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1 Universitätssternwarte München, Scheinerstr. 1, 81679München, Germany
e-mail:jon@usm.uni-muenchen.de

2 Institut für Physik und Astronomie, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam-Golm, Germany

Received 7 July 2009/ Accepted 17 November 2009

ABSTRACT

Context. The mass-loss rate is a key parameter of hot, massive stars. Small-scale inhomogeneities (clumping) in the winds of these
stars are conventionally included in spectral analyses by assuming optically thin clumps, a void inter-clump medium, and a smooth
velocity field. To reconcile investigations of different diagnostics (in particular, unsaturated UV resonance lines vs. Hα/radio emis-
sion) within such models, a highly clumped wind with very lowmass-loss rates needs to be invoked, where the resonance lines seem
to indicate rates an order of magnitude (or even more) lower than previously accepted values. If found to be realistic, this would
challenge the radiative line-driven wind theory and have dramatic consequences for the evolution of massive stars.
Aims. We investigate basic properties of the formation of resonance lines in small-scale inhomogeneous hot star winds with non-
monotonic velocity fields.
Methods. We study inhomogeneous wind structures by means of 2D stochastic and pseudo-2D radiation-hydrodynamic wind mod-
els, constructed by assembling 1D snapshots in radially independent slices. A Monte-Carlo radiative transfer code, which treats the
resonance line formation in an axially symmetric sphericalwind (without resorting to the Sobolev approximation), is presented and
used to produce synthetic line spectra.
Results. The optically thin clumping limit is only valid for very weaklines. The detailed density structure, the inter-clump
medium, and the non-monotonic velocity field are all important for the line formation. We confirm previous findings that radiation-
hydrodynamic wind models reproduce observed characteristics of strong lines (e.g., the black troughs) without applying the highly
supersonic ‘microturbulence’ needed in smooth models. Forintermediate strong lines, the velocity spans of the clumpsare of central
importance. Current radiation-hydrodynamic models predict spans that are too large to reproduce observed profiles unless a very low
mass-loss rate is invoked. By simulating lower spans in 2D stochastic models, the profile strengths become drastically reduced, and
are consistent with higher mass-loss rates. To simultaneously meet the constraints from strong lines, the inter-clumpmedium must be
non-void. A first comparison to the observed Phosphorus V doublet in the O6 supergiantλ Cep confirms that line profiles calculated
from a stochastic 2D model reproduce observations with a mass-loss rate approximately ten times higher than that derived from the
same lines but assuming optically thin clumping. Tentatively this may resolve discrepancies between theoretical predictions, evolu-
tionary constraints, and recent derived mass-loss rates, and suggests a re-investigation of the clump structure predicted by current
radiation-hydrodynamic models.
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1. Introduction

Mass loss through supersonic stellar winds is pivotal for the
physical understanding of hot, massive stars and their surround-
ings. A change of only a factor of two in the mass-loss rate has
a dramatic effect on massive star evolution (Meynet et al. 1994).
Winds from these stars are described by the line-driven windthe-
ory (Castor et al. 1975; Pauldrach et al. 1986), which tradition-
ally assumes the wind to be stationary, spherically symmetric,
and homogeneous. Despite this theory’s apparent success (e.g.,
Vink et al. 2000), evidence for an inhomogeneous and time-
dependent wind has over the past years accumulated, recently
summarized in the proceedings from the workshop ‘Clumping
in hot star winds’ (Hamann et al. 2008) and in a general review
of mass loss from hot, massive stars (Puls et al. 2008b).

That line-driven winds should be intrinsically unstable was
already pointed out by Lucy & Solomon (1970), and was later
confirmed first by linear stability analyses and then by direct,
radiation-hydrodynamic modeling of the time-dependent wind
(e.g., Owocki & Rybicki 1984; Owocki et al. 1988; Feldmeier

1995; Dessart & Owocki 2005), where the line-driven (or line-
deshadowing) instability causes a small-scale, inhomogeneous
wind in both density and velocity.

