial (calculating dA/dx , . . . ):

dy

dx
=

yi+1 − yi
xi+1 − xi

− 3A2 − 1
6

(xi+1 − xi )y
′′
i +

3B2 − 1
6

(xi+1 − xi )y
′′
i+1 (399)

d2y

dx2
= Ay ′′i + By ′′i+1 (400)

note that A = 1 and B = 0 at xi ; and A = 0 and B = 1 at xi+1, so y ′′ is ok (X)
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Interpolating data XVI

however: in most cases y ′′i not known
idea → 1st derivative shall be continuous across interval boundaries → gives equation for
2nd derivatives

so: Eq. (399) shall be same for xi on [xi−1, xi ] and on [xi , xi+1] (for i = 2, . . . ,N − 1)
yielding N − 2 equations

xi − xi−1
6

y ′′i−1 +
xi+1 − xi−1

3
y ′′i +

xi+1 − xi
6

y ′′i+1 =
yi+1 − yi
xi+1 − xi

− yi − yi−1
xi − xi−1

(401)

with N unknown y ′′i → need further constraint

often: y ′′1 and y ′′N set to 0 → natural cubic spline

advantage of cubic splines: linear set of equations and also tridiagonal, each y ′′i couples
only to nearest neighbors
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Interpolating data XVII

hence with mapping t = (x − xi )/(xi+1 − xi ) on unit interval [0, 1]

p(t) = T Mh C = (t3 t2 t)


2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0




yi
yi+1
mi

mi+1

 (402)

p(t) = (2t3 − 3t2 + 1)yi + (−2t3 + 3t2)yi+1

+ (t3 − 2t2 + t)mi + (t3 − t2)mi+1 (403)

with the numericial 1st derivatives mi = 1
2

(
yi−yi−1
xi−xi−1

+ yi+1−yi
xi+1−xi

)
and

mi+1 = 1
2

(
yi+1−yi
xi+1−xi + yi+2−yi+1

xi+2−xi+1

)
and m1 = yi+1−yi

xi+1−xi and mn = 0
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Interpolating data XVIII
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Cubic spline interpolation
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Interpolating data XIX
Catmull-Rom splines
The “width” of the curve segment can be controlled by a parameter Tk according to (for
k = 2, . . . , n − 2):

mk = Tk
yk+1 − yk−1
xk+1 − xk−1

(404)

data +

Tk = 1

Tk = 0.1

Tk = 5
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Interpolating in 2D I

Simplest method on a rectilinear 2D grid: bilinear interpolation, i.e, linear interpolation in one
direction, then again in another direction
→ as for Neville’s algorithm 2× linear = quadratic order
If four f values are given as follows: f1 : Q11 = (x1, y1), f2 : Q12 = (x1, y2), f3 : Q21 = (x2, y1),
f4 : Q22 = (x2, y2) then
1. linear interpolation in x-direction:

f (x , y1) ≈ x2 − x

x2 − x1
f (Q11) +

x − x1
x2 − x1

f (Q21) (405)

f (x , y2) ≈ x2 − x

x2 − x1
f (Q12) +

x − x1
x2 − x1

f (Q22) (406)
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Interpolating in 2D II

2. linear interpolation in y -direction:

f (x , y) ≈ y2 − y

y2 − y1
f (x , y1) +

y − y1
y2 − y1

f (x , y2)

=
y2 − y

y2 − y1

(
x2 − x

x2 − x1
f (Q11) +

x − x1
x2 − x1

f (Q21)

)
+

y − y1
y2 − y1

(
x2 − x

x2 − x1
f (Q12) +

x − x1
x2 − x1

f (Q22)

)
=

1
(x2 − x1)(y2 − y1)

(f (Q11)(x2 − x)(y2 − y)

+ f (Q21)(x − x1)(y2 − y) + f (Q12)(x2 − x)(y − y1)

+ f (Q22)(x − x1)(y − y1)) (407)

→ same result as for 1. y -direction + 2. x direction

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 359 / 577



Interpolating in 2D III

So:

f (x , y) =
1

(x2 − x1)(y2 − y1)

· (f1(x2 − x)(y2 − y)

+ f3(x − x1)(y2 − y)

+ f2(x2 − x)(y − y1)

+ f4(x − x1)(y − y1)) (408)

Example, here: rgb colors on corner points
f11 = b, f12 = f21 = r , f22 = g
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Interpolating in 2D IV

As the interpolation can also be written as:

f (x , y) =
1∑

i=0

1∑
j=0

aijx
iy j = a00 + a10x + a01y + a11xy (409)

a00 = f (0, 0), (410)
a10 = f (1, 0)− f (0, 0), (411)
a01 = f (0, 1)− f (0, 0), (412)
a11 = f (1, 1) + f (0, 0)−

(
f (1, 0) + f (0, 1)

)
. (413)

→ interpolation only linear along lines of const. x or const. y , any other direction:
quadratic in position (but linear in f )

→ other method: bicubic interpolation f (x , y) =
∑3

i=0
∑3

j=0 aijx
iy j with 16 coefficients

→ extension to 3D: trilinear interpolation, tricubic interpolation (64 coefficients)
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Numerical Integration
and Differentiation
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Numerical Integration I

(see also Landau et al. 2007)

Computing integrals
Often integrals have to be evaluated numerically. Examples:

measured dN(t)/dt, the rate of some events, e.g., photons per unit time interval. Task:
Determine the number of photons in the first second:

N(1) =

∫ 1

0

dN(t)

dt
dt (414)

radiative rates in the statistical equations for non-LTE population numbers (stellar atmospheres,
photoionized nebulae)

R`u =

∫
4π
hν
σ`u(ν)Jνdν where (in 1d): Jν =

1
2

∫ 1

−1
Iν d(cos θ) (415)
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Numerical Integration II

Also, analytical integration sometimes difficult or impossible (e.g., elliptic integrals), but
numerically straightforward. So, Riemann definition

∫ b

a
f (x)dx = lim

h→ 0

h (b−a)/h∑
i=1

f (xi )

 (416)

summing up areas of boxes of height f (x) and width h → numerical quadrature

∫ b

a
f (x)dx ≈

N∑
i=1

f (xi )wi (417)

→ problem: find appropriate sampling fi ≡ f (xi ), with weights wi

generally: result improves with N
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Numerical Integration III

some hints

remove singularities before integration

sometimes splitting of interval is helpful, e.g.,∫ 1

−1
f (|x |)dx =

∫ 0

−1
f (−x)dx +

∫ 1

0
f (x)dx (418)

or transformation/substitution∫ 1

0
x1/3dx =

∫ y(1)=11/3

y(0)=01/3
y 3y2dy

(
y(x) = x1/3 → dx = 3x2/3dy = 3y2dy

)
(419)
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Trapezoid rule I

The Trapezoid rule
uses values f (x) at evenly spaced xi (i = 1, . . . ,N) with step size h on integration region
[a, b], including endpoints

hence, N − 1 intervals of length h:

h =
b − a

N − 1
xi = a + (i − 1)h

(420)
so construct trapezoid on interval i of
width h → f (x) approximated by
straight line between (a + i · h, fi ) and
(a + (i + 1) · h, fi+1)

a b

x

f(
x
)
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Trapezoid rule II

with average height (fi + fi+1)/2:∫ xi+h

xi

f (x)dx ' h(fi + fi+1)

2
=

1
2
hfi +

1
2
hfi+1 (421)

i.e. Eq. (417):
∫ b
a f (x)dx ≈

∑N
i=1 f (xi )wi for N = 2 and wi = 1

2h

hence for full integration region [a, b]∫ b

a
f (x)dx ≈ h

2
f1 + hf2 + hf3 + . . .+ hfN−1 +

h

2
fN (422)

i.e. wi = {h/2, h, . . . , h, h/2}
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Simpson’s rule I

Simpson’s rule

similar to Trapezoid rule, but with odd number of points N

for each interval: f (x) approximated
by parabola

f (x) = αx2 + βx + γ (423)

hence area for each interval:∫ xi+h

xi

(αx2 + βx + γ)dx (424)

→ like integrating the corresponding
Taylor series up to quadratic term

a b

parabola 1

parabola 2

x

f(
x
)
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Simpson’s rule II

need to determine α, β, γ for f (x), so consider interval [−1, 1]∫ 1

−1
(αx2 + βx + γ)dx =

1
3
αx3 +

1
2
βx2 + γx

∣∣∣∣+1

−1
=

2α
3

+ 2γ (425)

and f (−1) = α− β + γ, f (0) = γ, f (1) = α + β + γ, therefore:

⇒ α =
f (1) + f (−1)

2
− f (0), β =

f (1)− f (−1)

2
, γ = f (0) (426)

so insert Eqn. (426) into Eq. (425)∫ 1

−1
(αx2 + βx + γ)dx =

2α
3

+ 2γ =
f (−1)

3
+

4f (0)

3
+

f (1)

3
(427)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 369 / 577



Simpson’s rule III

or more general: use two neighboring intervals to evaluate f (x) at three points for the
parabola fit ∫ xi+h

xi−h
f (x)dx =

∫ xi

xi−h
f (x)dx +

∫ xi+h

xi

f (x)dx (428)

' h

3
fi−1 +

4h
3
fi +

h

3
fi+1 (429)

→ pairs of intervals (hence: odd N)

so for total integration region [a, b]∫ b

a
f (x)dx ≈ h

3
f1 +

4h
3
f2 +

2h
3
f3 +

4h
3
f4 + . . .

2h
3
fN−2 +

4h
3
fN−1 +

h

3
fN (430)

with wi =
{
h
3 ,

4h
3 ,

2h
3 ,

4h
3 , . . . ,

4h
3 ,

h
3

}
→ check:

∑N
i=1 wi

!
= (N − 1)h
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Integration error I

→ numerical integration : use algorithm with least number of integration points for accurate
answer
estimate error from Taylor expansion at midpoint of interval, e.g., for trapezoid rule
hf (2) h2

12 , × number of subintervals N = [b − a]/h:

Etrap = O
(

[b − a]3

12N2

)
f (2), ESimps = O

(
[b − a]5

180N4

)
f (4) (431)

εtrap, Simps '
Etrap, Simps

f
(432)

Note that for Simpson’s rule 3rd derivate cancels and E ∝ 1/N4

→ Simpson’s rule should converge faster
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Integration error II

check: find N for minimum total error (usually for εro ≈ εappr):

εtot = εro + εapprox ≈
√
Nεm + εtrap, Simps (433)

→ εro
!

= εtrap, Simps =
Etrap, Simps

f
(434)

Assuming some scale:

f (n)

f
≈ 1 b − a = 1 ⇒ h =

1
N

(435)
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Integration error III

For double precision (εm ≈ 10−15) and trapezoid rule:

√
Nεm ≈

f (2)(b − a)3

fN2 =
1
N2 (436)

⇒ N ≈ 1
(εm)2/5

=

(
1

10−15

)2/5

= 106 (437)

⇒ εro ≈
√
Nεm = 10−12 (438)

For double precision (εm ≈ 10−15) and Simpson’s rule:

√
Nεm ≈

f (4)(b − a)5

fN4 =
1
N4 (439)

⇒ N ≈ 1
(εm)2/9

=

(
1

10−15

)2/9

= 2154 (440)

⇒ εro ≈
√
Nεm = 5× 10−14 (441)
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Integration error IV

We conclude:

Simpson’s rule is better

Simpson’s rule gives errors close to εm (in general for higher order integration algorithms,
e.g., RK4)

best numerical approximation not for N → ∞, but small N ≤ 1000

however, as εSimps ∼ f (4) → only for sufficiently smooth functions, i.e., for narrow
peak-like functions trapezoidal rule might be more efficient
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Gaussian quadrature I
So far: improvement by smart choice of weights wi , but still equally spaced points xi (= const.
h) for integral evaluation (cf. Eq. (417)),
now: additional freedom of choosing xi so that order is twice that of previous integration
formulae (so-called Newton-Cotes formulae, see → interpolation) for same number of nodes N
→ compute N × f (xi ).
→ choose wi and xi such that integral is exact for

orthogonal polynomials × specific weight function W (x)

∫ b

a
f (x)dx =

∫ b

a
W (x)g(x)dx ≈

∫ b

a
W (x)pn(x)dx =

N∑
i=1

g(xi )wi =
N∑
i=1

f (xi )

W (xi )
wi (442)

Note that the integration of the orthogonal polynomials is on [−1; +1], hence a transformation
of the variables is usually necessary, e.g., for W (x) ≡ 1:∫ b

a
g(x)dx ≈ b − a

2

N∑
i=1

g

(
b − a

2
xi +

a + b

2

)
wi (443)
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Gaussian quadrature II

Example: Gauß-Chebyshev quadrature

The weight function is W (x) = 1√
1−x2 , i.e, with g(x) = f (x)

√
1− x2

∫ +1

−1
f (x)dx =

∫ +1

−1

g(x)√
1− x2

dx ≈
∫ b

a

Tn(x)√
1− x2

dx =
N∑
i=1

g(xi )wi =
N∑
i=1

f (xi )
√

1− x2i wi

(444)
with analytic(!) wi = π

N , and xi = cos
(2i−1

2N π
)
are the zeros of the associated Chebyshev

polynomials of 1st kind Tn(x), with Tn+1(x) = 2xTn(x)− Tn−1, T0(x) = 1, T1(x) = x and∫ +1

−1
Tn(x)W (x)Tm(x)dx = δnm (445)

And for the Chebyshev polynomials of 2nd kind Un(x) analogously:
W (x) =

√
1− x2, wi = π

N+1 sin2
(

i
N+1π

)
, xi = cos

(
i

N+1π
)
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Gaussian quadrature III

Gauß-Chebyshev quadrature in C++ for some f (x) on [a; b]

double gaussc (double const &a, double const &b, int const &N) {
...

for ( i = 0 ; i < N ; ++i ) {
x[i] = cos ( ((2. * (i+1) - 1.) * M_PI ) / (double(N) *2.) ) ;
w[i] = M_PI / double(N) * (b-a) / 2. ; // transform weights [-1;1]->[a;b]

}
sum = 0. ;
for (i = 0 ; i < N ; ++i) { // transform x in f(x), but not in sqrt()

sum += f( x[i]*(b-a)/2. + (a+b)/2. ) * sqrt(1.-x[i]*x[i]) * w[i] ;
}
return sum ;

}

→ note that this is maybe not optimum for some function f (x), but should be rather used for
functions of the form g(x)/

√
1− x2
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Gaussian quadrature IV

Most often: W (x) ≡ 1 →Gauß-Legendre quadrature with Legendre Polynomials Pn(x), which
are the solutions to Legendre’s differential equation (a special case of the Sturm-Liouville
differential equation) → Laplace equation in 3D for spherical coordinates →QM

d

dx

[
(1− x2)

dPn(x)

dx

]
+ n(n + 1)Pn(x) = 0 (446)

→ Pn(x) =
1

2nn!

dn

dxn
(
x2 − 1

)n (Rodrigues’ formula ) (447)

so, P0(x) = 1, P1(x) = x , P2(x) = 1
2(3x2 − 1), . . .

