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Clumps in hot star winds can originate from shock compression due to the line driven insta-
bility. One-dimensional hydrodynamic simulations reveal a radial wind structure consisting of
highly compressed shells separated by voids, and colliding with fast clouds. Two-dimensional

simulations are still largely missing, despite first

attempts. Clumpiness dramatically affects the

radiative transfer and thus all wind diagnostics in the UV, optical, and in X-rays. The mi-
croturbulence approximation applied hitherto is currently superseded by a more sophisticated
radiative transfer in stochastic media. Besides clumps, i.e. jumps in the density stratification,
so-called kinks in the velocity law, i.e. jumps in dv/dr, play an eminent role in hot star winds.
Kinks are a new type of radiative-acoustic shock, and propagate at super-Abbottic speed.

1 Line Driven Instability in 1-D

Clumps in hot star winds can be created by shock
compression, where the shocks occur as result of the
line driven instability, as first suggested by Lucy &
Solomon (1970). First numerical simulations of this
process were presented in a seminal paper by Owocki
et al. (1988), and became possible through two novel
“inventions”: (1) The introduction of an exponential
cutoff in the CAK (1975) power law distribution of
line opacities. Perturbation growth through the line
driven instability only terminates when highly ac-
celerated gas is optically thin even in the strongest
line transitions. Without an opacity cutoff, the
instability-induced gas acceleration and rarefaction
cannot be handled numerically. (2) The introduction
of a photospheric Schuster-Schwarzschild reversing
layer that allows for self-absorption in spectral lines
via an inner boundary condition. Without this de-
vise, the instability disrupts the flow already at the
inner boundary. Owocki et al. (1988) treated only
pure line absorption, but this shortcoming was over-
come with the smooth source function method (SSF,
Owocki 1991). This method is extensively reviewed
in the literature (e.g. Owocki & Puls 1996), and is
therefore not further discussed here.

The flow structure resulting from the line driven
instability is shown in Fig.1. (1) The instability
steepens the velocity field of the wind on a macro-
scopic scale of order R,.. The basic action of the
instability is to amplify positive velocity perturba-
tions, in a cycle v — —017 — 0F — dg; — dv (with
radiative flux F', and line force g;). In words: a posi-
tive velocity perturbation Doppler-shifts a gas parcel
out of the absorption shadow of gas lying closer to
the star. The optical depth towards the parcel drops,
the parcel experiences a stronger radiative flux from
the star, and thus a larger line force, which further
increases the velocity perturbation. (2) The highly

accelerated and rarefied gas streams are decelerated
in strong reverse shocks, by overdense shells. Due to
the deceleration, the shells have a negative velocity
gradient, and are no longer subject to the instabil-
ity (Martens 1979). Ahead of the shells resides gas
close to the stationary CAK density and velocity of
the wind, however with negative velocity perturba-
tions and again not subject to the instability. This
gas acts as reservoir for the rarefied gas stream hit-
ting the next outer shell. (3) From the outer rim
of this reservoir, lumps of gas at CAK densities are
ablated and radiatively accelerated through the al-
most void intershell space, until they hit the next
outer shell, causing detectable X-ray emission (Feld-
meier et al. 1997). X-ray emission from hot stars is
covered in the contributions by Cassinelli et al., Os-
kinova et al., Cohen et al., and Leutenegger et al.,
in these proceedings. The gas reservoir is exhausted
at around 7 R,, and X-ray emission ceases. Figure
2 shows clumps propagating through void intershell
space in snapshots from a numerical simulation.