Direct observationalevidence of a small-scale, clumped stel-
lar wind has, for O-stars, so far only been given for two objects,
ζ Pup and HD 93129A (Eversberg et al. 1998; Lépine & Moffat
2008). Muchindirect evidence, however, has arisen from quan-
titative spectroscopy, where the standard way of deriving mass-
loss rates from observations nowadays is via line-blanketed,
non-LTE (LTE: local thermodynamic equilibrium) model at-
mospheres that include a treatment of both the photosphere
and the wind. Wind clumping has been included in such codes
(e.g., CMFGEN (Hillier & Miller 1998), PoWR (Gräfener et al.
2002), FASTWIND (Puls et al. 2005)) by assuming statistically
distributedoptically thindensity clumps and a void inter-clump
medium, while keeping the smooth velocity law. The major
result from this methodology is that any mass-loss rate de-
rived from smooth models and density-squared diagnostics (Hα,
infra-red and radio emission) needs to be scaled down by the
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square root of the clumping factor (which describes the over
density of the clumps as compared to the mean density, see
Sect. 2.2). For example, Crowther et al. (2002), Bouret et al.
(2003), and Bouret et al. (2005) have concluded that a reduction
of ‘smooth’ mass-loss rates by factors 3. . .7 might be neces-
sary. Furthermore, from a combined optical/IR/radio analysis of
a sample of Galactic O-giants/supergiants, Puls et al. (2006) de-
rived upper limits on observed rates that were factors of 2. . .3
lower than previous Hα estimates based on a smooth wind.

On the other hand, the strength of UV resonance lines (‘P
Cygni lines’) in hot star winds depends linearly on the den-
sity and is therefore not believed to be directly affected by op-
tically thin clumping. By using the Sobolev with exact inte-
gration technique (SEI; cf. Lamers et al. 1987) on the unsat-
urated Phosphorus V (PV) lines, Fullerton et al. (2006) for a
large number of Galactic O-stars derived rates that were factors
of 10. . .100 lower than corresponding smooth Hα/radio values
(provided PV is the dominant ion in spectral classes O4 to O7).
Such large revisions would conflict with the radiative line-driven
wind theory and have dramatic consequences for the evolution
of, and the feedback from, massive stars (cf. Smith & Owocki
2006; Hirschi 2008). Indeed, a puzzling picture has emerged,
and it appears necessary to ask whether the present treatment of
wind clumping is sufficient. Particularly the assumptions of op-
tically thin clumps, a void inter-clump medium, and a smooth
velocity field may not be adequate to infer proper rates under
certain conditions.

Optically thin vs. optically thick clumps. Oskinova et al. (2007)
used a porosity formalism (Feldmeier et al. 2003; Owocki et al.
2004) to scale the opacity from smooth models and investigate
impacts fromoptically thickclumps on the line profiles ofζ Pup.
Due to a reduction in the effective opacity, the authors were able
to reproduce the PV lines without relying on a (very) low mass-
loss rate, while simultaneously fitting the optically thin Hα line.
This formalism, however, was criticized by Owocki (2008) who
argued that the original porosity concept had been developed for
continuum processes, and that line transitions rather should de-
pend on the non-monotonic velocity field seen in hydrodynamic
simulations. Proposing a simplified analytic description to ac-
count for this velocity-porosity, or ‘vorosity’, he showedhow
also this effect may reduce the effective opacity.

In this first paper we attempt to clarify the most important
concepts by conducting a detailed investigation on the synthe-
sis of UV resonance lines from inhomogeneous two-dimensional
(2D) winds. We create both pseudo-2D, radiation-hydrodynamic
wind models and 2D, stochastic wind models, and produce
synthetic line profiles via Monte-Carlo radiative transfercal-
culations. We account for and analyze the effects from a wind
clumped inbothdensity and velocity as well as the effects from
a non-void inter-clump medium. Especially we focus on lines
with intermediate line strengths, comparing the behavior of these
lines with the behavior of both optically thin lines and saturated
lines. Follow-up studies will include a treatment of emission
lines (e.g., Hα) and an extension to 3D, and the development of
simplified approaches to incorporate effects into non-LTE mod-
els.

In Sect. 2 we describe the wind models and in Sect. 3 the
Monte-Carlo radiative transfer code. First results from 2Dinho-
mogeneous winds are presented in Sect. 4, and an extensive pa-
rameter study is carried out in Sect. 5. We discuss some aspects
of the interpretations of these results and perform a first compar-

ison to observations in Sect. 6, and summarize our findings and
outline future work in Sect. 7.