Then, the n weights (for the n points of the interval)

wi =
2

(1− x2i )[P ′n(xi )]2
(448)

where xi are the n zeros of Pn(x)
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Gaussian quadrature V
Table: Exact values for Gauß-Legendre integration for n = 2, 3

n Pn P ′n xi wi

2 1
2(3x2 − 1) 3x ± 1√

3
1, 1

3 1
2(5x3 − 3x) 1

2(15x2 − 3) 0,±
√

3
5

8
9 ,

5
9 ,

5
9

Alternatively, the n zeros of Pn(x) can be computed, e.g., via Newton’s method
(xk+1 = xk − P(xk)/P ′(xk)), one may use the start approximation (i = 1, . . . , n):

xi ≈ cos

(
4i − 1
4n + 2

π

)
(449)

Then the values of Pn(x) and P ′n(x) for Newton’s method can be obtained via recursion:

nPn(x) = (2n − 1)xPn−1(x)− (n − 1)Pn−2(x) (450)
→ Pn(x) = [(2n − 1)xPn−1(x)− (n − 1)Pn−2(x)]/n (451)

(x2 − 1)P ′n(x) = nxPn(x)− nPn−1(x) (452)

→ P ′n(x) = (nxPn(x)− nPn−1(x))/(x2 − 1) (453)
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Gaussian quadrature VI

Finally, the transformation from t ∈ [−1; +1] → x ∈ [a; b]
can be done via the midpoint a+b

2

xi = ti
b − a

2
+

a + b

2
(454)

wi ,x = wi ,t
b − a

2
(455)
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Gaussian quadrature VII

Alternatively, other mappings are possible, allowing for integration of improper integrals with
the Gauß-Legendre quadrature

interval midpoint xi (ti ) wi,x

[a, b] a+b
2

a+b
2 + b−a

2 ti
b−a
2 wi,t

[0;∞] a a
1 + ti
1− ti

2a
(1− ti )2wi,t

[−∞; +∞] scale a a
ti

1− t2i

a(1 + t2i )

(1− ti )2 wi,t

[b; +∞] a + 2b
a + 2b + ati

1− ti

2(b + a)

(1− ti )2wi,t

[0; b] ab/(b + a)
ab(1 + ti )

b + a− (b − a)ti

2ab2

(b + a− (b − a)ti )2wi,t
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Gaussian quadrature VIII

Moreover, there exist other orthogonal polynomials useful for Gauß quadrature

interval polynomials W (x)†

[−1; 1] Legendre 1

[−1; 1] Chebyshev 1st kind
1√

1− x2

[−1; 1] Chebyshev 2nd kind
√

1− x2

(−1; 1) Jacobi (1− t)α(1 + x)β, α, β > −1
[0; +∞) Laguerre e−x

[0; +∞) Generalized Laguerre xαe−x , α > −1
(−∞; +∞) Hermite e−x

2

†Remember that function f (x) should be of form g(x)W (x)
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Gaussian quadrature IX

In general, the Gauß quadrature is constructed from orthogonal polynomials pn(x) with∫ b

a
pn(x)W (x) pn′(x)dx = 〈pn|pn′〉 = Nn δnn′ (456)

where Nn is a normalization constant. If we choose the roots xi of pn(x) = 0 and

wi =
−anNn

p′n(xi ) pn+1(xi )
(457)

with i = 1, . . . , n, then the error in the quadrature is∫ b

a
f (x)dx −

n∑
i=1

g(xi )wi =
Nn

A2
n(2n)!

g (2n)(x0) (458)

where x0 is some value in [a, b], An a coefficient of the xn term in the polynomial pn(x),
an = An+1/An, e.g, for the Legendre polynomials an = (2n + 1)/(n + 1) and Nn = 2/(2n + 1).
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Gaussian quadrature X

trapezoid rule

Simpson’s rule

Gauß-Legendre

Gauß-Chebyshev

-16

-14

-12

-10

-8

-6

-4

-2

0

0 1 2 3

log N

lo
g

 ε

Numerical integration of exp(−x) on
[0, 1] with different methods and number
of integration points. Note that for
Simpson’s rule N must be odd.

Gauß-Legendre quadrature with W (x) ≡ 1 is superior to simple methods with fixed integration
step width. Gauß-Chebyshev is not optimal, as W (x) = 1√

1−x2
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Romberg integration I

Ideally: choose required accuracy ε → know n for Gaussian quadrature (e.g, from Eq. (458)).
Unfortunately, usually impossible. Therefore: increase n until ε small enough, recalculate all
f (xi ) for new degree n → disadvantage of Gaussian quadrature

Idea: trapezoid rule with subsequent calls with increasing n to refine until precision ε reached:

void trap (double const &a, double const &b, double &s, int const &n)
...

if (n == 1) s = 0.5 * (b-a) * (f(a)+f(b)) ;
else {
it = pow(2,(n-2)) ;
delx = (b-a) / double(it) ;
x = a + 0.5 * delx ;
sum = 0. ;
for (int j=1 ; j <= it ; ++j) {
sum += f(x) ; x += delx ; }

s = 0.5 * (s + (b-a) * sum / double(it)) ;
}
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Romberg integration II

For the trapezoid rule the approximation error (starting with 1
n2 has only even powers of 1

n ):∫ xn

x1

f (x)dx = h

[
1
2
f1 + f2 . . . fn−1 +

1
2
fn

]
(459)

− B2h
2

2!
(f ′n − f ′1)− . . .− B2kh

2k

(2k)!
(f

(2k−1)
n − f

(2k−1)
1 )− . . . (460)

If compute Eq. (460) (without the error terms) for n and get sn and once more with 2n and get
s2n, then leading error term in 2nd call is 1/4 of error in 1st call, hence

s =
4
3
s2n −

1
3
sn (461)

cancels leading error term, 1/n4 remains → recovers Simpson’s rule
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Romberg integration III

Often better: trapezoid rule for different N (or h = b−a
N ) + extrapolation for h→ 0 (cf.

Richardson extrapolation) →Romberg integration

 0.6

 0.61

 0.62

 0.63

 0.64

 0.65

 0.66

 0.67

 0.68

 0.69

 0.7

-0.2  0  0.2  0.4  0.6  0.8  1  1.2

I tr
a
p
(h
)

h

Itrap for decreasing h
ft

1 calculate I (hk) for series hk
2 extrapolate (h2k , I (hk)) with

polynomial in h2

e.g.,
∫ 1
0 e−xdx

Note that polynomial (a + bh2) in h2

is plotted, although h is used for the
trapezoid rule → extrapolate
polynomial in h2

→ trapezoid rule ideal: expansion in even powers of h (each refinement → 2 orders accuracy)
and I (h) = h(12 f (a) +

∑N−1
j=1 f (xj) + 1

2 f (b)) → recycle already calculated nodes for h/2
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Numerical differentiation I

Sometimes numerical derivative needed, e.g., for minimization algorithms, Newton method for
root finding, so

f ′ =
df (x)

dx
:= lim

h→ 0

f (x + h)− f (x)

h
(462)

Problem: for h→ 0 → f (x + h) ≈ f (x)
→ subtractive cancelation for numerator

& machine precision limit for denominator

often better (e.g., for large noise): analytic approximation of function (see, e.g.,
→ interpolation) and its derivative

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 388 / 577



Numerical differentiation II

Forward difference
Taylor series with step size h

f (x + h) = f (x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f (3)(x) + . . . (463)

→ forward difference by solving Eq. (463) for f ′

f ′fd(x) :=
f (x + h)− f (x)

h
' f ′(x) +

h

2
f ′′(x) + . . . (464)

approximate function by straight line through two points, error ∼ h, e.g, consider
f (x) = a + bx2

f ′fd(x) ≈ f (x + h)− f (x)

h
= 2bx + bh vs. exact f ′ = 2bx (465)

→ only good for small h� 2x
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Numerical differentiation III
Central difference
modify Eq. (462) by stepping forward h/2 and backward h/2

f ′cd :=
f (x + h

2 )− f (x − h
2 )

h
(466)

So, if we insert Taylor series for f (x +±h
2 ) in to Eq. (466)

f ′cd :=

[
f (x) + h

2 f
′(x) + h2

8 f
′′(x)+

]
− [. . .]

h
' f ′(x) +

1
24

h2f (3)(x) + . . . (467)

→ all terms with odd power of h cancel → accuracy is of order h2

if function well behaved, i.e., f (3)h2/24� f (2)h/2
→ error for central difference method � forward difference method, e.g., for f (x) = a + bx2

f ′cd(x) ≈
f (x + h

2 )− f (x − h
2 )

h
= 2bx vs. exact f ′ = 2bx (468)
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Numerical differentiation IV

x-
h

2
x x+

h

2
x+h

f(
x
)

Forward difference (solid line) and central difference (dashed)
→ central difference more accurate
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Numerical differentiation V

Extrapolated difference
try to make also h2 vanish by algebraic exatrapolation

f ′ed(x) ' lim
h→ 0

f ′cd (469)

→ need additional information for extrapolation by central difference with step size h/2:

f ′cd(x , h/2) =
f (x + h/4)− f (x − h/4)

h/2
≈ f ′(x) +

h2f (3)(x)

96
+ . . . (470)

We elminate linear and quadratic error term by forming

f ′ed(x) :=
4 f (x+h/4)−f (x−h/4)

h/2 − f (x+h/2)−f (x−h/2)
h

3
(471)

≈ f ′(x)− h4f (5)(x)

4 · 16 · 120
+ . . . (472)
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Numerical differentiation VI

for h = 0.4 and f (5) ' 1 → approximation error close to εm. To minimize subtractive
cancelation write Eq. (471) as

f ′ed(x) =
1
3h

(
8
[
f

(
x +

h

4

)
− f

(
x − h

4

)]
−
[
f

(
x +

h

2

)
− f

(
x − h

2

)])
(473)
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Numerical differentiation VII

Error analysis

→ usually decreasing h reduces approximation error but increases roundoff error (e.g., more
calculation steps needed), moreover: subtractive cancelation. Hence, difference

f ′ ≈ f (x + h)− f (x)

h
≈ εm

h
≈ εro (474)

and

εfdapprox ≈
f (2)h

2
, εcdapprox ≈

f (3)h2

24
(475)

Therefore εro ≈ εapprox for
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Numerical differentiation VIII

εm
h
≈ εfdapprox =

f (2)h

2
,

εm
h
≈ εcdapprox =

f (3)h2

24
(476)

⇒ h2fd =
2εm
f (2)

⇒ h3cd =
24εm
f (3)

(477)

for f ′ ≈ f (2) ≈ f (3) ' 1 (e.g., exp(x), cos(x)) and double precision (εm ≈ 10−15):

hfd ≈ 4× 10−8 & hcd ≈ 3× 10−5 (478)

⇒ εfd '
εm
hcd
' 3× 10−8, ⇒ εcd '

εm
hcd
' 3× 10−11 (479)

→ can choose 1000× larger h for central difference → error is 1000× smaller for central
difference
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Numerical differentiation IX

Second derivative
starting from first derivative with central difference method

f ′(x) ' f (x + h/2)− f (x − h/2)

h
(480)

the 2nd derivative f (2)(x) is central difference from 1st derivative

f (2)(x) ' f ′(x + h/2)− f ′(x − h/2)

h
, (481)

' [f (x + h)− f (x)]− [f (x)− f (x − h)]

h2
(482)

' f (x + h) + f (x − h)− 2f (x)

h2
(483)

→Eq. (482) better in terms of subtractive cancelation
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Random numbers and
Monte-Carlo methods
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Motivation I

Many physical process can be described in two pictures:

microscopic, individual, e.g., particle-particle interactions are considered
realization usually with help of →Monte-Carlo (MC) methods

macroscopic, only the effective coaction is described → usually analytical equations

Example: Thermodynamics

microscopic: motion of particles, e.g., v2 = 1
N

∑N
i=1 v

2
i

effective theory: thermodynamics (via statistical physics) averages particle quantities, e.g.,
1
2mv2 = 3

2kBT , so v2 → T

Monte-Carlo simulation
Computer algorithm based on a large number of repeated random experiments to obtain a
representative sample of the possible configurations.
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Motivation II

Example: Radiative transfer

microscopic: interaction of photons with atoms/ions/molecules
→ MOCASSIN for Monte-Carlo simulation of photon propagation in gaseous nebulae
→ MCRH (Noebauer 2015) MC radiation hydrodynamics for stellar winds
advantage: arbitrary geometries (e.g., torus) and density distributions (inhomogeneities) and

processes; good for scattering (special non-LTE case)
disadvantage: feedback on matter (often iteratively calculated) hard to implement because of

MC noise

macroscopic: radiative transfer equation (RTE) = effective theory, i.e. light (intensity Iν) instead
of single photons
→ Cloudy spectral synthesis code for astrophysical plasmas
→ PoWR for emergent spectra of stellar atmospheres
advantage: feedback on matter (non-LTE) via iteration (boundary conditions, e.g., conservation of

energy) → non-LTE population numbers
disadvantage: hard to program (numerical stability); consistent only for some geometries, usually

1d, e.g., spherical symmetry
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Random numbers I

For MC methods we need good and many random numbers. Usual base are
uniformly distributed random numbers (= same probability for every event).
Humans are not a good source for random numbers:

0

2

4

2 4 6 8 10 12 14 16 18 20

fr
e

q
u

e
n

c
y
 (

9
x
4

)

Figure: random numbers, created by colleagues → not uniformly distributed, too few

→ direct, severe consequence: don’t make up your own passwords!
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Random numbers II

Other sources: rolling dices, tossing coins → low rate

most programming languages have a builtin random function, which gives pseudo-random
numbers, e.g., in C/C++ integers (!) from [0,RAND_MAX]

#include <cstdlib>
...

int i = rand () ;

output of next random number of a sequence

restart by srand(i) ;

To get uniformly distributed random numbers ∈ [0; 1]:

r = rand()/double(RAND_MAX) ;

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 401 / 577



Random numbers III

Definition
A result (a state) is random if it was not predictable.

Quality tests for random numbers:

uniform distribution: random numbers should be fair

sequential tests: for ntuple repetitions (usually only for n = 2 und n = 3)

run tests: for monotonically increasing/decreasing sequences, and duration of stay in a
certain interval

and more . . .