This sequence of rarefied gas upstream of a dense
shell, of the shell itself, and of a gas reservoir at
CAK densities downstream of the shell can also be
understood as one cycle of a radiative-acoustic Ab-
bott wave. Initially, this is a harmonic wave, which
then undergoes nonlinear deformation. This corre-
sponds to the solution of Burgers’ equation (that
describes the kinematics of fast gas overtaking slow
gas), where accelerating regions become ever broader
in course of time, and decelerating regions become
ever narrower, eventually turning into shock transi-
tions. Since numerical simulations of the line driven
instability do not adopt the Sobolev approximation,
this is another hint that Abbott waves are not an
artefact of the latter, as is occasionally uttered. Sim-
ilarly, the line driven instability can be understood in
the context of the Sobolev approximation, if second
order terms including the curvature of the velocity
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Figure 1: Radial wind structure that develops from the line driven instability.

field are included (Feldmeier 1998), and is then given
by the cycle v — " — —dr — §F — dg; — ov
(with v = 8%v/0r?). In words: a positive ve-
locity perturbation, or an elevation of the thermal
band, increases the absolute curvature of the velocity
field. By this, the Sobolev optical depth decreases
(a second-order effect), the stellar radiative flux and
the line force increase, and the velocity perturbation
is further amplified.

2 Line Driven Instability in 2-D

In 1-D simulations assuming spherical symmetry, all
flow structures correspond to shells. A key question
is that for the real lateral scale of wind structure.
Two basic scenarios are plausible: the Rayleigh-
Taylor instability could fragmentize extended shell-
like structures via eddies or fingers; and the line
driven instability could amplify photospheric seed
perturbations that have ab initio tiny lateral scale.
This question is not decided yet. Another open
question is whether the wind structure is essentially
isotropic or not. X-ray line profiles look different
for spherical (Owocki & Cohen 2006) and pancake-
shaped, aligned absorbers (Feldmeier et al. 2003).
However, due to the large number of model assump-
tions and free parameters in X-ray fitting, the data
do so far not allow to make a conclusive decision.
Figure 3 shows a hypothetical sketch of the ex-
pected 2-D structure of an O star winds. At low
and intermediate radii (out to a few stellar radii),
three compression levels can be distinguished: (1)
typical CAK densities, (2) shock compression one
or two orders of magnitude above the CAK den-
sity, resulting from the line-driven instability, and
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(3) essentially void regions. As mentioned before,
the gas (1) at CAK densities is ablated in form of
small clumps from extended gas reservoirs directly
above the dense shells, and the clumps are acceler-
ated through void intershell regions (3), until they
collide with the next outer shell (2), creating an ob-
servable X-ray flash. The gas reservoir (1) should
be depleted by about seven stellar radii. The role
of the void regions (3) in allowing X-rays to escape
from the wind is discussed in Feldmeier et al. (2003,
wind fragmentation) and Owocki & Cohen (2006,
wind porosity).

At present, the only 2-D wind simulations of the
line driven instability are by Dessart & Owocki
(2003, 2005). In their first paper, a purely radial
radiative force is assumed. The resulting wind struc-
ture is laterally incoherent, i.e. neighboring wind
cones are completely independent. The question
is whether lateral photons can cause some “lat-
eral organization” of the flow. In their second pa-
per, Dessart & Owocki used a tailored spatial mesh
on which the single lateral photon ray considered
crosses cell corners 4,5 and ¢ + 1,5 + 1, in order
to minimize extrapolations. Models with high ra-
dial resolution show then indeed a high degree of
lateral coherence. More specifically, the shells cre-
ated by the line driven instability do not break up
into clumps. However, the tailored mesh itself poses
problems: in order that the photon ray hits cell cor-
ners as specified above, the radial mesh distance has
to grow very fast with radius, which causes strong ar-
tificial dispersion of instability-generated structure.

We have recently started to program a short char-
acteristics method for 2-D radiation hydrodynamics
on a standard spatial mesh. An advantage of us-
ing short characteristics within the SSF approach



Hydrodynamic simulations of clumps

is that the latter only requires a high-precision cal-
culation of optical depths, whereas for the intensity
and source function rather simplified expressions are
sufficient. Parabolic interpolation of intensity, which
is often cumbersome in the short characteristics ap-
proach, can then be replaced by linear interpolation
of optical depth, which has to be performed in the
comoving frame however.
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Figure 2: Clouds (marked +, x, A, O, and %) are
ablated from the gas reservoir ahead of a
dense shell, propagate through a void re-
gion, and collide with the next outer shell.
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Figure 3: Sketch of wind structure expected from the
line driven instability.