2. Wind models

For wind models, we use customary spherical coordinates
(r,Θ,Φ) with r the radial coordinate,Θ the polar angle, andΦ the
azimuthal angle. We assume spherical symmetry in 1D models
and symmetry inΦ in 2D models. In all 2D modelsΘ is sliced
into NΘ equally sized slices, giving a lateral scale of coherence
(or an opening angle) 180/NΘ degrees. This 2D approximation
is discussed in Sect. 6.4. Below we describe the model types pri-
marily used in the present analysis; two are of stochastic nature
and two are of radiation-hydrodynamic nature.

2.1. Radiation-hydrodynamic wind models

We use the time-dependent, radiation-hydrodynamic (hereafter
RH) wind models from Puls et al. (1993, hereafter ‘POF’), cal-
culated by S. Owocki, and from Feldmeier et al. (1997, here-
after ‘FPP’), and the reader is referred to these papers for de-
tails. Here we summarize a few important aspects. POF as-
sume a 1D, spherically symmetric outflow, and circumvent a
detailed treatment of the wind energy equation by assuming
an isothermal flow. Perturbations are triggered by photospheric
sound waves. The wind consists of 800 radial points, extend-
ing to roughly 5 stellar radii. FPP also assume a 1D, spherically
symmetric outflow, but include a treatment of the energy equa-
tion. Perturbations are triggered either by photospheric sound
waves or by Langevin perturbations that mimic photospherictur-
bulence. The wind consists of 4000 radial points, extendingto
roughly 30 stellar radii. Tests have shown that the FPP winds
yield similar results for both flavors of perturbations, and, for
simplicity, we therefore use only the results of the turbulence
model.

Due to the computational cost of obtaining the line force,
only initial attempts to 2D RH simulations have been carried
out (Dessart & Owocki 2003, 2005). These authors first used a
strictly radial line force, yielding a complete lateral incoherent
structure due to Rayleigh-Taylor or thin-shell instabilities, and in
the follow-up study uses a restricted 3-ray approach to approxi-
mate the lateral line drag, yielding a larger lateral coherence but
lacking quantitative results. Therefore, and because of the gen-
eral dominance of the radial component in the radiative driving,
we create fragmented 2D wind models from our 1D RH ones
by assembling snapshots in theΘ direction, assuming indepen-
dence between each slice consisting of a pure radial flow. After
the polar angle has been sliced intoNΘ equally sized slices, one
random snapshot is selected to represent each slice. This method
for creating more-D models from 1D ones is essentially the same
as the ‘patch method’ used by Dessart & Owocki (2002), when
synthesizing emission lines for Wolf-Rayet stars, and the method
used by, e.g., Oskinova et al. (2004), when synthesizing X-ray
line emission from stochastic wind models. Fig. 1 displays typi-
cal velocity and density structures from this type of 2D model.

2.2. Stochastic wind models

We also study clumpy wind structures created by means of dis-
torting a smooth, stationary, and spherically symmetric wind via
stochastic procedures. This allows us to investigate the impacts
from, and to set constraints on, different key parameters with-
out being limited by the values predicted by the RH simula-
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Fig. 1.Left panel:Density contour plots of one stochastic (upper plot) and oneRH (FPP, lower plot) model. The Cartesian coordinate
Z is on the abscissa andX is on the ordinate.Right panel:Density and velocity structures of one slice in one stochastic (upper) and
one RH (FPP, lower) model. Over densities are marked with filled dots. For model parameters and details, see Sect. 2.2.

tions. For the underlying smooth winds we adopt a standardβ
velocity lawvβ(r) = (1− b/r)β. Here and throughout the paper,
we measureall velocities in units of the terminal velocity,v∞,
andall distances and length scales in units of the stellar radius,
R⋆. b is given byv(r = 1) = vmin, the velocity at the base of
the wind.vmin = 0.01 is assumed, roughly corresponding to the
sound speed. For a giveṅM, the homogeneous density structure
then follows directly from the equation of continuity. We choose
β = 1, which is appropriate for a standard O-star wind and al-
lows us to derive simple analytic expressions for wind masses
and flight times.

A model clumped in density. First we consider a two compo-
nent density structure consisting of clumps and a rarefied inter-
clump medium (hereafter ICM), but keep theβ = 1 velocity law.
Clumps are released randomly in radial direction at the inner
boundary, independently from each slice. The release in radial
direction means that a given clump stays within the same slice
during its propagation through the wind. The average time inter-
val between the release of two clumps isδt, which here and in
the following is expressed in units of the wind’s dynamic time
scaletdyn = R⋆/v∞.