→ there is no sufficient criterion for randomness tests
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Non-uniform distributions
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Non-uniform random numbers I

random number generators give uniform (pseudo) random numbers ∈ [0, RAND_MAX]
→ r ∈ [0, 1] (from now on)

we often need different distributions, e.g., normal (Gaussian) distributions or uniform
distributions on an interval x ∈ [a, b]

i.e., we need a transformation that maps r to x , so

Inverse transformation

x = P−1(r) (484)
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Non-uniform random numbers II
First, for the case of discrete numbers

e.g., two events (1,2) with probabilities p1 and p2, such that

p1 + p2 = 1 (485)

How can we choose with help of r?
obvious choice: for r < p1 event 1, otherwise event 2

p1 p2

for the case of 3 possible events with p1, p2, p3: r < p1 → event 1,
p1 < r < p1 + p2 → event 2, else event 3

p1 p2 p3

in general for n events, event i is selected if for r :

i−1∑
j=0

pj ≤ r ≤
i∑

j=0

pj where p0 ≡ 0 (486)
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Non-uniform random numbers III

For continuous distributions:
need the probability density function p(x), where p(x) · dx is probability that x is in the
interval [x , x + dx ]

moreover, p(x) is normalized: ∫ +∞

−∞
dx p(x) = 1 (487)

Example: uniform distribution

pu(r) =

{
1, if 0 ≤ r ≤ 1
0, else

(488)

0.0

0.5

1.0

1.5

0 1

r

p
(r

)
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Non-uniform random numbers IV

for the continuous case (continuum limit i → x) in the Eqn. (486)

i−1∑
j=0

pj ≤ r ≤
i∑

j=0

pj where p0 ≡ 0

both sums are equal and become the integral:

P(x) =

∫ x

−∞
p(x ′) dx ′ = r (489)

P(x)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-3 -2 -1 0 1 2 3

x

p
(x

)
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Non-uniform random numbers V

This corresponds to the cumulated distribution function

P(x) =

∫ x

−∞
p(x ′) dx ′ (490)

i.e. the probability to get a random number smaller or equal x . Geometrically: fraction of the
area left of (smaller than) x . We state:

P(x) = r (491)
⇒ x = P−1(r) (492)

i.e. exactly as r also P(x) is uniformly distributed.
Therefore, the probability to find P(x) in the interval [P(x),P(x) + dP(x)] is dP(x) = dr
(Eq. 491).
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Non-uniform random numbers VI

The relation between dP(x) and dx is obtained by derivating Eq. (490) →Fundamental
theorem of calculus:

dP(x)

dx
= p(x) (493)

for 0 ≤ r ≤ 1 it is also:

dP(x) = p(x) dx = pu(r) dr (494)

I.e., because of Eq. (491) P(x) = r → x is distributed according to p(x)
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Non-uniform random numbers VII

To obtain such p(x) distributed random numbers, one has to solve Eq. (492) x = P−1(r)

Inverse transformation
1 Insert the required distribution p(x) into:

r = P(x) =

∫ x

−∞
p(x ′) dx ′ (495)

2 solve for x , i.e. find

P−1(r) = x (496)

Not for all p(x) are the corresponding conditions fulfilled (solvable integral and invertibility)
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Non-uniform random numbers VIII

Example for inverse transformation
Let

p(x) =

{
a e−ax , if 0 ≤ x ≤ ∞
0, x < 0

(497)

P(x) =

∫ x

0
a e−ax

′
dx ′ = 1− e−ax = r (498)

⇒ x = −a−1 ln(1− r) (499)

and (1− r) is exactly distributed as r , so:

x = P−1(r) = −a−1 ln r (500)

The evaluation of ln on a computer is relatively time consuming
→ inverse transformation not always the best method
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Probability distributions in Physics I

Probability distributions are fundamental in, e.g., statistical mechanics and non-relativistic
quantum mechanics:

Boltzmann distribution: pi ∝ exp
(
− Ei

kBT

)
for some state i

usually: discrete states (statistical mechanics), hence

pi =
Ni

N
=

exp
(
− Ei

kBT

)
∑m

j=1 exp
(
− Ej

kBT

) (501)

for Ni particles in state i and a total number of N particles with m states
but might be also continuous, e.g., barometric formula for molecule of mass m, height h
above ground

ρ(h) ∝ exp

(
−mg h

kBT

)
(502)

→ computer generated samples via Markov Chain Monte Carlo (MCMC), in particular
→Metropolis algorithm (see below)
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Probability distributions in Physics II
Maxwell-Boltzmann distribution: continuous distribution of particle velocity in one

direction (e.g., radial sightline) with vth =
√

2kBT
m

p(vx) dvx =

(
m

2πkBT

)1/2

exp

(
− mv2x
2kBT

)
dvx =

1
vth
√
π

exp

(
− v2x
v2th

)
(503)

Application: thermal Doppler broadening of spectral lines where ∆νth = ν0 · vth/c

Mean value 〈v2x 〉 = 2
∫ ∞
0

v2x p(vx)dvx =
1
2
v2th =

kBT

m
= v2s → isothermal sound speed

→ example for a “moment” of a distribution

For 3D, absolute value, speed v : d3v = dvx dvy dvz = v2 dv dΩ integration → 4πv2dv
and v2 = v2x + v2y + v2z :

p(v) dv = 4π
(

m

2πkBT

)3/2

v2 exp

(
− mv2

2kBT

)
dv (504)

Hence, mean 〈v2〉 =

∫ ∞
0

v2 p(v)dv =
3kBT
m

→ compare definition of T as measure of mean kinetic energy
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Probability distributions in Physics III

in non-relativistic QM (1d):
the squared modulus of the wave function |ψ(x , t)|2 gives probability of particle in
“volume” dx around x at time t → p(x , t)dx = |ψ(x , t)|2dx
Physical quantities (observables) have corresponding operators, e.g., momentum
pop → −ı~∂/∂x ; expectation or average value of observable A:

〈A〉 =

∫
ψ∗(x , t)Aop ψ(x , t)dx (505)

And ψ evolves according to Schrödinger equation

ı~
∂ψ(x , t)

∂t
= − ~2

2m
∂2ψ(x , t)

∂x2
+ V (x , t)ψ(x , t) (506)

→ because of similarity to diffusion equation (with imaginary time), solutions to Eq. (506)
can be found by random walk (see below)
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Probability distributions in Physics IV

the specific intensity Iν(~x , t, ~n, ν) = d E
d ~A·~n dΩ dν dt

is a 7-dim distribution function on a
4-dim spacetime manifold (~x , t), describing unpolarized radiation. Note:
Iν = nphotchν ≥ 0 (where nphot is photons / volume / solid angle / frequency interval)

Moments of the specific intensity (radiation field) = integrals over all directions, in 1d
(plane parallel, spherical symmetry) over µ = cos θ, n-th moment: 1

2

∫ +1
−1 µ

n Iν(µ)dµ

n symbol integral type
0. Jν = 1

2

∫ +1
−1 Iν(µ)dµ mean intensity, energy density Eν = 4π

c Jν , Jν ≥ 0

1. Hν = 1
2

∫ +1
−1 µ Iν(µ)dµ (Eddington-) flux, can be neg. (e.g. “inward” flux)

2. Kν = 1
2

∫ +1
−1 µ

2 Iν(µ)dµ radiation pressure Kν = c
4πPν

3. Nν = 1
2

∫ +1
−1 µ

3 Iν(µ)dµ flux-like, i.e., can be negative

→ usually: MC simulations of radiation field require large number of runs for individual
photons to recover macroscopic quantities I , J, etc. correctly
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Non-uniform distributions II
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Box-Muller method I

non-uniform distribution:

with help of the inversion method we can get non-uniform random numbers from uniform
random numbers → condition: P(x) invertable

for the Gaussian normal distribution:

p(x) =
1√
2πσ2

exp

(
− x2

2σ2

)
(507)

P(x) is not analytical representable (error function)

idea: 2d-transformation where:

p(x , y) dx dy =
1

2πσ2
e−(x2+y2)/2σ2

dx dy (508)

change to polar coordinates:

r =
√

x2 + y2 θ = tan−1
y

x
(509)
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Box-Muller method II

let ρ = r2/2 and set σ = 1:

p(x , y)dx dy = p(ρ, θ) dρ dθ =
1
2π

e−ρ dρ dθ (510)

now generate random numbers ρ according to exponential distribution, so ρ = − ln u (u
standard uniform distributed) and θ uniform distributed on [0, 2π), then

x =
√
−2 ln u cos θ und y =

√
−2 ln u sin θ (511)

are each according to Eq. (507) with σ = 1 and µ = 0 distributed because of

reız =
√
− ln ueı2πθ =

√
−2 ln u [cos(2πθ) + ı sin(2πθ)] (512)

Alternative: Rejection method (see below)
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Example: Neutron transport
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Neutron transport I

Application for non-uniform random numbers!
Transport of neutrons through matter – one of the first MC applications!

consider a plate of thickness t
plate is infinite in z and y direction, x-axis
perpendicular to the plate
at each point within the plate: probability pc,
that neutron gets absorbed (captured) and
probability ps that neutron is scattered
after each scattering: find scattering angle θ in
xy plane
as motion in y , z direction irrelevant: azimuthal
angle φ irrelevant

y

x

n

θ

t
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Neutron transport II

Determine scattering angle & scattering path length
1. Isotropic scattering:

p(θ, φ) dθ dφ = dΩ/4π (513)
because of dΩ = sin θ dθ dφ : (514)

p(θ, φ) =
sin θ

4π
(515)

obtain p(θ) and p(φ) by integration over the complementary angle:

p(θ) =

∫ 2π

0
p(θ, φ) dφ = 2π

sin θ

4π
=

1
2

sin θ (516)

p(φ) =

∫ π

0
p(θ, φ) dθ =

1
4π

(− cosπ + cos 0) =
1
2π

(517)

I.e. p(θ, φ) = p(θ)p(φ) → independent variables
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Neutron transport III
If random variable φ is wanted (p(φ) ≡ const.):

φ = 2πr (518)

To get random θ according to Eq. (516) → inversion method:

r = P(θ) =

∫ θ

0

1
2

sin x dx = −1
2

(cos θ − cos 0) (519)

cos θ = 1− 2r (520)

I.e. cos θ is uniformly distributed on [−1; 1] and φ on [0; 2π]. Solving for θ possible, but
unnecessary, as only cos θ required for x component of the path →
2. scattering path length:

x = ` cos θ (521)

where ` from p(`) ∼ e−`/λ (see example for inversion method):

` = −λ ln r (522)

λ →mean free path (e.g., λ = (σn)−1)
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Neutron transport IV

Algorithm, start at x = 0:

1 determine, if neutron is scattered or
captured. If captured: increment number of
absorbed neutrons, go to 5 step

2 scattering: “dice” cos θ and `, move to x
position by ` cos θ

3 if x < 0: increment number of reflected
neutrons, if x > t: increment number of
transmitted neutrones;
go to 5

4 repeat step 1 - 3 until final result is achieved
for all neutrons

5 repeat step 1 - 4 with more incident
neutrons

x = 0,
generate
neutron

dice r
for ps, pc

Captured?
increment
nabs

dice cos θ
and `

move to x
by ` cos θ

increment
ntrans

increment
nrefl

yes

no

x > t

x < 0

else
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Monte-Carlo integration
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MC integration I

Idea: Can the area of a pool (irregular!) be measured by throwing stones?

FN

A

pool with area Fn in a field with known(!) area A
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MC integration II

fraction of the randomly thrown stones which fall into the pool:

np
n

=
Fn
A

(523)

(n stones, np hit pool)

determine Fn with help of the hit-or-miss method:

Fn = A
np
n

(524)
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MC integration III

f(x)

h

a b

choose rectangle of height h, width (b − a), area A = h · (b − a), such that f (x) within
the rectangle

generate n pairs of random variables xi , yi with a ≤ xi ≤ b and 0 ≤ yi ≤ h

fraction nt of the points, which fulfill yi ≤ f (xi ) gives estimate for area under f (x)
(integral)
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MC integration IV

Excursus: Buffon’s needle problem – determine π by throwing matches
Buffon’s question (1773): What is the probability that a needle or a match of length ` will lie across a line
between two strips on a floor made of parallel strips, each of same width t?
→ x is distance from center of the needle to closest line, θ angle between needle and lines (θ < π

2 ), hence the
uniform probability density functions are

p(x) =

{ 2
t

: 0 ≤ x ≤ t
2

0 : elsewhere p(θ) =

{ 2
π

: 0 ≤ θ ≤ π
2

0 : elsewhere

x , θ independent → p(x , θ) = 4
tπ

with condition x ≤ `
2 sin θ. If ` ≤ t (short needle):

P(hit) =
∫ π

2

θ=0

∫ `
2 sin θ

x=0

4
tπ

dxdθ =
2`
tπ

→ count hits and misses and then:

π =
2`
t

1
P(hit)

=
2`
t

nhit + nmiss

nhit
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MC integration V

Sample-mean method

the integral

F (x) =

∫ b

a
f (x) dx (525)

is given in the interval [a, b] by the mean 〈f (x)〉 (mean value theorem for integration)

choose arbitrary xi (instead of regular intervals) and calculate

Fn = (b − a)〈f (x)〉 = (b − a)
1
n

n∑
i=1

f (xi ) (526)

where xi are uniform random numbers in [a, b](
cf. rectangle rule Fn =

n∑
i=1

f (xi )∆x with fixed xi ,∆x =
b − a

n

)
(527)
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Importance sampling I

Idea: improve MC integration by a better sampling → introduce a positive function p(x) with∫ b

a
p(x)dx = 1 (528)

and rewrite integral
∫ b
a f (x)dx as

F =

∫ b

a

[
f (x)

p(x)

]
p(x)dx (529)

this integral can be evaluated by sampling according to p(x):

Fn =
1
n

n∑
i=1

f (x)

p(x)
(530)

Note that for the uniform case p(x) = 1/(b − a) → the sample mean method is recovered.
Now, try to minimize variance σ2 of integrand f (x)

p(x) by choosing p(x) ≈ f (x), especially for
large f (x)
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Importance sampling II

→ slowly varying integrand f (x)/p(x)
→ smaller variance σ2

Example: Normal distribution

Evaluate integral F =
∫ b
a f (x)dx =

∫ 1
0 e−x

2
dx (error function) →Fn = 1

n

∑n
i=1

e−x2

p(x)

p(x) = 1 p(x) = Ae−x †

x (b − a) ∗ r + a − log(e−a − r
A
)

n 4× 105 8× 103

σ 0.0404 0.0031

σ/
√
n 6× 10−5 3× 10−5

total CPU time†† 19ms 0.8 ms
CPU time / trial 50 ns 100 ns

† A from normalization A = (exp(−a)− exp(−b))−1, ††CPU time on a Intel Core i7-4771 3.5 GHz

→ the extra time needed per trial for getting x from uniform r is usually overcompensated by
the smaller number of necessary trials for same σ/

√
n
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Metropolis algorithm I

Similar: Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller & Teller 1953)
useful for averages of the form

〈f 〉 =

∫
p(x)f (x)dx∫
p(x)dx

e.g. 〈f 〉 =

∫
e
− E(x)

kBT f (x)dx∫
e
− E(x)

kBT dx
, (531)

The Metropolis algorithm uses random walk (see below) of points {xi} (1D or higher) with
asymptotic probability distribution approaching p(x) for n� 1. Random walk from transition
probability T (xi → xj), such that

p(xi )T (xi → xj) = p(xj)T (xj → xi ) (detailed balance) (532)

e.g., chooseT (xi → xj) = min

[
1,

p(xj)

p(xi )

]
(where, e.g., pj/pi = exp

(
−
Ej − Ei

kBT

)
) (533)
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Metropolis algorithm II

Metropolis algorithm
1 choose trial position xtrial = xi + δi with random δi ∈ [−δ,+δ]

2 calculate w = p(xtrial)/p(xi ) (might be: w = exp
(
−E(xtrial)−E(xi )

kBT

)
)

3 if w ≥ 1, accept and xi+1 = xtrial (→∆E ≤ 0)
4 if w < 1 (→∆E > 0), generate random r ∈ [0; 1]

5 if r ≤ w , accept and xi+1 = xtrial (and compute desired quantities, e.g. f (xi+1))
6 if not, xi+1 = xi

(finally: 〈f 〉 = 1
n

∑n
i=1 f (xi ))

problem: optimum choice of δ;
if too large, only small number of accepted trials → inefficient sampling
if too small, only slow sampling of p(x).
Hence, rule of thumb: choose δ for which 1

3 . . .
1
2 trials accepted

also: choose x0 for which p(x0) is largest → faster approach of {xi} to p(x)
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Metropolis algorithm III

Metropolis algorithm for Gaussian standard distribution

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-6 -4 -2  0  2  4  6

p(
x)

x

delta=1
Gaussian

δ = 1.
faccept = 0.72
〈x〉 = 0.0007533
〈x2〉 = 0.90306

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-6 -4 -2  0  2  4  6

p(
x)

x

delta=1.5
Gaussian

δ = 1.5
faccept = 0.64
〈x〉 = −0.0000153
〈x2〉 = 0.935376
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 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-6 -4 -2  0  2  4  6

p(
x)

x

delta=2
Gaussian

δ = 2.
faccept = 0.56
〈x〉 = 0.000200396
〈x2〉 = 0.988051

〈x〉 and 〈x2〉 computed from

xmean = xmean + xtrial ; xxmean = xxmean + xtrial * xtrial ;
...
xmean = xmean / naccept ; xxmean = xxmean / naccept ;
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Metropolis algorithm IV