3 Multiple Radiative Resonances

If the velocity law of the wind is not monotonic, as
is the case for clumpy winds, a photon can be ab-
sorbed in the same line transition at different loci.
In the SSF approach, this is accounted for in the cal-
culation of the total optical depth along a ray, but
not in the calculation of the line source function.
We have recently generalized an iteration method
devised by Rybicki & Hummer (1978), to determine
the line source function in presence of multiple res-
onances (Feldmeier & Nikutta 2006). Knowledge of
the geometric shape of the resonance region is not
required in this method, as the p integral in the cal-
culation of S is transformed to an r integral. A ma-
jor problem of the method, however, which was not
addressed by Rybicki & Hummer, is that “resonance
caps,” i.e. spherical fragments of finite angular size
but tiny radial extent, can contribute significantly to
the source function, while being badly resolved on a
discrete radial mesh. We gave a remedy for this, and
the lambda iteration proposed by Rybicki & Hum-
mer converges then within a few iteration steps, if
the number of resonance locations is small (three,
in the above paper). This allows to calculate the
source function at each time step of a hydrodynamic
calculation on the full spatial mesh.

The method assumes validity of the Sobolev ap-
proximation in the calculation of the optical depth,
whereas S is calculated via iteration as solution of
the exact transfer equation. This is complementary
to the SSF method, where 7 is calculated (numeri-
cally) exact, whereas S is adopted from Sobolev ap-
proximation. It seems therefore natural and worth-
while to merge the two approaches in the near future.
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4 Kink Propagation

Essentially all hydrodynamic simulations of hot star
winds show the occurence of kinks in the velocity
and density law of the wind. Kinks are discontinu-
ities in the first spatial derivative of the wind speed
or density, as opposed to shocks, which are disconti-
nuities in the speed and density themselves. Kinks
are found in overloaded or choked winds (Feldmeier
& Shlosman 1999), in thin winds where metal ions
and the H/He background plasma switch abruptly to
a shallow solution branch in order to avoid decou-
pling (Krticka & Kubdat 2000), and in centrifugally-
supported flows (Madura et al. 2007). Kinks are also
thought to be connected to so-called discrete absorp-
tion components (DACs) observed in non-saturated
P Cygni line profiles from OB stars. DACs could
originate in an extended wind velocity plateau that
termiantes in a kink (Cranmer & Owocki 1996): no
clumping (i.e. density enhancement) is required to
explain the “extra” absorption in a DAC. Still, outer
wind clumps may be responsible for the formation
of the extended velocity plateau and kink.

In standard hydrodynamics, kinks propagate at
the sound speed. Similarly, Cranmer & Owocki
suggest that the kink that terminates the velocity
plateau should propagate upstream at the Abbott
wave speed. The speed (in the stellar rest frame)
at which the kink propagates away from the star is
then (much) slower than the wind speed, and this
would explain the observed slow frequency drift of
DACs, which is roughly a factor of five smaller than
expected from the wind acceleration.

The radiative force from line scattering in an op-
tically thick gas parcel is proportional to the width
of the frequency interval in which stellar radiative
flux is intercepted, which in a strongly accelerat-
ing medium is proportional to the velocity shift dv
across the parcel; and is inversely proportional to
the mass of the parcel, which scales with its diam-
eter dr. Hence, the radiative force g; scales with
dv/dr (not with »!). This leads to an interesting
modification of the solution topology of line driven
winds as compared to the solar wind and Laval noz-
zle flow. In the latter two cases, the critical or
sonic point is a saddle point in the r — v plane,
whereas for line driven flows, the critical point is
a saddle point in the r — dv/dr plane (Bjorkman
1995). It is therefore not clear whether the concept
of a weak discontinuity, i.e. a jump in the first spatial
derivative of v and p that propagates at the sound
speed, carries over from standard hydrodynamics to
line driven flows. From analytical considerations we
could recently show that radiative kinks propagate
upstream at super-Abbottic speed (Feldmeier et al.
2008). Kinks or weak discontinuities in line driven
flows behave therefore like shocks in standard gasdy-
namics, the shock being a strong discontinuity, i.e. a
jump in v and p.