The average distance between clumps thus isvβ δt, i.e.
clumps are spatially closer in the inner wind than in the outer
wind, and for exampleδt = 0.5 (in tdyn) gives an average clump
separation of 0.5 (inR⋆) at the point wherev = 1 (in v∞). We
further assume that the clumps preserve mass and lateral angle
when propagating outwards, and that the underlying model’sto-
tal wind mass is conserved within every slice. This radial clump
distributionis the same as the one used by Oskinova et al. (2006)
when simulating X-ray emission from O-stars, but differs from
the one used by Oskinova et al. (2007) when investigating poros-
ity effects on resonance lines (see discussion in Sect. 6.5). The
radial clumpwidths are here calculated from the actual wind
geometry and clump distribution by assuming avolume filling

factor fv, defined as the fractional volume of the dense gas1. A
related quantity is theclumping factor

fcl ≡
〈ρ2〉
〈ρ〉2
, (1)

as defined by Owocki et al. (1988), where angle brackets denote
temporal averages. Identifying temporal with spatial averages
one may write for a two component medium (cf. Abbott et al.
1981)

fcl =
fv + (1− fv)x2

ic

[ fv + (1− fv)xic]2
, (2)

with

xic ≡
ρic

ρcl
, (3)

the ratio of low- to high-density gas (subscript ic denotes inter-
clump and cl denotes clump). For a void (xic = 0) ICM, ρcl/〈ρ〉
= f −1

v = fcl, i.e, fcl then describes the over density of the clumps
as compared to the mean density.

A model clumped in density and velocity. Next we consider
also a non-monotonic velocity law, using the spatial distribution
and widths of the clumps described in the previous paragraph.
The RH simulations indicate that, generally, strong shockssepa-
rate denser and slower material from rarefied regions with higher
velocities. Building on this basic result, we now modify theve-
locity fields in our stochastic models by adding a random per-
turbation to the localvβ value prior to the starting point of each
clump, so that the new velocity becomesvpre. A ‘jump velocity’
is thereafter determined by a random subtraction fromvβ, now
using the added perturbation as the maximum subtraction. That
is,

vpre = vβ + vj × 2R1 vpost= vβ − vj × 2R1R2, (4)

1 We here notice thatfv is normalized to thetotal volume, i.e.,fv =
0 . . .1. In some literaturefv is identified with the straight volume ratio
Vcl/Vic, which then implicitly assumes thatVcl ≪ Vic.



4 J.O. Sundqvist et al.: Mass loss from inhomogeneous hot star winds

Table 1. Basic parameters defining a stochastic wind model
clumped in density and with a non-monotonic velocity field.

Name Parameter Considered range
Volume filling factor fv fv = 0.01. . . 1.0
Average time interval be-
tween release of clumps

δt δt [tdyn]= 0.05. . . 1.5

ICM density parameter, Eq. 3xic xic = 0 . . .0.1
Velocity span of clump δv δv/δvβ = −10.0 . . .1.0
Parameter determining the
jump velocity

vj vj/vβ = 0.01. . . 0.15

2 4 6 8 10
r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

v

δvβ

δv

vj

snapshot
β=1

Fig. 2. Non-monotonic velocity field and corresponding param-
eters in a stochastic model.

whereR1 andR2 are two random numbers in the interval 0 to 1.
vpre− vpost is the jump velocity as determined by the parameter
vj . By multiplying R1 by two, we make sure that the mean per-
turbation at the ‘pre’ point isvj , andR2 allows for an asymmetry
aboutvβ (see Fig. 2). The clump is assumed to start atvpost, and
its velocity span is set by assuming a value forδv/δvβ, where
δv is the velocity span of the clump andδvβ the corresponding
quantity for the same clump with a smooth velocity law (see
Fig. 2). Inspection of our RH models suggests that velocity gra-
dients within density enhancements primarily are negative(see
also Sect. 6.3), and negative gradients are also adopted in most
of our stochastic models. Finally we assume a constant velocity
gradient through the ICM.

Overall, the above treatment provides a phenomenological
description of the non-monotonic velocity field seen in RH
simulations. The description differs from the one suggested by
Owocki (2008), who uses only one parameter to characterize the
velocity field (whereas we have two). Our new formulation is
motivated by both observational and modeling constraints from
strong and intermediate lines, as discussed in Sect. 6.5.