Typical applications for Metropolis algorithm: computation of integrals with weight functions
p(x) ∼ e−x , e.g.,

〈x〉 =

∫∞
0 xe−xdx∫∞
0 e−xdx

(534)

〈A〉 =

∫
A(~X )e−U(~X )/kBTd ~X∫

e−U(~X )/kBTd ~X
(535)

where the latter is the average of a physical quantity A in a liquid system with good contact to
a thermal bath, fixed number of particles (with ~X = (~x1, ~x2, . . .) of all particles) and volume
→ canonical ensemble, e.g., 〈

mv2ik
2

〉
=

1
2
kBT (536)
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Rejection sampling
(acceptance-rejection method)
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Rejection sampling (acceptance-rejection method) I

Problem: get random x for any p(x), also if P(r)−1 not (easily) computable

Idea:

area under p(x) in [x , x + dx ] is probability of getting x in that range

if we can choose a random point in two dimensions with uniform probability in the area
under p(x), then x component of that point is distributed according to p(x)

so, on same graph draw an f (x) with f (x) > p(x) ∀ x
if we can uniformly distribute points in the area under curve f (x), then all points (x , y)
with y < p(x) are uniform under p(x)
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 0.3

 0.4

 0.5
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Rejection sampling (acceptance-rejection method) II

Creation of arbitrary probability distributions with help of rejection sampling (especially for
compact intervals [a, b]):

let p(x) be the required distribution in [a, b]

choose a f (x) such that p(x) < f (x) in [a, b], e.g., f (x) = c ·max(p(x)) = const. where
c > 1

it is A :=
∫ b
a f (x)dx , i.e. A(x) must exist and must be invertible: A(x)→ x(A)

generate uniform random number in [0,A] and get the corresponding x(A)

generate 2nd uniform random number y in [0, f (x)], so x , y are uniformly distributed on A
(area under f (x))

accept this point if y < p(x), otherwise reject it
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Rejection sampling (acceptance-rejection method) III

Example: normal distribution p(x) sampled by f (x) = (x2 + 1)−1

0

1

2

3

-10 -5 0 5 10

x

y

1st random

from [0, A]

x0

A

f (x0)
2nd random

from [0, f (x0)]

F(x) =
∫ x

−∞ f (x′)dx′

f (x)

p(x)

reject x0

accept x0

1√
2π

e−
x2
2 (blue solid line) sampled with help of the function 1

x2+1 (red dashed) whose integral is
arctan(x) (thick dashed red) and hence F (x)−1 = tan(x), see source code on page 441
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Rejection sampling (acceptance-rejection method) IV

Requirements:

p(x) must be computable for every x in the intervall

f (x) > p(x) → always possible, as
∫ +∞
−∞ p(x)dx = 1 (i.e. A > 1)

to get x0 for a chosen value in [0,A] requires usually:
∫
f (x)dx = F is analytically

invertible, i.e. F (x)−1 exists

→ this is easy for a compact interval [a, b], e.g., choose a c > 1 such
F (x) = c ·max(p(x)) · (x − a) = k(x − a)
→ x = F/k − a for randomly chosen F in [0,A], where A = k · (b − a)
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Rejection sampling (acceptance-rejection method) V

Example: acceptance-rejection for normal distribution (see p. 439)
double p(double x){ return exp(-0.5*x*x)/sqrt(2.*M_PI); }
double f(double x){ return 1./(x*x+1.); }
double inv_int_f(double ax){ return tan(ax - M_PI /2.); }
...

for (int i = 0; i < nmax; ++i){
// get random value between 0 and A:
ax = A * double(rand())/double(RAND_MAX);
// obtain the corresponding x value:
x = inv_int_f(ax);
// get random y value in interval [0,f(x)]:
y = f(x) * double(rand())/double(RAND_MAX);
// test for y =< p(x) for acceptance:
if ( y <= p(x) ) { cout << x << endl ;}

}
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Rejection sampling (acceptance-rejection method) VI

In our example:

it is p(x) = 1√
2π
e−

x2
2 the standard normal distribution; normal distributions with

σ 6= 1, µ 6= 0 can be obtained by transformation

the comparison function f (x) = 1
x2+1 is always f (x) > p(x), moreover:

F (x) =
∫ x

−∞ f (x ′)dx ′ = arctan(x)− arctan(−∞) = arctan(x)−
(
−π2
)

→F (x) = arctan(x) + π
2

the total area A under f (x) is
∫ +∞
−∞ f (x ′)dx ′ = arctan(+∞)− arctan(−∞) = π

the inverse F (x)−1, which returns x for a given value F ∈ [0,A] simply x = tan
(
F − π

2

)
efficiency of the acceptance is Naccepted/NMAX =

∫
p(x)/

∫
f (x) = 1/π ≈ 0.32, i.e. efficiency

can be increased by choosing f (x) = 1
2

1
x2+1 , then x = tan

(
2F − π

2

)
→ 63% acceptance
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Rejection sampling (acceptance-rejection method) VII

Alternative choice I: f (x) = exp(−x) only for x ≥ 0, then

the integral F (x) is
∫
0
x = − exp(−x) + 1

the total area
∫∞
0 exp(−x)dx = 1 > 0.5 =

∫∞
0 p(x)

the inverse is x = − log(−x + 1)

to obtain also negative x → add random sign ±
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Rejection sampling (acceptance-rejection method) VIII

Alternative choice II: f (x) = 1.1 ·max(p(x)) in the compact interval [0, 3], then

 0
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 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

p(x)
f(x)

1.1/sqrt(2.*pi)*x

it is max(p(x)) = 1√
2π

in [0, 3]

→ f (x) = 1.1√
2π

in [0, 3]

hence F (x)−1 is x = F
√
2π

1.1 − 0.
the total area A is 1.1√

2π
· (3− 0)

→ clear: this choice (const. function) works only for compact intervals, otherwise A is infinite
and F (x)−1 does not exist
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Random walk
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Random walk I

Idea: Brownian motion, e.g., dust in water (lab course: determination of diffusion coefficient
D = 〈x2〉

2t , with Fick’s laws of diffusion: j = −D∂xc and ċ = D∂2xc)

frequent collisions between dust particles and water
molecules
→ frequent change of direction
→ trajectory not predictable even for few collisions
→motion of dust particle into any direction with same

probability

→Random walk
like “drunken sailor”: N steps of equal length in arbitrary direction will lead to which distance
from start point?
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Random walk II
In one dimension:

let’s start at x = 0, each step with length `
for each step: probability p for step to the right and q = 1− p to the left (independent
from previous step)
displacement after N steps

x(N) =
N∑
i=1

si where si = ±` → x2(N) =

(
N∑
i=1

si

)2

(537)

for p = q = 1/2 → coin flipping
for large N: 〈x(N)〉 = 0 expected
but for 〈x2(N)〉? → rewrite Eq. (537)

x2(N) =
N∑
i=1

s2i +
N∑

i 6=j=1

si sj (538)

where (for i 6= j) si sj = ±`2 with same probability, so:
∑N

i 6=j si sj = 0
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Random walk III

because of s2i = `2 →
∑N

i=1 s
2
i = N`2:

〈x2(N)〉 = `2N (539)

especially for constant time intervals of the random walk

〈x2(t)〉 =
`2

∆t
N∆t

(
=

`2

∆t
t

)
(540)

generally: if p 6= 1/2 and p for +`

〈x(N)〉 = (p − q)`N (541)

→ linear dependence on N
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Random walk IV

Example: Diffusion of photons in the Sun
Simplification: constant density n, only elastic Thomson scattering (free e−) with (frequency
independent) cross section σTh = 6.652× 10−25 cm2

mean free path length:

` =
1

nσTh
=

(
%

mH
σTh

)−1
(542)

one dimension → only R = R�, total time t = N∆t

⇒ t = 9× 1010 s = 2900 a � tKH(= 3× 107 a)
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Random walk V

Importance of the random walk model

many processes can be described by differential equation similar to diffusion equation (e.g.,
heat equation, Schrödinger equation with imaginary time)

∂p(x , t)

∂t
= D

∂2p(x , t)

∂x2
(543)

with diffusion coefficient D and probability p(x , t)dx to find particle at time t in [x , dx ]
in 3 dimensions: ∂2/∂x2 ≡ ∇2

Moments: mean value of a function f (x)

〈f (x , t)〉 =

∫ +∞

−∞
f (x , t) p(x , t)dx (544)

⇒ 〈x(t)〉 =

∫ +∞

−∞
x p(x , t)dx (545)
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Random walk VI
Compute integral in Eq. (545) →multiply Eq. (543) by x and integrate over x∫ +∞

−∞
x
∂p(x , t)

∂t
dx = D

∫ +∞

−∞
x
∂2p(x , t)

∂x2
dx (546)

left hand side ∫ +∞

−∞
x
∂p(x , t)

∂t
dx =

∂

∂t

∫ +∞

−∞
x p(x , t)dx =

∂

∂t
〈x〉 (547)

right hand side via integration by parts (
∫
g f dx = g F | −

∫
g ′F dx), note that

p(x = ±∞, t) = 0, as well as all spatial derivatives (∂xp(x = ±∞, t) = 0):

D

∫ +∞

−∞
x
∂2p(x , t)

∂x2
dx = Dx

∂p(x , t)

∂x

∣∣∣∣x=+∞

x=−∞
− D

∫ +∞

−∞
1 · ∂p(x , t)

∂x
dx (548)

= 0 − D p(x , t)|x=+∞
x=−∞ = 0 (549)

⇒ ∂

∂t
〈x〉 = 0 (550)

I.e. 〈x〉 ≡ const. for all t. For x(t = 0) = 0 →〈x〉 = 0 for all t.
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Random walk VII

Analogously for 〈x2(t)〉: integration by parts twice

∂

∂t
〈x2(t)〉 = 0 + 0 + 2D

∫ +∞

−∞
p(x , t)dx = 2D (551)

→ 〈x2(t)〉 = 2D t (552)

compare with Eq. (540) 〈x2(t)〉 = `2

∆tN∆t = `2

∆t t
→ random walk and diffusion equation have same time dependence (linear)

(with 2D = `2

∆t )
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Random numbers
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Pseudorandom numbers I

for scientific purposes

fast method to generate huge number of “random numbers”

sequence should be reproducible

→ use deterministic algorithm to generate pseudorandom numbers

Linear congruential method
start with a seed x0, use one-dimensional map

xn = (a xn−1 + c) mod m (553)

with integers: a (multiplier), c (increment), m (modulus)

m largest possible integer from Eq. (553) →maximum possible period is m → obtain
r ∈ [0, 1) by xn/m

real period depends on a, c , m, e.g.,
a = 3, c = 4, m = 32, x0 = 1 → 1, 7, 25, 15, 17, 23, 9, 31, 1, 7, 25, . . . → period is 8 not 32

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 454 / 577



Other sources of random numbers I

Better randomness can be obtained from physical processes:

nuclear decay (real randomness!), e.g, →measure ∆t (difficult to implement)

image noise, thermal noise (Johnson-Nyquist noise), e.g., → darkened USB camera
(simple), special expansion cards with a diode

“activity noise” in Unix:
/dev/random
/dev/urandom

→ random bit patterns from input/output streams (entropy pool) of the computer
/dev/random blocks, if entropy pool is exhausted (since Linux 2.6: 4096 bit, cf.
/proc/sys/kernel/random/poolsize)
urandom uses pseudorandom numbers seeded with “real” random numbers

For readout of Unix random devices need to interpret random bits(!) as numbers
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Other sources of random numbers II

Reading from urandom
E.g., by using fstream and union

ifstream fin("/dev/urandom/") ;
union {unsigned int num ;

char buf[sizeof(unsigned int)]; } u ;
fin.read(u.buf, sizeof(u.buf)) ;
cout << u.num ;

→ fstream reads only char, buf and num are at the same address → read bits in as char
output as unsigned int
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Tests for random numbers I

quality check for uniformly distributed random numbers

equal distribution: random numbers should be fair

entropy: bits of information per byte of a sequence of random numbers (same as equal
distribution)

serial tests: for n-tuple repetitions (often only for n = 2, n = 3)

run test: for monotonically increasing/decreasing sequences, also for length of stay for a
distinct interval

and more . . .

Be careful!
There is no necessary or sufficient test for the randomness of a finite sequence of numbers.

→ can only check if it is “apparently” random
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Correlation tests I

→ testing for “clumping” of numbers

Test for doublets
define a square lattice L× L and fill each cell at random:

array n(x , y) with discrete coordinates

choose random 1 ≤ xi , yi ≤ L where xi , yi consecutive numbers of random number
sequence

fill cell n(xi , yi ) (e.g. set boolean to true)

repeat procedure t · L2 times, t is MC time step

→ similar to nuclear decay, therefore expected:
fraction of empty cells ∝ exp(−t)
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Correlation tests II

Simple correlation test
just plot xi+1 over xi → look for suspicious patterns
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Confidence level I
Testing for randomness (also: numbers or detections)
→χ2 test

let yi the number of events in bin i and Ei the expectation value
e.g., N = 104 random numbers, M = 100 bins →Ei = 100 (numbers/bin)
the χ2 value (with yi measured number of random numbers in bin i):

χ2 =
M∑
i=1

(yi − Ei )
2

Ei
(554)

measures the conformity of the measured and the expected distribution
the individual terms in Eq. (554) should be ≤ 1, so for M terms χ2 ≤ M → reduced χ2 by
deviding by M → “minimum” red. χ2 = 1
e.g., 5 independent runs (each n = 10 000) yield χ2 ≈ 92, 124, 85, 91, 99 → as expected for
equal distribution,
in general: χ2 should be small (but χ2 = 0 is suspicious, e.g., here: N-periodicity in
random numbers?)
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Confidence level II

Confidence
need a quantitative measure that shows normal distribution of the “error” (yi − Ei )
(in particular, we test the hypothesis of uniform distribution) → chi-squared distribution

p(x , ν) =
1

2ν/2 Γ(ν/2)
x (ν−2)/2 e−x/2 (555)

where Γ(z) =

∫ ∞
0

tz−1e−tdt and Γ(z + 1) = z! (556)

→ cumulated χ2 distribution P(x , ν):

P(x , ν) =
1

2ν/2 Γ(ν/2)

∫ x

0
t(ν−2)/2 e−t/2dt (557)

with ν degrees of freedom, here: ν = M − 1 = 99, because of constraint
∑M

i=1 Ei = N
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Confidence level III
chi-square distribution
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Confidence level IV

function Q(x , ν) = 1− P(x , ν)

→ probability that χ2 > x

we want to check: How likely to get a χ2 of, e.g., 124 (our largest measured χ2)?
→ solve Q(x , ν) = q (probability χ2 > x for given x , ν) for x , or look it up in tables
for ν = M − 1 = 99 (e.g.,
https://www.medcalc.org/manual/chi-square-table.php)

x 138.9 134.6 123.2 110.6 98
q 0.005 0.01 0.05 0.2 0.5

for our case: 1 out of 5 runs (20%) had y2 = 124, but Q(x , ν) implies for x = 123 only
5%, i.e., 1 out of 20 runs with χ2 ≥ 123

therefore: confidence level < 95%, rather 80% (because of q = 0.2 for x = 111)

try to increase confidence level: more runs → if still only 1 out 20 with χ2 > 123
→ confidence level at 95%
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MC Error estimation
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Numerical integration and error I