The essential argument is simple: the radiative or
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Abbott wave speed is given by A = —dg;/0v’, and
describes the response of the radiative force to per-
turbations of the velocity gradient. A careful treat-
ment of the kink discontinuity leads to a kink speed
U = —[g)]/[v'] in the comoving frame, where the
square bracket stands for the difference in a quantity
across the kink. Since the CAK power law index is
a < 1, the function ¢;(v') at a given radius r is con-
cave from below, hence the kink speed is faster than
the Abbott speed. In this argument, g;(v’) replaces
the Hugoniot adiabate p(p) from standard gasdy-
namics.

Regarding DACs in O star winds, this super-
Abbottic upstream propagation of kinks causes an
even slower outward propagation in the stellar rest
frame then was assumed hitherto, which could fur-
ther help to understand the slow evolution time of
DAC:s.

5 Stochastic Transfer

The basic distinction between micro- and macrotur-
bulence was introduced by Traving (1964): for mi-
croturbulence, hydrodynamic turbulence elements in
a stellar atmosphere or the ISM are optically thin
even at the center of a spectral line, and the turbu-
lence is indistinguishable from thermal motion, and
can be accounted for by a microturbulence velocity
that is added to the thermal line broadening. For
macroturbulence, on the other hand, a full line pro-
file forms in every turbulence element, and one has to
add these statistically independent, Doppler-shifted
profiles to obtain the emergent line profile.

If the turbulent medium, or more generally any
multi-phase medium, can be described statistically,
i.e. if the density and velocity law are random func-
tions, the radiative transfer has to be solved sep-
arately for each of the possible realizations of the
medium, and the emergent intensity is obtained
from averaging over all the realizations. This ap-
proach includes both the micro- and macroturbu-
lence limit. In the microturbulence limit that the dif-
ferent phases cannot be distinguished from ordinary
atoms by the photons, i.e. that the photon mean
free path is much larger than the phase elements,
the “averaging over realizations” can be replaced by
a simpler “averaging over opacities”, i.e. an effective
opacity can be introduced, and the radiative transfer
is solved once and for all on an “average” medium
(e.g. filling factor approach).

By contrast, if the phase patches are larger than
the photon mean free path, averaging of the emer-
gent intensity over all realizations of the stochastic
medium is unavoidable (e.g. in a Monte Carlo ap-
proach), since then (e=7) # e~ ("), where (.) indi-
cates averaging. The latter inequality is readily un-
derstood, by writing out 7 = [ dr, and expanding
the exponential into a power series. The left and
right hand side are then only identical if all n-point
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correlation functions (d7(ry)dr(r2)...d7(r,)) (with
r1 <719 < ...<Ty,) are zero. But this is only true
in the microturbulence or “atomic mix” limit that
the clump size is smaller than the photon mean free
path.

The calculation of m-point correlation functions
is the biggest challenge of hydrodynamic turbu-
lence theory, since (by definition) there are always
large-scale eddies in hydrodynamic turbulence that
cause large distance correlations, thus preventing n-
point correlation functions from vanishing. Simi-
larly, the radiation field that emerges from a medium
with large-scale clumps obviously carries informa-
tion about the stochastic properties of this medium,
e.g. of the size distribution (power law vs. exponen-
tial) of the clumps.

Transfer theory in stochastic media was developed
since the 1950ies (theory of Poisson processes), with
applications e.g. to neutron transport in nuclear re-
actor walls. A modern landmark paper is Levermore
et al. (1986), which demonstrates the mathematical
complexity involved. The authors solve the “for-
mal” transfer problem (pre-specified source function
S = B) in a two-phase Markovian mix fully ana-
lytically. We quote here only a limiting case, for a
medium that consists of infinitely dense absorbers in
a background vacuum. For pure absorption (S = 0),
the emergent intensity is then I = Iyexp(—z/h),
where h is the mean free path between the absorbers.
This is the result for a fully porous wind, with poros-
ity length h (see Hamann et al., Owocki et al., and
Cohen et al., these proceedings).