The basic parameters defining a stochastic model are listed
in Table 1. Fig. 1 (right panel) shows the density and velocity
structures of one slice in a stochastic model, with density pa-
rametersfv = 0.1,δt = 1.0, xic = 0.005, and velocity parameters
vj = 0.15vβ andδv = −δvβ. Clump positions have been high-
lighted with filled dots and a comparison to a RH model (FPP)
is given. In the RH model, we have identified clump positions
by highlighting all density points with values higher than the
corresponding smooth model. The left panel shows the density
contours of the same models, where, for clarity, only the wind to
r = 5 is displayed.

3. Radiative transfer

To compute synthetic line profiles from the wind models, we
have developed a Monte-Carlo radiative transfer code (MC-2D)

that treats resonance line formation in a spherical and axially
symmetric wind using an ‘exact’ formulation (e.g., withoutre-
sorting to the Sobolev approximation). The restriction to 2D is
of course a shortage, but has certain geometrical and computa-
tional advantages and should be sufficient for the study of gen-
eral properties, as discussed in Sect. 6.4. A thorough description
and verification of the code can be found in Appendix A.

Photons are released from the lower boundary (the photo-
sphere) and each path is followed until the photon has either
left the wind or been backscattered into the photosphere. Basic
assumptions are a line-free continuum with no limb darkening
emitted at the lower boundary, no continuum absorption in the
wind, pure scattering lines, instantaneous re-emission, and no
overlapping lines (i.e., singlets). These simplifying assumptions,
except for doublet formation, are all believed to be of minor
importance to the basic problem. By the restriction to singlet
line formation we avoid confusion between effects on the line
profiles caused by line overlaps and by other important param-
eters, but on the other hand it also prevents a direct comparison
to observations for many cases (but see Sect. 6.6). A consistent
treatment of doublet formation will be included in the follow-up
study.

4. First results from 2D inhomogeneous winds

Throughout this section we assume a thermal velocity,vt =

0.005 (in units ofv∞ and∼ 10 km s−1, appropriate for a stan-
dard O-star wind), and apply no microturbulence. After a brief
discussion on the impact of the observer’s position and opening
angles, we concentrate on investigating the formation of strong,
intermediate, and weak lines. In our definition, an intermediate
line is characterized by a line strength2 κ0 = 5.0 chosen such as
to almost precisely reach the saturation limit in asmoothmodel
(cf. Fig. 3).

By investigating these different line types, we account for the
tight constraints that exist for each flavor: i)weak linesshould
be independent of density-clumping properties as long as the
clumps remain optically thin, ii) forintermediate lineseither
smooth models overestimate the profile strengths or mass-loss
rates are lower than previously thought (e.g. the PV problem, see
Sect. 1), and iii)strong saturated linesare clearly present in hot
star UV spectra, and observed features need to be reproduced,
such as high velocity (> v∞) absorption, the black absorption
trough, and the reduction of re-emitted flux blueward of the line
center.

4.1. Observer’s position and opening angles

The observed spectrum as calculated from a 2D wind structure
depends on the observer’s placement relative to the star (see
Appendix A). As it turns out, however, this dependence is rel-
atively weak in both the stochastic and the RH models (the latter
is demonstrated in the upper panel of Fig. 3). Tests have shown
that the variability of the line profile’s emission part is insignif-
icant. The variability of the absorption part may be detectable,
at least near the blue edge, but is still insignificant for thein-
tegrated profile strength; the equivalent width of the absorption
part is almost independent of the observer’s position. Alsothe
opening angle, 180◦/NΘ, primarily has a smoothing effect on the
profiles. In Fig. 3, prominent discrete absorption featuresappear

2 with κ0 proportional to the product of mass-loss rate and abundance
of the considered ion, see Appendix A.