Numerical integration (exact or MC) gives approximation∫ b

a
f (x)dx = Q(f ) + E (f ) (558)

Q(f ) so-called quadrature formula,
E (f ) error → unknown (obvious)

Aim: estimate magnitude of error

so far: error calculated from our knowledge of the exact result
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Numerical integration and error II

Obvious: for constant integrand f is E = 0, i.e. Fn is independent of n (and always the
same)

Idea: try to estimate the error with help of the standard deviation σ:

σ2 = 〈f (x)2〉 − 〈f (x)〉2 (559)

〈f (x)〉 =
1
n

n∑
i=1

f (xi ) (560)

〈f (x)2〉 =
1
n

n∑
i=1

f (xi )
2 (561)

if f constant →σ = 0
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Numerical integration and error III

consider the example f (x) = 4
√
1− x2 with F =

∫ 1
0 f (x)dx = π

Calculate σ for different n (cf. Gould et al. 1996)

Fn n E = |Fn − π| σ

3.271771 101 0.13017 0.78091
3.100276 102 0.04131 0.91441
3.173442 103 0.03185 0.85013
3.135863 104 0.00572 0.90317
3.142189 105 0.00059 0.89051
3.141798 106 0.00020 0.89236

σ almost constant and much larger than E

but: decrease of E from n = 102 to n = 104 by a factor of 10 →∼ 1/n1/2 (?)

therefore: σ says how much f varies in [a, b]
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Numerical integration and error IV

idea: estimate E by several runs α for constant n = 104, each with result Mα:

Mα α E = |F − π| |Mα+1 −Mα|

3.14892 1 0.00735 0.00845
3.13255 2 0.00904 0.01637
3.14042 3 0.00117 0.00787
3.14600 4 0.00441 0.00558
3.15257 5 0.01098 0.00657
3.13972 6 0.00187 0.01285
3.13107 7 0.01052 0.00865
3.13585 8 0.00574 0.00478
3.13442 9 0.00717 0.00143
3.14047 10 0.00112 0.00605

E varies, differences |Mα −Mβ|α 6=β between results comparable with E , therefore:
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Numerical integration and error V
define standard deviation σm of the means:

σ2m = 〈M2〉 − 〈M〉2 (562)

〈M〉 =
1
m

m∑
α=1

Mα → 〈M2〉 =
1
m

m∑
α=1

M2
α (563)

(564)

for the runs 1 till 10 one gets σm = 0.006762 → comparable with E

exact: one run has the chance of 68% that Mα is in in the range π ± σm
however method not very usefull, as several runs are required
actually for large n holds:

σm =
σ√
n − 1

≈ σ√
n

(565)

e.g., for n = 104 is σm = 0.90317/100 ≈ 0.009, i.e., consistent with our estimate
σm = 0.007 and the error E = 0.006

How can we get σ without α runs?
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Numerical integration and error VI

Hence, split one run, e.g., in s = 10 subsets k such that each contains n/s = 1000 trials and
has result Sk

Then, with the mean 〈S〉 from the different runs is also

σ2s = 〈S2〉 − 〈S〉2 (566)

and

σm = σs/
√
s (567)
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Numerical integration and error VII

Derivation/proof:

random variable x

m runs with each n trials (= m × n trials in total)

index α lables a run, i a single trial

result from one run (= measurement):

Mα =
1
n

n∑
i=1

xα,i (568)

the arithmetic mean of all mn trials is:

M =
1
m

m∑
α

Mα =
1
nm

m∑
α=1

n∑
i=1

xα,i (569)
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Numerical integration and error VIII
difference of a one run α and the total mean

eα = Mα −M (570)

Hence the variance (standard deviation2) can be written for the runs as:

σ2m =
1
m

m∑
α=1

(Mα −M)2 =
1
m

m∑
α=1

e2α (571)

Now finding the relation between σm and σ of the individual m × n trials. Difference between
one trial and the the mean of one run:

dα,i = xα,i −M (572)

Therefore the variance for all m × n trials:

σ2 =
1
mn

m∑
α=1

n∑
i=1

d2
α,i (573)
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Numerical integration and error IX

With help of Eq. (572) the Eq. (570) can be rewritten as:

eα = Mα −M =
1
n

n∑
i=1

(
xα,i −M

)
=

1
n

n∑
i=1

dα,i (574)

Insert Eq. (574) into Eq. (571):

σ2m =
1
m

m∑
α=1

(
1
n

n∑
i=1

dα,i

)1
n

n∑
j=1

dα,j

 (575)
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Numerical integration and error X

The products in Eq. (575) consist of terms i = j and terms i 6= j . As the trials are independent
of each other, for large n the differences dα,i and dα,j are on average as often negative as
positive, i.e., the terms i 6= j cancel out on average. What remains are the terms for i = j :

σ2m =
1

mn2

m∑
α=1

n∑
i=1

d2
α,i (576)

By comparison with Eq. (573) for individual variance: σ2 = 1
mn

∑m
α=1

∑n
i=1 d

2
α,i one gets

required variance of runs:

σ2m =
σ2

n
⇒ σm =

σ√
n

(577)

2
→ the standard deviation (= error estimate) scales with 1√

n
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Why Monte-Carlo (integration)?
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Performance of integration techniques I

Already seen: for 1d integration, dependence of truncation error on number of intervals
(∼ samples)

method σ(N)

rectangular rule N−1

trapezoid rule N−2

Simpson’s rule N−4

MC sample-mean method N−1/2

→ for 1d MC sample-mean inefficient integration method
Truncation error derived from Taylor series expansion of integrand f (x):

f (x) = f (xi ) + f ′(xi )(x − xi ) +
1
2
f ′′(xi )(x − xi )

2 + . . . (578)∫ xi+1

xi

f (x)dx = f (xi )∆x +
1
2
f ′(xi )(∆x)2 +

1
6
f ′′(xi )(∆x)3 + . . . (579)
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Performance of integration techniques II
For the rectangular rule (f (xi )∆x), error ∆i in leading order for [xi , xi+1] is

∆i =

[∫ xi+1

xi

f (x)dx

]
− f (xi )∆x ≈ 1

2
f ′(xi )(∆x)2 (580)

→ error per interval; as there are N intervals in total and ∆x = (b − a)/N → total error for
rectangular rule N ∆i ∼ N (∆x)2 ∼ N(b−aN )2∼ N−1

Analogously for trapezoid rule, where we estimate f (xi+1) by Eq. (578):

∆i =

[∫ xi+1

xi

f (x)dx

]
− 1

2
[f (xi ) + f (xi+1)]∆x (581)

=

[
f (xi )∆x +

1
2
f ′(xi )(∆x)2 +

1
6
f ′′(xi )(∆x)3 + . . .

]
(582)

− 1
2

∆x

[
f (xi ) + f (xi+1) + f ′(xi )∆x + f ′(xi+1)∆x +

1
2
f ′′(xi )(∆x)2 + . . .

]
(583)

≈− 1
3
f ′′(xi )(∆x)3 → total error ∼ N−2 (584)
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Performance of integration techniques III

For Simpson’s rule f (x) is approximated as parabola on [xi−1, xi+1] → terms ∼ f ′′ cancel,
moreover because of symmetry terms ∼ f ′′′(∆x)4 cancel → error for interval [xi , xi+1] is
∼ f (4)(xi )(∆x)5 and total error for [a, b] is ∼ N−4

Integration error in 2d
extend previous estimates for rectangular rule in 2d, so for f (x , y): integral → sum of volumes
of parallelograms with cross section area ∆x∆y and height f (x , y) at one corner
Taylor series expansion of f (x , y)

f (x , y) = f (xi , yi ) +
∂f (xi , yi )

∂x
(x − xi ) +

∂f (xi , yi )

∂y
(y − yi ) + . . . (585)

∆i =

[∫ ∫
f (x , y)dxdy

]
− f (xi , yi )∆x∆y (586)
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Performance of integration techniques IV

Now, substitute Taylor expansion Eq. (585) into error estimate Eq. (586), integrate each term
→ term ∼ f cancels out
and

∫
(x − xi )dx = 1

2(∆x)2 →
∫
dy gives another factor ∆y ; similar for (y − yi )

As O(∆y) = O(∆x), error for interval [xi , xi+1] and [yi , yi+1] is

∆i ≈
1
2

[f ′x(xi , yi ) + f ′y (xi , yi )](∆x)3 (587)

→ error for one parallelogram ∼ (∆x)3, for N parallelograms N · (∆x)3

But in 2d: N = A/(∆x)2

→ total error N(∆x)3 = N A3/2N−3/2 ∼ N−1/2 (whereas in 1d: N−1)
Analogously for trapezoid rule in 2d: N−1, for Simpson’s rule in 2d: N−2

In general: if in 1d integration error ∼ N−p

→ integration error in d dimensions ∼ N−p/d (curse of dimensionality)
In contrast: MC integration error ∼ N−1/2 independent of d → superior for large d
(think about integrals

∫
V

∫
Vp

f dp3dx3 in statistical mechanics)
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How to integrate in higher dimensions I

Integrals of functions of more than 1 variable, over regions with d > 1, are difficult!
1 function evaluation: if n function calls required for some accuracy in 1d →∼ nd samples

needed for d dimensions (e.g., 30 calls in 1d vs. approx. 30 000 in 3d)
2 integration region in d dimensions defined by d − 1 dimensional boundary → can be very

complicated for d > 1 (e.g. not convex, not simply connected)

Ad 1.) → try to reduce integral to lower dimensions by exploiting symmetry of function and
boundary and changing coordinates. E.g., spherically symmetric function over spherical region
→ in polar coordinates 1d integral
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How to integrate in higher dimensions II

Example: PoWR code for expanding atmospheres

non-LTE (i.e. ~n( ~J) from statistical equations + ALI
→Newton’s method) radiative transfer in wind (i.e.
CMF RT with Mio. of frequency points K , coarsend
~J(~n) for ~n →K ≈ 1000) → iteratively solved
assuming spherical symmetry with, e.g., ND = 50
depth-points, typically for each iteration ≈ 5 s, in
total ≈ 1000 iterations →∼ h
in 3D: 2500 × more “depthpoints” → each iteration
now 3.5 h (!) → total 1

2 a
z

p

r1 = RMAX

r2

rND = 1

For each depthoint: Solve nP = 0 where Pii := −
∑n

j 6=i Pij with n ∼ 500
+ radiative transfer (see sketch)
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How to integrate in higher dimensions III

Ad 2.)

if boundary complicated, integrand not strongly peaked in very small regions, relatively low
accuracy required →MC integration! (see below)

if boundary simple, smooth integrand, (+ high accuracy required) → repeated 1d integrals
or multidimensional quadrature

if integrand peaks in certain regions → split integral into several “smooth” regions (requires
knowledge of behaviour of integrand)
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How to integrate in higher dimensions IV

Repeated 1d integration

Let d = 3 with x , y , z and boundaries [x1, x2], [y1(x), y2(x)], [z1(x , y), z2(x , y)] → find x1, x2
and functions y1(x), y2(x), z1(x , y), z2(x , y) such that∫ ∫ ∫

dx dy dz f (x , y , z) =

∫ x2

x1

dx

∫ y2(x)

y1(x)
dy

∫ z2(x ,y)

z1(x ,y)
dz f (x , y , z) (588)

Example: 2d integral over circle with radius R centered on (0, 0)

∫ x2=+R

x1=−R
dx

∫ y2(x)=
√
R−x2

y1(x)=−
√
R−x2

dy f (x , y) (589)

Note that Fubini’s theorem for iterated integrals assumes that the integrand is absolutely integrable:∫ ∫
|f (x , y)|dx dy < +∞.
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How to integrate in higher dimensions V

Innermost integration over z yields a function G (x , y):

G (x , y) :=

∫ z2(x ,y)

z1(x ,y)
f (x , y , z) dz (590)

then intgration over y yields H(x):

H(x) :=

∫ y2(x)

y1(x)
G (x , y) dy (591)

finally the overall integral I is

I =

∫ x2

x1

H(x) dx (592)
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How to integrate in higher dimensions VI

y

x

inner integration

o
u

te
r 

in
te

g
ra

ti
o

n instead of using fixed Cartesian mesh of points,
better evaluate function at suitable x locations
(along y -axis), while inner integration (over y)
chooses suitable y values;
→ inner integration call (over y) many more
times than outer integration (over x)

Implementation of Eq. (590)-(592) requires 3 separate copies of some 1d integration routine, so
one for each x , y , z integration or recursive calls of the same routine
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How to integrate in higher dimensions VII

Example: Fortran sniplet for 3d iterated integration

! identical copies quadx, quady, quadz
! of 1d-integration routine;
! user provides func(x,y,z), y1(x),
! y2(x), z1(x,y), z2(x,y) as in Eq. (588)

SUBROUTINE quad3d(x1, x2, ss)
REAL ss, x1, x2, h
CALL quadx(h, x1, x2, ss)
RETURN
END

FUNCTION f(zz)
REAL f, zz, func, x, y, z
COMMON /xyz/ x, y, z
z = zz
f = func(x, y, z)
RETURN
END

FUNCTION g(yy)
REAL g, yy, f, z1, z2, x, y, z
COMMON /xyz/ x, y, z
REAL ss
y = yy
CALL quadz(f, z1(x,y), z2(x,y), ss)
g = ss
RETURN
END

FUNCTION h(xx)
REAL h, xx, g, y1, y2, x, y, z
COMMON /xyz/ x, y, z
REAL ss
x = xx
CALL quady(g, y1(x), y2(x), ss)
h = ss
RETURN
END
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MC integration in higher dimensions I

Example: Mass and center of mass of cut torus
Section of a torus with radius R and cross section radius r

z2 + (
√
x2 + y2 − R)2 ≤ r (593)

section defined by

x ≥ a y ≥ b (594)

Need to evaluate following integrals

M =

∫
ρ dx dy dz Mx =

∫
xρ dx dy dz (595)

My =

∫
yρ dx dy dz Mz =

∫
zρ dx dy dz (596)

i.e., x-coordinate of center of mass is x = Mx/M and so on
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MC integration in higher dimensions II

MC integration for a torus (centered on origin,
outer radius = 4, inner radius = 2) section,
where x ≤ 1 and y ≤ −3, i.e., bounds given by
intersection of two planes. Integration limits
cannot be easily given in analytically closed
form

0 2 4

2

4

y

x 
1

from Press et al. (2007)

Choose region that encloses torus section, e.g, rectangular box with 1 ≤ x ≤ 4, −3 ≤ y ≤ 4,
and −1 ≤ z ≤ 1, hence total volume of box is V = 3 ∗ 7 ∗ 2
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MC integration in higher dimensions III

Example: C/C++ sniplet for MC integration of torus section
int N = 1000 ; // sample points
double V = 3. * 7. * 2. ; // sample volume
double den = 1. ; // density rho
double sw = 0., varw = 0. ; // mass and variance
double swx = 0., varx = 0. ; // x-coordinate and var. for center of mass
...

for (i = 0 ; i < N ; ++i) {
x = 1. + 3. * rand()/double(RAND_MAX) ; // cut of torus
y = -3. + 7. * rand()/double(RAND_MAX) ; // cut of torus
z = -1. + 2. * rand()/double(RAND_MAX) ;
if ( pow(z*z + (sqrt(x*x + y*y) -3. ), 2.) <= 1. ) {
sw = sw + den ; varw = varw + den*den ;
swx = swx + x * den ; varx = varx + (x*den)*(x*den) ;
...