A novel way to describe properties of stochas-
tic media is via percolation theory (see reviews by
Isichenko 1992 and Stauffer & Aharony 1992), which
considers stochastic clusters in space, and transport
upon them. Indelman & Abramovich (1994) derive
an expression for the opacity of a two-phase medium
via percolation theory. Their result is used to de-
termine the degree of polution of rivers and lakes,
and is used by Shaviv (1998) in a model for the in-
homogeneous atmosphere of nCar. In its simplest
form, percolation theory deals with two- and three
dimensional, infinite grids, on which each position is
either “filled” or “empty”. When nearest-neighbor
points are “filled”, one speaks of a connection (which
could mean e.g. that a current or heat flows). A cel-
ebrated result from percolation theory is that above
a well-defined critical value for the space density of
filled positions, the so-called percolation threshold,
there exists one single-connected structure on the
grid. Because of the long-range correlations near
the percolation threshold, the latter is a phase tran-
sition. This explains the large interest in percolation
theory in the settings of statistical mechanics.

The distinction between diffusion theory and
percolation theory is, according to Broadbent &

Hammersley (1957), that diffusion theory describes
the stochastic motion (random walk) of a particle
through a regular, ordered medium, whereas per-
colation theory describes an ordered, macroscopic
motion (hydrodynamic fluid or electrical current) in
a random medium. Diffusion theory was success-
fully applied by Ruszkowski & Begelman (2003) to
describe the angular dependence of the radiation in-
tensity in a medium with strong density contrasts,
as in atmospheres of stars or accretion disks near the
Eddington limit.

References

Bjorkman J.E. 1995, ApJ, 453, 369

Broadbent S.R. & Hammersley J.M. 1957, Proc.
Cambridge. Philos. Soc., 53, 629

Castor J.I., Abbott D.C., & Klein R. 1975, ApJ,
195, 157 (CAK)

Cranmer S.R. & Owocki S.P. 1996, ApJ, 462, 469
Dessart L. & Owocki S.P. 2003, A&A, 406, L1
Dessart L. & Owocki S.P. 2005, A&A, 437, 657
Feldmeier A. 1998, A&A, 332, 245

Feldmeier A. & Shlosman 1. 1999, ApJ, 526, 344
Feldmeier A. & Nikutta R. 2006, A&A, 446, 661
Feldmeier A., Puls J., & Pauldrach A. 1997, A&A,
322, 878

Feldmeier A., Oskinova L., & Hamann W.-R. 2003,
A&A, 403, 217

Feldmeier A., Ratzel D., & Owocki S.P. 2008, ApJ,
in print

Indelman P. & Abramovich B. 1994, Water Re-
sources Research, 30, 3385

Isichenko M.B. 1992, Rev. Mod. Phys., 64, 961
Krticka J. & Kubat J. 2000, A&A, 359, 983
Levermore C.D.; Pomraning G.C., Sanzo D.L.; &
Wong J. 1986, J. Math. Phys., 27, 2526

Lucy L.B. & Solomon P.M. 1970, ApJ, 159, 879
Madura T.I., Owocki S.P., & Feldmeier A. 2007,
AplJ, 660, 687

Martens P.C.H. 1979, A&A, 75, L7

Owocki S.P. 1991, in Stellar atmospheres: beyond
classical models, eds. Crivellari L., Hubeny 1., &
Hummer D.G., Kluwer, Dordrecht, 235

Owocki S.P. & Puls J. 1996, ApJ, 462, 894
Owocki S.P. & Cohen D.H. 2006, ApJ, 648, 565
Owocki S.P., Castor J.I., & Rybicki G.B. 1988,
AplJ, 335, 914

Ruszkowski M. & Begelman M.C. 2003, ApJ, 586,
384

Rybicki G.B. & Hummer D.G. 1978, ApJ, 219, 654
Shaviv N.J. 1998, ApJ, 494, 1.193

Stauffer D. & Aharony A. 1992, Introduction to
Percolation Theory, Taylor & Francis, London
Traving G. 1964, Zeitschrift f. Astrophysik, 60, 167

119