J.O. Sundqvist et al.: Mass loss from inhomogeneous hot starwinds 5

1.5 1.0 0.5 0.0 −0.5 −1.0 −1.5
x

0

1

0

1

2
N

o
rm

al
iz

ed
 f

lu
x

Averaged
Θobs=60°

Θobs=90°

Θobs=120°

NΘ=1
NΘ=30
NΘ=60

1.5 1.0 0.5 0.0 −0.5 −1.0 −1.5
x

0

1

0

1

0

1

2

N
o

rm
al

iz
ed

 f
lu

x

FPP
POF
1D,smooth

Fig. 3. Synthetic line profiles calculated from 2D RH models.
The abscissa is the dimensionless frequencyx (Eq. A.11), nor-
malized to the terminal velocity, and the ordinate is the flux
normalized to the continuum.Upper panel:Profiles from POF
models withκ0 = 5.0. The upper plot displays profiles for an
observer placed at theΘobs angles as labeled in the figure and a
profile averaged over allNΘ = 30 angles. The lower plot displays
averaged profiles for three differentNΘ. Lower panel:Averaged
profiles from FPP and POF models withNΘ = 30, and with
κ0 = 100.0 (upper)κ0 = 5.0 (middle), andκ0 = 0.05 (lower). For
comparison, 1D, smooth profiles with the same values ofκ0 are
shown as well.

near the blue edge in the model withNΘ = 1 (spherical sym-
metry), but are smoothed out in the ‘broken-shell’ models with
NΘ = 30 and 60. The equivalent widths of the absorption parts
are approximately equal for all three models.

Because our main interest here is the general behavior of
the line profiles, we choose to work only withNΘ = 30 and
profiles averaged over all observer angles from here on. Working
with averaged line profiles has great computational advantages,
because roughly a factor ofNΘ fewer photons are needed.

4.2. Radiation-hydrodynamic models

Fig. 3 (lower panel) shows line profiles from FPP and POF hy-
drodynamical models. For the strong lines, the constraintsstated

in the beginning of this section are reproduced without adopting
a highly supersonic and artificial microturbulence. These fea-
tures arise because of the multiple resonance zones in a non-
monotonic velocity field, and are present in spherically symmet-
ric RH profiles as well (see POF for a comprehensive discus-
sion); the main difference between 1D and 2D is a smoothing
effect, partly stemming from averaging over all observer angles
(see above). The absorption at velocities higher than the terminal
is stronger in FPP than in POF, due to both a higher velocity dis-
persion and a larger extent of the wind (rmax ∼ 30 as compared
to rmax ∼ 5, see Sect. 2.1); more overdense regions are encoun-
tered in the outermost wind, which (because of the flatness of
the velocity field) leads to an increased probability to absorb at
almost the same velocities.

For the intermediate lines, we again see the qualitative fea-
tures of the strong lines, though less prominent. As compared
to smooth models, a minorabsorptionreduction is present at
velocities lower than the terminal, but compensated by the blue
edge smoothing. Therefore the equivalent width of the line pro-
file’s absorption part in the FPP model is approximately equal
to that of the smooth model, whereas in the POF model it is re-
duced by∼ 10%. This minor reduction agrees with that found
by Owocki (2008), and is not strong enough to explain the ob-
servations without having to invoke a very low mass-loss rate.

For the weak lines, the absorption part is marginally stronger
than from a smooth, 1D model.

4.3. Stochastic models

In this subsection we use a ‘default’ 2D, stochastic model with
parameters as specified in Table 2. By comparing this model
to models in which one or more parameters are changed, we
demonstrate key effects in the behavior of the line profiles.

Strong lines. For strong lines, the line profiles from the default
model reproduce the observational constraints described in the
first paragraph of this section. As in the RH models, we apply
no microturbulence. Fig. 4 (left panels) demonstrates the impor-
tance of the ICM in the default model; the absorption part of a
very strong line is not saturated whenxic = 0. That is, with a
void ICM we will, regardless of the opacity, always have line
photons escaping their resonance zones without ever interacting
with any matter, thereby de-saturating the line. This ICM find-
ing agrees with that of Zsargó et al. (2008), who point out that
a non-void ICM is crucial for the formation of highly ionized
species such as O VI. We also notice thatδv = −δvβ (used in the
default model) does not permit clumps to have velocities higher
than the localvβ value, preventing absorption at velocities higher
than the terminal one when the ICM is void.