} }
w = V * sw / N ; // mass of torus
x = V * swx / N ; // x-coordinate
dw = V * sqrt((varw / N - (sw/N)*(sw/N)) / N) ; // error estimate mass
dx = V * sqrt((varx / N - (swx/N)*(swx/N)) / N) ; // error estimate x-coordinate
...
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MC integration in higher dimensions IV

Conclusions about advantage of MC integration
1 MC integration error decreases independent of dimension with ∼ N−1/2 → superior for

integrals with many integration variables (e.g., phase space integrals, QM)
2 MC integration easy to implement for any geometry → superior for 3d models without

simple symmetry (e.g., spherical symmetry)
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Techniques of MC parallelization
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Neutron transport with packets I

So far: single neutron n0

Improvement/speed up: consider “neutron packets”, i.e. we follow an ensemble of neutrons
(which advances with random `, cos θ as before)
→ determine fraction of the scattered and captured neutrons

1. scattering: fraction of scattered n0: ps, fraction of absorbed n0: pc

2. scattering: fraction of scattered n0: p2
s , fraction of absorbed n0: pcps

mth scattering fraction of scattered n0: pms , fraction of absorbed n0: pcp
m−1
s

so, after mth scattering:
→ total fraction of captured neutrons:
fc = pc + pcps + pcp

2
s + . . .+ pcp

m−1
s

→ total fraction of scattered neutrons:
fs = pms
→ if position x < 0: add fs to frefl
→ if position x > t: add fs to ftrans
→Note: requires normalization of the fractions afterwards
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Neutron transport with packets II

→ see: Lucy (2002): “Monte Carlo transition probabilities”

instead of individual photons, use energy packets of photons of same frequency ν
(ε(ν) = nhν), packets always have same energy ε0 → different n

elastic scattering (e.g., Thomson, resonance): νe = νa

absorption leads to re-emission following: ε(νe) = ε(νa), no packet (= energy) lost or
created → divergence-free radiation field

macro-atoms with discrete internal states, activation via r-packet (radiative) of appropriate
CMF frequency or k-packet (kinetic); active macro-atom performs internal transitions and
gets inactive by emission of r- or k-packet
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Neutron transport with packets III

→ see Šurlan et al. (2012): “Three-dimensional radiative transfer in clumped hot star winds. I.
Influence of clumping on the resonance line formation”
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Parallelization
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Parallelization

Many runs in MC simulations required for reliable conclusions (σ ∼ 1√
N
)

Often: Result of one run (e.g., path of a neutron through a plate) independent from other runs

→ Idea: acceleration by parallelization
Problem: concurrent access to memory resources, i.e. variables (e.g., ns, frefl)
Solution: special libraries that enable multithreading (e.g., OpenMP) or multiple processes

(e.g., MPI) for one program

→ insert: pipelining, vectorization, parallelization

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 496 / 577



CPU Performance

What influences the performance of a CPU (= runtime of your code)?
architecture/design: out-of-order execution (all x86 except for Intel Atom), pipelining
(stages), vectorization units (width)
cache sizes (kB . . .MB) and location: L1 cache for each core, L3 for processor
clock rate (∼GHz): only within a processor family usable for comparison due to different
number of instruction per clock (IPC) of design, even more complicated because of
variable clock rates (base, peak) to exploit TDP (thermal design power)
→ impact on single-thread performance
number of cores (1 . . . ): → impact on multi-thread performance
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Pipelining I

splitting machine instruction into a sequence

independent execution of instructions, each
consisting of

instruction fetching (IF)
instruction decoding (ID) + register fetch
execution (EX)
write back (WB)

operations of instructions are processed at the
same time → quasi parallel execution, higher
throughput

Waiting
instructions

Stage 1: Fetch

Stage 2: Decode

Stage 3: Execute

Stage 4: Write-back

P
ip

e
lin

e

Completed
instructions

0 1 2 3 4 5 6 7 8

Clock cycle

By en:User:Cburnett - Own workThis vector image was created with Inkscape., CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=1499754
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Pipelining II

NetBurst disaster
Pentium 4 (2000-2008) developed to achieve > 4GHz (goal: 10 GHz) clockrate by several
techniques, i.a., long pipeline:

20 stages (Pentium III: 10) up to 31 stages (Prescott core)
smaller number of instructions per clock (IPC) (!)
increased branch misprediction (also only 10%, improved by 33% for Pentium III)
larger penalty for misprediction

→ compensated by higher clock rate
higher clock rate → higher power dissipation, especially for 65 (Presler, Pentium D), 90
(Prescott) up to 180 nm (Williamette) structures
→ power barriere at 3.8 GHz (Prescott)
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SSE and AVX I
D

a
t
a
 P

o
o
l

Instruction Pool

PU

PU

PU

PU

SIMD

SSE - Streaming SIMD Extensions
(formerly: ISSE - Internet SSE)
SIMD - Single Instruction Multiple Data (
→ cf. Multivec, AMD3Dnow!),
introduced with Pentium III (Katamai,
Feb. 1999)
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SSE and AVX II

enables vectorization of instructions (not to be confused with pipelining or parallelization),
often new, complex machine instructions required,
e.g., PANDN → bitwise NOT + AND on packed integers

comprises 70 different instructions, e.g., ADDPS – add packed single-precision floats (two
“vectors” each with 4 32 bit) into a 128 bit register

works with 128 bit registers (3Dnow! only 64 bit), but first execution units (before Core
architecture) only with 64 bit

AVX - Advanced Vector Extensions with 256 bit registers, theoretically doubled speed!
since Sandy Bridge (Intel Core 2nd generation, e.g., i7-2600K) and Bulldozer (AMD)
→AVX-512 with 512 bit registers in Skylake (6th generation, e.g., Core i7-6700); AMD
Zen 4
Note: AVX-512 instructions may reduce the clockrate on Intel CPUs (heat limit)
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SSE and AVX III

supported by all common compilers, e.g.,
ifort -sse4.2
ifort -axcode COMMON-AVX512
g++ -msse4.1
g++ -mavx512f

very easy (automatic) and efficient optimization, e.g., for unrolled loops → vectorization

Caution!
Different precisions for SSE-doubles (e.g., 64 bit) and FPU-doubles (80 bit), especially for
buffering, so results of doubles, e.g.,
xx = pow(x,2) ;
sqrt( xx - x*x) ;
usually not predictable
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Multi-cores

Mulit-cores
originally one core per processor, sometimes several processors per machine/board
(supercomputer)
many units, e.g., arithmetic logic unit (ALU), register, already multiply existing in one
processor
first multi-core processors: IBM POWER4 (2001);
desktop → Smithfield (2005), e.g., Pentium D
Hyper-threading (HT): introduced in Intel Pentium 4 → for better workload of the
computing units by simulation of another, logical processor core (compare: AMD
Bulldozer design with modules)
today: up to 64 cores for desktop (AMD Zen: Ryzen Threadripper 5995WX, TDP 280W)
or 96 for servers (e.g., AMD EPYC 9654, TDP 360W – even 2 CPUs per board)
+ Hyperthreading
arms race of cores instead of clock rate (NetBurst disaster)
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Multi-cores and compilers

Acceleration by parallelization

parallelization done, e.g., by multithreading (from thread)
for shared memory (RAM on one “node”, usually on one mainboard)
“The free lunch is over” → no simple acceleration more of single-thread programs by pure
increase of clock rate (exceptions: Turbo Boost, Turbo Core, in some ways larger caches
may help)
multithreading supported by, e.g., OpenMP (shared memory), see below
different from: multiprocessing parallelization via MPI (Message Passing Interface)
→ distributed computing (cf. Co-array Fortran) but can be combined: MPI + OpenMP;
usually: MPI more complicated (and slower) than OpenMP → trend for “larger nodes”
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GPGPU

General-purpose computing on graphics processing units → further development of graphic
cards

e.g., Nvidia (Tesla, Fermi); AMD (Radeon Instinct)
→Frontier (USA, 1st since June 2022 in Top500) with 9 472 nodes (each with
AMD-EPYC-7A53 64core CPU + 4 GPU MI250X x2) reaches 1.1 ExaFLOPS (for
comparison: 24 core desktop CPU ≈ 8TeraFLOPS → 7× 10−6 of Frontier)
so-called shaders → highly specialized ALUs, often only with single precision (opposite
concept: Intel’s Larrabee)
programming (not only graphics) via CUDA (Nvidia) or OpenCL (more general)
OpenCL → parallel programming for arbitrary systems, also NUMA (non-uniform memory
access), but very abstract and complex concept and also complicated C-syntax
CUDA support, e.g., by PGI Fortran compiler → simple acceleration without code
modifications
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OpenMP
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OpenMP - Intro and Syntax I

OpenMP - Open Multi-Processing

for shared-memory systems (e.g., multi core) per node

directly available in g++, gfortran, and Intel compilers

insertion of so-called OpenMP (pragma) directives :

Example: for loop
C++
#include <omp.h>
...

#pragma omp parallel for
for (int i = 1 ; i <= n ; ++i)
{ ... }

Fortran
USE omp_lib ! ifort declarations

!$OMP PARALLEL DO
DO i = 1, n
....

ENDDO
!$OMP END PARALLEL DO

instructs parallel execution of the for loop, i.e., there are copies of the loop (different
iterations) which run in parallel
→ only the labeled section runs in parallel
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OpenMP - Intro and Syntax II

→ pragma directives are syntactically seen comments, i.e., invisible for compilers without
OpenMP support

realization during runtime by threads

number of used threads can be set, e.g., by environment variable

export OMP_NUM_THREADS=4 # bash
setenv OMP_NUM_THREADS 4 # tcsh

→ obvious: per core only one thread can run at the same time (but: Intel’s
hyper-threading, AMD’s Bulldozer design) → in HPC often reasonable:

number of threads = number of physical CPU cores

Caution!
Distributing and joining of threads produces some overhead in CPU / computing time (e.g.,
copying data) and is therefore only efficient for complex tasks within each thread. Otherwise
multithreading can slow down program execution.
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OpenMP - Intro and Syntax III

Including the OpenMP library:

C++

#ifdef _OPENMP
#include <omp.h>
#endif

Fortran

! only needed for declaration of
! OMP functions etc. with ifort:
!$ use omp_lib

→ instructions between #ifdef _OPENMP and #endif (Fortran: following !$) are only
executed if compiler invokes OpenMP

Compile with
g++ -fopenmp
icpx -qopenmp (deprecated: -openmp)

gfortran -fopenmp
ifort -qopenmp (deprecated: -openmp)
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OMP functions

Useful: functions specific for OpenMP, e.g., for number of available CPU cores, generated
(maximum) number of threads, and current number of threads:

omp_get_num_procs() // number of (logical) processor cores
omp_get_max_threads() // max. number of (automatic) generated threads
omp_get_num_threads() // number of current threads
omp_get_thread_num() // number of the current thread

Join-fork model:
thread that executes
parallel directive
becomes master of
thread group with ID= 0

Master Thread

Master Thread Thread 1 Thread n -1

Master Thread

...
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OMP – Access to variables: shared and private I

Very important: organization of the accessibility of the involved data, i.e. assign attributes
shared or private to thread variables

shared
→ default for variables declared outside the parallel section
data are visible in all threads and can be modified (concurrent access)

int sum = 0 ;
#omp pragma parallel for
for (int k = kmax ; k > 0 ; --k) {

sum += k ; // sum is implicitly shared

NSUM = 0
!$OMP PARALLEL DO

DO K = KMAX, 1, -1
NSUM = NSUM + K ! NSUM is implicitly shared
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OMP – Access to variables: shared and private II

in contrast to:

private
each thread has its own copy of the data, which are invisible for other threads, especially from
outside of the parallel section.
Loop iteration variables are private by default and should be declared in the loop header for
clarity:

#omp pragma parallel for
for (int k = kmax ; k > 0 ; --k) // k is implicitly private

!$OMP PARALLEL DO
DO K = KMAX, 1, -1 ! K is implicitly private

Moreover, there are further so-called data clauses, e.g., firstprivate (initialization before
the parallel section), lastprivate (last completed thread determines the value of the variable
after the parallel section) and many more . . .
→This is the complicated part of OpenMP!
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OMP – Access to variables: shared and private III

Example private
C++:
int j, m = 4 ;
#pragma omp parallel for private (j)
for (int i = 0 ; i < max ; i++) {

j = i + m ;
... ;

}

Fortran:
INTEGER :: j, m

!$OMP PARALLEL DO PRIVATE (j)
DO i = 0, max

j = i + m
...

ENDDO
!$OMP END PARALLEL DO

→ loop variable i and explicitly private variable j as “local” copies in each thread
→ variable m implicitly shared (be careful in Fortran because of implicit declarations within, e.g. loops)
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OMP – critical and reduction I

General form of OpenMP directive for parallelization:

#pragma omp parallel
→ parallel section also possible without a loop, section is executed per thread
(in C/C++: { } block required for multiple commands):

C++:

#pragma omp parallel
{
cout << "Hi!" ;
cout << endl ;

}

Fortran:

!$OMP PARALLEL
print *, "Hi!"

!$OMP END PARALLEL
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OMP – critical and reduction II

#pragma omp critical
→within a parallel section
is executed by each thread, but never at the same time (avoiding race conditions for shared
resources)

C++:

#pragma omp critical
{

WDrawPoint(myworld, x, y, c) ;
}

Fortran:

!$OMP CRITICAL
CALL PGDRAW (x, y)

!$OMP END CRITICAL
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OMP – critical and reduction III

Example: critical access to an array
C++:

#pragma omp parallel for private (j)
for (int i = 0 ; i < nymax ; ++i) {

for (j = 0 ; j < nxmax ; ++j ) {
...
#pragma omp critical
subset[i][j] = result ;

}
}

Fortran:

!$OMP PARALLEL DO private (j)
DO i = 0, nymax - 1

DO j = 0, nxmax - 1
...

!$OMP CRITICAL
subset(i,j) = result

ENDDO
ENDDO

→ critical forces threads to queue, hence slows down execution, better: if possible, use
reduction clause:
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OMP – critical and reduction IV
#pragma omp parallel reduction (operator:list of variables)
The reduction clause defines corresponding (scalar) variables in a parallel section.

Example: summing up with reduction
C++:

#pragma omp parallel for \
private(x) reduction(+:sum_this)

for (int i = 1; i <= nmax ; i++) {
x = 0.01 / (i + 0.5) ;
sum_this += x ;

}

Fortran:

!$OMP PARALLEL DO PRIVATE(x)
!$ > REDUCTION(+:sum_this)

DO i = 1, nmax
x = 0.01 / (i + 0.5)
sum_this = sum_this + x

ENDDO

There are a number of allowed operators for reduction, e.g.:
operator meaning data type neutral element / initial value

+,- sum int, float 0
* product int, float 1
& bitwise and int all bits 1

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 517 / 577



Syntax II

Heads up! OpenMP needs clear syntax for loop parallelization:

for (int i = 0 ; i < n ; i++)

make sure that your loop has canonical loop form, especially the loop iteration variable (here:
i) is integer as well as variables used for comparison (here: n). OpenMP is very picky and
might otherwise (e.g., if n is float) stop compilation:
error: invalid controlling predicate.

Note that omp parallel for / OMP PARALLEL DO is the contracted form of

C++:
#pragma omp parallel
{
#pragma omp for
for ( ... ) {
...