Intermediate lines. For intermediate lines, the line profiles
from the default model display the main observational require-
ment if to avoid a drastic reduction in ‘smooth’ mass-loss rates3,
namely a strong absorption reduction as compared to a smooth
model. The left panels of Fig. 4 show how the integrated profile
strength of the default model withκ0 = 5.0 roughly corresponds
to that of a smooth model havingκ0 = 0.5, i.e., the smooth model
would result in a mass-loss rate (as estimated from the integrated
profile strength) ten timeslower than the clumped model. The
figure also illustrates how the main effect is on the absorption

3 Recall thatfv = 0.25→ fcl ≈ 4, which impliesṀ = Ṁsmooth/2, if
fcl were derived fromρ2-diagnostics assuming optically thin clumps.
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Table 2.Primary stochastic wind models and parameters

Model name fv δt [tdyn] xic δv/δvβ vj/vβ rst
a rext

b

Default 0.25 0.5 0.0025 -1.0 0.15 1.3 ∼ 25
RHcopy 0.1 0.5 0.005 -10.0 0.15 1.3 ∼ 5
Obs1 0.11 0.5,4.0c 0.005,0.0025c -1.0 0.15 1.02 ∼ 25

a Radial onset of clumping.b Radial extent of wind.
c Left value inside the radius corresponding tovβ = 0.6, right value outside.
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(solid lines). Dashed-dotted
lines with modifications from
RHcopy as labeled in the fig-
ure.

part of the line profile. In addition to the reduction in profile
strength, the profileshapesof the absorption parts are noticeably
different for the default and smooth models (the shapes of the re-
emission parts, not shown here, are similar for the two models).
We further discuss the shapes of the profiles in Sect. 6.1. The
dramatic reduction in integrated profile strength occurs because
of large velocity gaps between the clumps, in which the wind is
unable to absorb (at this opacity the ICM may not ‘fill in’ these
gaps with absorbing material).

We have identified|δv| as a critical parameter for the forma-
tion of intermediate lines. The importance of the velocity spans
of the clumps is well illustrated by the absorption part profiles
in Fig. 4 (lower-left panel, middle plot). The absorption ismuch
stronger in the comparison model withδv = −5δvβ than in the
default model withδv = −δvβ, because the former model covers
more of the total velocity spacewithin the clumps, thereby clos-
ing the gapsbetweenthe clumps. Consequently the wind may,
on average, absorb at many more wavelengths.

In principle, however, this effect is counteracted by a de-
crease in the clump’s optical depths, because of the now higher
velocity gradients (|δv/δvβ| > 1). Consider theradial Sobolev
optical depth (proportional toρ/|∂v/∂r |, see Appendix A) in a
stochastic wind model. As compared to a smooth model, the
density inside a clump is enhanced by a factor off −1

v (assum-

ing a negligible ICM), but also the velocity gradient is enhanced
by a factor of|δv/δvβ|. Thus we may write for the radial Sobolev
optical depth inside a clump,

τSob≈
τSob,sm

fv|δv/δvβ|
≈ κ0

vβ fv|δv/δvβ|
, (5)

where ‘sm’ indicates a quantity from a smooth wind, and the
expression to the right is valid for an underlyingβ = 1 veloc-
ity law. From Eq. 5, we see how the effects on the optical depth
from the increased density (fv = 0.25) and the increased velocity
gradients (|δv/δvβ| = 5) almost cancel each other in this exam-
ple. Thus, the clumps are still optically thick for the intermediate
line (κ0 = 5), which means that the larger coverage of the total
velocity space ‘wins’, and the net effect becomes an increase in
absorption (as seen in Fig. 4, lower-left panel, middle plot). This
will be true as long as notfv|δv/δvβ| ≫ 1, which is never the
case in the parameter range considered here.

Finally, the prominent absorption dip toward the blue edge
in the default model turns out to be a quite general feature ofour
stochastic models, and is discussed in Sects. 5.1 and 6.2.

Weak lines. The statistical treatment of density clumping in-
cluded in atmospheric codes such as CMFGEN, PoWR, and
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FASTWIND is valid for optically thin clumps and a negligible
ICM, and gives no direct effect on resonance lines scaling lin-
early with density. Here we test this prediction using detailed ra-
diative transfer4. Our default model recovers the smooth results
when κ0 = 0.05 (Fig. 4, left panels), confirming the expected
behavior. However, from calculating spectra using different val-
ues ofκ0, we have found that significant deviations from smooth
models occur for the default model already beforeκ0 reaches
unity. This occurs because the clumps start to become optically
thick, which may again be understood by considering the radial
Sobolev optical depth (Eq. 5). Withfv ≤ 0.25 andκ0 ≥ 0.25, one
findsτSob≥ 1.0.