}
}

Fortran:
!$OMP PARALLEL
!$OMP DO

...
!$OMP END DO
!$OMP END PARALLEL
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OMP – Scheduling I

schedule(runtime)
Examples:
#pragma omp parallel for schedule (runtime)

→way of distributing the parallel section to threads is defined at runtime, e.g., by (bash)

export OMP_SCHEDULE "dynamic,1"

→ each thread gets a chunk of size 1 (e.g., one iteration) as soon as it is ready

export OMP_SCHEDULE "static"

→ the parallel section (e.g., loop iterations) is divided by the number of threads (e.g., 4)
and each thread gets a chunk of the same size

→ static is the default
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OMP – Performance and infos

Useful for performance measurement:

omp_get_wtime() // → returns the so-called wall clock time (not the cpu time)

omp_get_thread_num() // → returns the number of the current thread

Weblinks:
http://www.openmp.org/
especially the documentation of the specifications:
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
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Matrices and Linear Algebra
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Matrices in physics I

Methods to solve matrix problems (e.g., inversion) useful for ODEs and PDEs, e.g., eigenvalue
problem or radiative transfer with Feautrier scheme

Example: Vibrational spectrum of a molecule 1
n degrees of vibrational freedom → potential energy

U(q1, q2, . . . , qn) ' 1
2

n∑
j,k

Ajkqjqk (597)

in generalized coordinates around equilibrium state up to 2nd order term, coupling/potential parameter
Ajk (e.g., spring constant).
Kinetic energy with generalized mass Mjk

T (q̇1, q̇2, . . . , q̇n) ' 1
2

n∑
j,k

Mjk q̇j q̇k (598)
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Matrices in physics II

Example: Vibrational spectrum of a molecule 2
Apply Lagrange equation of 2nd kind

∂L
∂qj
− d

dt

∂L
∂q̇j

= 0 with L = T − U (599)

Hence, equations of motion, for k = 1, . . . , n:
n∑

j=1

(Ajkqj + Mjk q̈j) = 0 (600)

Assume an oscillatory motion qj = xj e
ıωt → d2

dt2 (xj e
ıωt) = −xjω2 eıωt

→
n∑

j=1

(Ajk −Mjkω
2)xj = 0 or with k = 1, . . . , n : Ax = ω2Mx (601)

set of linear homogenous equations. Nontrivial solution → determinant of coefficient matrix !
= 0

→ωk =
√
λk (k = 1, . . . , n) from equation

det(A− λM) = 0 (602)
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Matrix operations I

Matrix A with elements Aij and i = 1, 2, . . . ,m and j = 1, 2, . . . , n →m × n matrix.

n columns →


m A11 A12 . . . A1n
rows A21 . . .
↓ . . .

Am1 Amn

If m = n → square matrix
Remember: Computer stores array in memory sequentially (1d), for C/C++ stored by rows
(last index runs first)

A11,A12, . . . ,A1n,A21, . . . ,Amn (603)

whereas for Fortran stored by column (first index runs first):

A11,A21, . . . ,Am1,A12, . . . ,Amn (604)
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Matrix operations II

Variable array x = (x1, x2, . . . , xn): n × 1 matrix. Hence set of linear equations for
i = 1, 2, . . . , n, where xi is unknown:

Ai1 x1 + Ai2 x2 + . . .+ Ain xn = bi (605)

with coefficients Aij and constants bi , so express Eq. (605) in matrix form

Ax = b (606)

with Ax from standard matrix multiplication for C = AB, i.e.

Cij =
∑
k

AikBkj (607)

(number of columns of A !
= number of rows of B)
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Matrix operations III

Example: Population numbers from statistical equilibrium (non-LTE)
“inflow” to level nj (from all other levels) balanced by “outflow” from level nj (to all other levels)

N∑
i=1
i 6=j

niPij =
N∑
i=1
i 6=j

njPji ∀ j = 1, . . . ,N (608)

n P = 0 with Pii := −
∑
j 6=i

Pij (609)

Remember definitions: Inverse of a matrix A is A−1:

A−1A = AA−1 = I (610)

with Iij = δij .
The transpose of a matrix AT is with column and row indices of A interchanged

AT
ij = Aji (611)
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Matrix operations IV

Trace of A (Tr A) is summation of diagonal elements of A

Tr A =
n∑

i=1

Aii (612)

The determinant of square matrix A

det(A) =
n∑

i=1

(−1)i+jAij det(R ij) (613)

where R ij is residual matrix of A with ith row and jth column removed (→ recursive
computation)

e.g., det

(
A11 A12
A21 A22

)
= A11A22 − A12A21 (614)
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Matrix operations V

Important properties of the determinant:
Determinant of a 1× 1 matrix = element itself.
Determinant of a triangular matrix (lower or upper) is the product of diagonal elements:
det(A) =

∏n
i=1 Aii

det(BA) = det(B) · det(A) (if both n × n)
det(A−1) = 1

det(A) → integer entries for A and A−1 ⇔ det(A) = ±1

det(AT ) = det(A)

The determinant is an n-linear function of the n columns (rows). It is moreover an
alternating form. Together with det(AT ) = det(A), this means:
Interchanging any pair of columns or rows of a matrix multiplies its determinant by -1.

Inverse of A via (Cramer’s rule)

A−1ij = (−1)i+j det(R ij)

det(A)
(615)

→ if A−1 exists or det(A) 6= 0 → nonsingular matrix, singular otherwise ().
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Matrix operations VI

Examples for singular / non-singular (=regular) matrices:

the matrix

A =

(
1 2
2 3

)
(616)

is non-singular, its determinant is det(A) = −1 and its inverse is

A−1 =

(
−3 2
2 −1

)
(617)
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Matrix operations VII

the matrix

B =

(
1 2
0 0

)
(618)

is singular, its determinant is det(A) = 0 and there exists no inverse

B ·M =

(
1 2
0 0

)
·
(

a b
c d

)
=

(
1a + 2c 1b + 2d

0 0

)
6= I (619)

the matrix

C =

(
1 2
2 4

)
(620)

is singular, its determinant is det(A) = 0, as two of its lines are linearly dependent
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Matrix operations VIII

Moreover, it can be useful to perform the following transformations, represented by a matrix
multiplications : A′ = MA

1 interchanging two rows i and j , elements: Mij = 1;Mji = 1;Mkk = 1 for k 6= i , j other
elements = 0 → det(M A) = − det(A)

2 multiply one row by λ: Mkk = 1 for k 6= i ;Mii = λ 6= 0, all other elements = 0
→ det(M A) = det(M) det(A) = λ det(A)

3 add a row (or column) to another row (or column) multiplied by a factor λ:
Mii = 1, Mij = λ, Mkl = 0. This can be also be written as

A′ij = Aij + λAkj for j = 1, 2, . . . , n (621)

and i and k are row indices, which can be the same. The determinant is preserved
det(A′) = det(A).

→ see below for Gaussian elimination and matrix decomposition
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Eigenvalue problems I

The matrix eigenvalue problem is for a given matrix A

Ax = λx (622)

with eigenvector x and corresponding eigenvalue λ of the matrix.
Also for the example of the vibrating molecules:

Ax = ω2Mx | B := M−1A (623)

→ Bx = ω2x (624)
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Eigenvalue problems II

→Matrix eigenvalue problem = linear equation set problem
→ e.g., iterative solution

Axn+1 = λnxn (625)

Moreover, the eigenvalues are preserved under a similarity transformation with a non-singular
matrix S

B = S−1AS (626)
→ B y = λy ⇔ Ax = λx for x = Sy (627)

→ det(B) = det(A) =
n∏

i=1

λi (628)

→ computation of eigenvalues & eigenvectors usually complicated . . .
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Systems of linear equations – Direct methods I

The general problem:

Ax = b (629)

where matrix A and vector b given and vector x unknown.
Straightforward solutions:

Cramer’s rule:

xi =
det(Ai )

det(A)
(630)

where in Ai the i-th column is replaced by b
→ for a system of n equations: need to compute n + 1 determinants, each of order n (see
above), i.e., compute n! terms each with (n − 1) multiplications
→ (n + 1)× n!× (n − 1) multiplications,
e.g., for n = 20 → 1021 multiplications and for a computer with, e.g., 10 TFLOPS
→ t ≈ 3 a only for multiplications (also note large accumulation of roundoff error)
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Systems of linear equations – Direct methods II

find the inverse A−1

x = A−1b (631)

→ also time-consuming and instable, e.g., (n = 1, float)

7x = 21 (632)

x =
21
7

= 3 (direct division) (633)

x = (7−1)(21) (compute inverse) (634)
= (.142857)(21) = 2.999997 (less accurate) (635)

computation of the inverse, e.g., via Cramer’s rule (see above) or

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 535 / 577



Systems of linear equations – Direct methods III

with Gauß-Jordan elimination (see below) for system AA−1 = I :a11 . . . a1n
...

...
an1 . . . ann

 ·
â11 . . . â1n

...
...

ân1 . . . ânn

 =

1 0
. . .

0 1

 (636)

hence, the j-th column of the inverse âj = (â1j , â2j , . . . , ânj)
T is solution of the system of

linear equations

A · âj = ej (637)

These equations are solved simultaneously by extending matrix A with I :

(A | I ) =

 a11 . . . a1n 1 0
...

...
. . .

an1 . . . ann 0 1

 (638)
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Systems of linear equations – Direct methods IV
→ elementary row operations →matrix A into upper triangular form (forward elimination)

(D |B ) =

 ∗ . . . ∗ ∗ . . . ∗
. . .

...
...

...
0 ∗ ∗ . . . ∗

 (639)

→ if no zeros on diagonal → invertible, bring into diagonal form:

( I |A−1 ) =

 1 0 â11 . . . â1n
. . .

...
...

0 1 ân1 . . . ânn

 (640)

or compute inverse with characteristic polynomial:

A−1 =
−1

det(A)

(
α1In + α2A + . . .+ αnA

n−1) (641)

where the coefficients of the chracteristical polynomial of A can be obtained from
χ(t) = det(tI − A) = α0 + α1 · t1 + . . .+ αn · tn
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Gaussian elimination I

Matrix problems can be easily solved for an upper (lower) triangular matrix, for which elements
below (above) the diagonal = 0,


R11 R12 . . . R1n
0 R22 . . . R2n

. . .
0 0 . . . Rnn

 ·


x1
x2
. . .
xn

 =


c1
c2
. . .
cn

 (642)

via backward (forward) substitution, i.e. starting with xn = cn/Rnn and

xi =
ci −

∑n
j=i+1 Rijxj

Rii
for i = n − 1, . . . , 1 (643)

→ need algorithms for transformation into triangular form
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Gaussian elimination II

Gaussian elimination

1. Forward elimination: Transform linear equation set Ax = b by a sequence of matrix
operations j from original matrix A = A(0) to A(j), hence after n − 1 steps for a n × n matrix

A(n−1)x = b(n−1) (644)

where A
(n−1)
ij = 0 for i > j :

1 multiply 1st equation (1st row A and b
(0)
1 ) by −A(0)

i1 /A
(0)
11 and add to ith equation (row)

for i > 1 → 1st element of every row except 1st row eliminated →A(1)

2 multiply 2nd equation by −A(1)
i2 /A

(1)
22 and add to ith equation for i > 2 → 2nd element of

every row except 1st & 2nd row eliminated →A(2)

3 . . .
4 upper triangular matrix A(n−1)

2. backward substitution according to Eq. (643)
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Gaussian elimination III

ad 1.: all diagonal elements Ajj are used in denominators −A(j−1)
ij /Ajj

(j−1)

→ problems if diagonal elements = 0 or ≈ 0
Solution: pivoting (from french pivot=center of rotation) → interchange rows/columns to put
always largest (absolut value) element on diagonal
full pivoting: interchange columns and rows, need to keep track of order . . .
partial pivoting: only search for pivot in remaining elements of the current column (swap rows
only)
→ partial pivoting usually good compromise between speed and accuracy
→ use index to record order of pivot elements instead of physically interchanging
→ rescaling: rescale all elements from a row by its largest element before comparing to find
pivot (reduces rounding errors)
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Gaussian elimination IV

Example: Gaussian elimination in Fortran - code sniplet

! partial pivot. Gaussian elimin.
DIMENSION A(N,N),INDX(N),C(N)
DO I = 1, N
INDX(I) = I ! init. index
C1 = 0.0
DO J = 1, N ! rescale coeff.
C1 = AMAX1(C1,ABS(A(I,J)))

ENDDO
C(I) = C1

ENDDO

DO J = 1, N-1 ! search pivots
PI1 = 0.0
DO I = J, N
PI = ABS(A(INDX(I),J)) / C(INDX(I))
IF (PI.GT.PI1) THEN

PI1 = PI
K = I

ENDIF
ENDDO
ITMP = INDX(J)
INDX(J) = INDX(K)
INDX(K) = ITMP
DO I = J + 1, N ! elimin. subdiagonal
PJ = A(INDX(I),J) / A(INDX(J),J)
A(INDX(I),J) = PJ
DO L = J + 1, N
A(INDX(I),L) = A(INDX(I),L) - &
PJ * A(INDX(J),L)

ENDDO
ENDDO

ENDDO
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Gaussian elimination V

Example: Gaussian elimination by hand I

 10 −7 0
−3 2 6
5 −1 5

x1
x2
x3

 =

7
4
6

 (645)

1.) eliminate x1 from row 2 & 3 → add 3/10 = 0.3× 1st row to 2nd row & add −5/10 = −0.5× 1st
row to 3rd row:  10 −7 0

0 −0.1 6
0 2.5 5

x1
x2
x3

 =

 7
6.1
2.5

 (646)

2.) eliminate x2 from row 3 → a) pivoting: interchange row 2 & 3 so that coefficient of x2 in row 2 is
largest (because of roundoff errors → only for computers necessary) 10 −7 0

0 2.5 5
0 −0.1 6

x1
x2
x3

 =

 7
2.5
6.1

 (647)
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Gaussian elimination VI

Example: Gaussian elimination by hand II
2.b) now add 0.1/2.5 = 0.04× 2nd row to 3rd row: 10 −7 0

0 2.5 5
0 0 6.2

x1
x2
x3

 =

 7
2.5
6.2

 (648)

Finally: backward substitution, starting with last row:

6.2 x3 = 6.2→ x3 = 1 (649)
2.5 x2 + 5 · 1 = 2.5→ x2 = −1 (650)

10 x1 + (−7) · (−1) + 0 = 7 → x1 = 0 (651)

This can be also expressed in matrix notation: Let

M1 =

 1 0 0
0.3 1 0
−0.5 0 1

→ M1A =

 10 −7 0
0 −0.1 6
0 2.5 5

 , M1b =

 7
6.1
2.5

 (652)
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Gaussian elimination VII

Example: Gaussian elimination by hand III
Let then

P2 =

 1 0 0
0 0 1
0 1 0

 , M2 =

 1 0 0
0 1 0
0 0.04 1

 (653)

→ M2P2M1A =

 10 −7 0
0 2.5 5
0 0 6.2

 = U , M2P2M1b =

 7
2.5
6.2

 = c (654)

Hence Ux = c , with upper triangular matrix U .
The matrices Pk , k = 1, . . . , n− 1 are the permutations matrices, inferred from the identity matrix I by
interchanging rows in same way as for A in the kth step, and Mk is multiplication matrix, inferred from
identy matrix by inserting mulitpliers used in kth step below diagonal in kth column →Mk are lower
triangular matrices

M := Mn−1Pn−1 . . .M1P1 (655)
U = MA (“triangular decomposition” of A) (656)
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LU decomposition I
More general approach: decompose nonsingular matrix A into two triangular matrices

A = LU (657)

with lower (left) triangular matrix L and upper (right) triangular matrix U (or R), hence

Ax = LUx = b (658)
→ first, solve 1. Ly = b → y (659)

then 2. Ux = y → x (660)

i.e. once A = LU obtained → easy to solve for any b.
More general case: re-order matrix A by, e.g., row-permutations (partial pivoting):

PA = LU , then (661)
LUx = Pb (662)
1. Ly = Pb → y (663)
2. Ux = y → x (664)
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LU decomposition II

e.g. →Crout’s method

start with Li1 = Ai1 and U1j = A1j/A11, then recursively:

Lij = Aij −
j−1∑
k=1

LikUkj (665)

Uij =
1
Lii

(
Aij −

i−1∑
k=1

LikUkj

)
(666)

Usually no need to implement by yourself, instead use libraries, e.g., LINPACK:

DGEFA performs LU decomposition by Gaussian elimination

DGESL uses that decomposition to solve the given system of linear equations

DGEDI uses decomposition to compute inverse of a matrix
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Application: Interpolating data I

Remember following measurement of a cross section

Ei [MeV] 0 25 50 75 100 125 150 175 200

σ(Ei ) [Mb] 10.6 16.0 45.0 83.5 52.8 19.9 10.8 8.25 4.7
σσ(Ei ) [Mb] 1.26 1.9 3.5 2.0 1.3 1.6 0.04 1.96 0.61

0

20

40

60

80

100

0 50 100 150 200

Ei  [MeV]

σ
 [

M
b

] The cross section can be described by
Breit-Wigner formula

f (E ) =
fr

(E − Er)2 + Γ2/4
(667)
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Application: Interpolating data II

Interpolation problem
We want to determine σ(E ) for values of E which lie between measured values of E

By

numerical interpolation (assumption of data representation by polynomial in E ):
→ see previous lectures
→ ignores errors in measurement (noise)

fitting parameters of an underlying model, e.g., Breit-Wigner with fr , Er , Γ, (taking errors
into account), i.e., minimizing χ2

Fourier analysis (next semester lecture)
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Least square fitting I

Already seen for linear regression:
We have ND data points

(xi , yi ± σi ) i = 1, . . . ,ND (668)

and a function y = g(x) (=model) with parameters {am}; fit function to data, such that
χ2 = min:

χ2 :=

ND∑
i=1

(
yi − g(xi ; {am})

σi

)2

(669)

i.e. for MP parameters {am,m = 1 . . .MP}

∂χ2

∂am

!
= 0⇒

ND∑
i=1

[yi − g(xi )]

σ2i

∂g(xi )

∂am
= 0 (m = 1, . . . ,MP) (670)

→ solve MP equations, usually nonlinear in am
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Least square fitting II

goodness of fit, assumptions

deviations to model only due to random errors

Gaussion distribution of errors

→ then, fit is good when χ2 ≈ ND −MP (degrees of freedom)

if χ2 � ND −MP → probably too many parameters or errors σi to large (fitting random
scatter)

if χ2 � ND −MP →model not good or underestimated errors or non-random errors

→ for linear fit see above
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Least square fitting III

Non-linear fit
remember Breit-Wigner resonance formula Eq. (667)

f (E ) =
fr

(E − Er)2 + Γ2/4
(671)

→ determine fr ,Er , Γ
→ nonlinear equations in the parameters

a1 = fr a2 = Er a3 = Γ2/4 (672)

⇒ g(x) =
a1

(x − a2)2 + a3
(673)

∂g

∂a1
=

1
(x − a2)2 + a3

,
∂g

∂a2
=
−2a1(x − a2)

[(x − a2)2 + a3]2
,

∂g

∂a3
=

−a1
[(x − a2)2 + a3]2

(674)
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Least square fitting IV

Insert into Eq. (670):

9∑
i=1

yi − g(xi , a)

(xi − a2)2 + a3
= 0

9∑
i=1

[yi − g(xi , a)](xi − a2)

[(xi − a2)2 + a3]2
= 0

9∑
i=1

yi − g(xi , a)

[(xi − a2)2 + a3]2
= 0 (675)

→ three nonlinear equations for unknown a1, a2, a3, i.e. cannot be solved by linear algebra
but can be solved with help of Newton-Raphson method, i.e. find the roots for the equations
above

fi (a1, . . . , aM) = 0 i = 1, . . . ,M (676)
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Least square fitting V

So

f1(a1, a2, a3) =
9∑

i=1

yi − g(xi , a)

(xi − a2)2 + a3
= 0 (677)

f2(a1, a2, a3) =
9∑

i=1

[yi − g(xi , a)](xi − a2)

[(xi − a2)2 + a3]2
= 0 (678)

f3(a1, a2, a3) =
9∑

i=1

yi − g(xi , a)

[(xi − a2)2 + a3]2
= 0 (679)

with intial guesses for a1, a2, a3.
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Least square fitting VI

Newton-Raphson method for a system of nonlinear equations
Remember for 1dim Newton-Raphson method, correction for ∆x :

f (x0) + f ′(x0) ·∆x
!

= 0 (680)

∆x = − f (x0)

f ′(x0)
(681)

For our system of equations fi (a1, . . . , aM) = 0, we assume that for our approximation (intial
guess) {ai} corrections {∆xi} exist so that

fi (a1 + ∆a1, a2 + ∆a2, a3 + ∆a3) = 0 i = 1, 2, 3 (682)

→ linear approximation (two terms of Taylor series):

fi (a1 + ∆a1, . . .) ' fi (a1, a2, a3) +
3∑

j=1

∂fi
∂aj

∆aj = 0 i = 1, 2, 3 (683)

→ set of 3 linear equations in 3 unknowns
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Least square fitting VII

as explicit equations:

f1 + ∂f1/∂a1∆a1 + ∂f1/∂a2∆a2 + ∂f1/∂a3∆a3 = 0 (684)
f2 + ∂f2/∂a1∆a1 + ∂f2/∂a2∆a2 + ∂f2/∂a3∆a3 = 0 (685)
f3 + ∂f3/∂a1∆a1 + ∂f3/∂a2∆a2 + ∂f3/∂a3∆a3 = 0 (686)

Or as single matrix equation: f1
f2
f3

+

 ∂f1/∂a1 ∂f1/∂a2 ∂f1/∂a3
∂f2/∂a1 ∂f2/∂a2 ∂f2/∂a3
∂f3/∂a1 ∂f3/∂a2 ∂f3/∂a3

 ∆a1
∆a2
∆a3

 = 0 (687)

Or in matrix notation

f + F′∆a = 0⇒ F′∆a = −f (688)

Where we want to solve for ∆a (the corrections)
Matrix F ′ sometimes written as J is called the Jacobian matrix (with entries f ′ij = ∂fi/∂aj).
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Least square fitting VIII

Equation F ′∆a = −f corresponds to standard form Ax = b for systems of linear equations.
Formally solution obtained by multiplying with inverse of F ′

∆a = −F ′
−1

f (689)

→ inverse must exist for unique solution
→ same form as for 1d Newton-Raphson: ∆x = −(1/f ′)f
→ iterate as for 1d Newton-Raphson till f ≈ 0

compute derivatives for the system numerically

f ′ij =
∂fi
∂aj
'

fi (aj + ∆aj)− fi (aj)

∆aj
(690)

with ∆aj sufficiently small, e.g., 1% of a
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Least square fitting IX

Nonlinear fit with Newton-Raphson
In our nonlinear fit problem the Newton step

F′∆a = −f (691)

can be solved for ∆a with help of DGEFA and DGESL (see p. 546):

CALL DGEFA(FPRIME, NDIM, NDIM, IPVT, INFO)
IF (INFO .NE. 0) STOP ’JACOBIAN MATRIX WITH 0 ON DIAGONAL’
CALL DGESL(FPRIME, NDIM, NDIM, IPVT, F)
where the solution ∆a is written to vector F
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Insertion: data analysis
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Recursive mean I

arithmetic mean

〈x〉 =
1
n

n∑
i=1

xi (692)

Problem: calculation of the mean for measured data
Eq. (692) must be evaluated again for every new data point
for n� 1 and at the same time xi � 1 numerical inaccuracy for strict use of Eq. (692)
because of → saturation in xi

→ hence: definition of the recursive mean:

〈x〉i =
i − 1
i
〈x〉i−1 +

1
i
xi (693)

H. Todt (UP) Computational Astrophysics SoSe 2025, 30.6.2025 559 / 577



Recursive mean II

proof:

i − 1 : 〈x〉i−1 =
x1 + . . .+ xi−1

i − 1
(694)

i : 〈x〉i =
x1 + . . .+ xi−1 + xi

i
(695)

=
(i − 1)

x1+...xi−1
i−1 + xi

i
(696)

=
i − 1
i
〈x〉i−1 +

xi
i

(697)

q.e.d.
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Recursive mean III
analogously: recursive variance

σ2i =
i − 1
i

σ2i−1 +
1

i − 1
(xi − 〈x〉i )2 (698)

proof similar as for recursive mean

correction of a single value:

〈x〉new = 〈x〉old +
xnew − xold

n
(699)

σ2new = σ2old +
x2new − x2old

n
− xnew − xold

n

(
〈x〉old +

xnew − xold
n

)
proof for the correction of the mean:

〈x〉new =
1
n

(
n∑

i=1

xi − xold + xnew

)
= (700)

= 〈x〉old +
xnew − xold

n
q.e.d.
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Linear regression I

We already know

Straight line fit without errors

y = b · x + a (701)

with slope b =
1

n−1
∑n

i=1(xi − 〈x〉)(yi − 〈y〉)
1

n−1
∑n

i=1(xi − 〈x〉)2
(702)

and a = 〈y〉 − b · 〈x〉 (703)

quality of fit y = a + bx measured by χ2:

χ2(a, b) =
n∑

i=1

(
yi − a− bxi

σi

)2

(704)

with error σi in measuring of yi (xi exact)
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Linear regression II

Best fit for χ2 minimum, hence (see also Numerical Recipes)

0 !
=

∂χ2

∂a
= −2

n∑
i=1

yi − a− bxi
σ2i

(705)

0 !
=

∂χ2

∂b
= −2

n∑
i=1

xi (yi − a− bxi )

σ2i
(706)

can be rewritten as system of equations:

a
n∑

i=1

1
σ2i

+ b
n∑

i=1

xi
σ2i

=
n∑

i=1

yi
σ2i

(707)

a
n∑

i=1

xi
σ2i

+ b
n∑

i=1

x2i
σ2i

=
n∑

i=1

xiyi
σ2i

(708)

(709)
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Linear regression III

solution for the system:

a =

∑n
i=1

x2
i

σ2
i

∑n
i=1

yi
σ2
i
−
∑n

i=1
xi
σ2
i

∑n
i=1

xiyi
σ2
i∑n

i=1
1
σ2
i

∑n
i=1

x2
i

σ2
i
−
(∑n

i=1
xi
σ2
i

)2 (710)

b =

∑n
i=1

1
σ2
i

∑n
i=1

xiyi
σ2
i
−
∑n

i=1
xi
σ2
i

∑n
i=1

yi
σ2
i∑n

i=1
1
σ2
i

∑n
i=1

x2
i

σ2
i
−
(∑n

i=1
xi
σ2
i

)2 (711)
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Linear regression IV

errors in a and b from error propagation for a quantity f :

σ2f =
n∑

i=1

σ2i

(
∂f

∂yi

)2

(712)

where
∂a

∂yi
=

∑n
i=1

x2
i

σ2
i
− xi

∑n
i=1

xi
σ2
i

σ2i

(∑n
i=1

1
σ2
i

∑n
i=1

x2
i

σ2
i
−
(∑n

i=1
xi
σ2
i

)2) (713)

∂b

∂yi
=

xi
∑n

i=1
1
σ2
i
−
∑n

i=1
xi
σ2
i

σ2i

(∑n
i=1

1
σ2
i

∑n
i=1

x2
i

σ2
i
−
(∑n

i=1
xi
σ2
i

)2) (714)
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Linear regression V

adding up according to Eq. (712)

σ2a =

∑n
i=1

x2
i

σ2
i∑n

i=1
1
σ2
i

∑n
i=1

x2
i

σ2
i
−
(∑n

i=1
xi
σ2
i

)2 (715)

σ2b =

∑n
i=1

1
σ2
i∑n

i=1
1
σ2
i

∑n
i=1

x2
i

σ2
i
−
(∑n

i=1
xi
σ2
i

)2 (716)

Caution!
This (purely formal) error may drastically underestimate the real error in a, b!
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Linear regression VI

Example: bad fit but small error

a = -9.34 +/-  0.37

b =  6.91 +/-  0.10

0

10

20

30

1 2 3 4 5 6

x

y

→ small formal error, as
error in the measurements is
small

but:
→model does not fit to
data
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Linear regression VII

Our original case: errors σi not available.

Then: Set σi = 1 in equations for a, b and multiply factor
√

χ2

n−2 to the formal errors

σ2a =

∑n
i=1 x

2
i

n
∑n

i=1 x
2
i − (

∑n
i=1 xi )

2

√
χ2

n − 2
(717)

σ2b =
n

n
∑n

i=1 x
2
i − (

∑n
i=1 xi )

2

√
χ2

n − 2
(718)

where χ2 =
n∑

i=1

(yi − a− bxi )
2 (719)
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Bootstrapping I

Estimating the errors in fit variables (e.g., the slope b)
Methods:

1 formal error from errors in measuring in yi →without consideration of the fit quality χ2

2 error from χ2 without consideration of the errors in measuring yi

→ usually results in an underestimation of σb
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Bootstrapping II

Example: measuring the magnetic field from polarization

-0.005

0.000

0.005

-1.00E-06 0.0 1.00E-06

4.67× 10-13
λ

2 1/I  dI /dλ [G-1 ]

V
/I

Stokes I : intensity
Stokes V = IR − IL (so: right-hand circularly
polarized – left-hand circularly polarized)
→V /I : fraction of polarized light
→λ2/I dI/dλ : Zeeman shift

Idea: for broad spectral lines (Balmer lines in WD, WR emission lines) Zeeman splitting not
directly detectable because of Doppler shifts. Therefore: measure “line displacement” per pixel
per line together with V /I .
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Bootstrapping III

No B-field → no correlation. Otherwise, slope gives longitudinal 〈Bz〉

V

I
= − geffeλ

2

4πmec2
1
I

dI

dλ
〈Bz〉 (720)

with average effective Landé factor
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Bootstrapping IV

Example: measuring the magnetic field from polarization

-0.005

0.000

0.005

-1.00E-06 0.0 1.00E-06

4.67× 10-13
λ

2 1/I  dI /dλ [G-1 ]

V
/I

→ slope dominated by only few data points?
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Bootstrapping V

Problem: the distribution of b is usually not known
Idea: construct a distribution with help of Bootstrapping

Construction of a Bootstrapping distribution
random sample j by random drawing of n data (xi , yi ) from the complete set of n data with
repetition and determination of bj . Repeating m-times this procedure, where m� n.
In each random sample are only ∼ 1/e ≈ 37% of the original data because of repetitions.
→ result: sample of m measured quantity bj .

Then, determination of the expectation value, variance, etc. for the obtained bootstrapping
sample, e.g.,
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Bootstrapping VI

Example: magnetic field Bz from polarization

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

-300 -200 -100  0  100  200  300  400  500  600  700

fr
eq

ue
nc

y 
of

 o
cc

ur
re

nc
e

B [G]

Mean=199.9 G, sigma= 86.5 G

→ interpretation: µ > 2σ →marginal detection (5% proability that actually Bz = 0 )
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