4.4. Comparison between stochastic and
radiation-hydrodynamic models

Our stochastic wind models have been constructed to containall
essential ingredients of the RH models. Therefore they should
also reproduce the RH results, at least qualitatively, if a suitable
parameter set is chosen. To test this we used the POF model. In
this model, the clumping factor increases drastically atr ∼ 1.3,
from fcl ∼ 1.0 to fcl ∼ 10, after which it stays basically constant.
The average clump separation in the outer wind is roughly half a
stellar radius. Important for the velocity field is that the velocity
spans of the clumps are generallylarger than corresponding ‘β
spans’, i.e.,|δv/δvβ| > 1 (this is the case in FPP as well), a char-
acteristic behavior that primarily affects the intermediate lines
(details will be discussed in Sect. 6.3). Finally, a suitable vj can
be assigned from the position of the blue edge in a strong line
calculated from POF. Table 2 (entry RHcopy) summarizes all
parameters used to create this stochastic, ‘pseudo-RH’ model.
Fig. 5 displays one slice of the velocity and density structures in
the POF and RHcopy models, and Fig. 4 (right panels) displays
the line profiles.

The line profiles of POF are matched reasonably well by
RHcopy. The intermediate lines again demonstrate the impor-
tance of the velocity spans of the clumps; for an alternative

4 Theindirecteffect through the feedback on the occupation numbers
is not included, because in this section we assume constant ionization.
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sequent clumps, made up by velocities not covered byanyof the
clumps.δv is the velocity span of a clump andvt the thermal ve-
locity. Right: The effective escape ratioη (Eq. 7) as a function
of β = 1 velocity, for the parameters of the default model (see
Table 2).

model with δv = −δvβ, there is much less absorption in the
stochastic model than in POF, i.e., we encounter the same effect
as discussed in the previous subsection. We conclude that inRH
models it is the large velocity spans inside the density enhance-
ments that prevent a reduction in profile strength (as compared
to smooth models) for intermediate lines.

5. Parameter study

Having established basic properties, we now use our stochastic
models to analyze the influence from different key parameters
in more detail. First, however, we introduce a quantity thatturns
out to be particularly useful for our later discussion.

5.1. The effective escape ratio

For the important intermediate lines, it is reasonable to assume
that the clumps are optically thick and the ICM negligible (see
Sect. 4.3 and the next paragraph). Under these assumptions,a
decisive quantity for photon absorption will be the velocity gap
not covered by the clumps, as compared to the thermal velocity
(the latter determining the width of the resonance zone in which
the photon may interact with the wind material). This is illus-
trated in the left panel of Fig. 6, and we shall call this quantity
the ‘effective escape ratio’

η ≡ ∆v
vt
, (6)

where∆v is the velocity gap between two subsequent clumps,
made up by all velocities not covered byanyof the clumps (see
Fig. 6). In principle,η determines to which extent the vorosity
effect (i.e., the velocity gaps between the clumps, cf. Owocki
2008) is important for the line formation. As defined,η does not
contain any assumptions on thespatial structure of the wind.
η << 1 means that the velocity gaps between the clumps are
much smaller than the thermal velocity, which in turn means that
the probability for a photon to encounter a clump within its res-
onance zone is high. If we assume each clump to be optically
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thick, every encounter will lead to an absorption. Thus the prob-
ability for photon absorption is high when the value ofη is low.
Vice versa,η >> 1 results in a high probability for the photon
to escape its resonance zone without interacting with the wind
material, i.e., a low absorption probability. If the entirevelocity
space were covered by clumps,η = 0.

For the wind geometry used in our stochastic models, we
may write (see Appendix B for a derivation)

η ≈
vβδt(1− fv|δv/δvβ|)

Lr
≈
δt(1− fv|δv/δvβ|)

vt

vβ
r2
, (7)

whereLr is the radial Sobolev length of a smooth model, which
for β = 1 isLr ≈ vtr2 (as usual,r andLr in R⋆ andδt in tdyn). Note
that in Eq. 7 also the density-clumping parameters have entered
the expression forη, illustrating that there is an intimate coupling
with thespatialclumping parameters, even though the vorosity
effect initially depends on velocity parameters alone. For exam-
ple, consider a wind with clumps that follow a smoothβ velocity
law. By bringing the clumps spatially closer together (for exam-
ple by decreasingδt), the velocity gaps between them decrease
as well. Thus one may choose to describe the changed situa-
tion either in terms of a less efficient porosity, because of fewer
‘density holes’ in the resonance zone through which the pho-
tons can escape (as done by Oskinova et al. 2007),or in terms
of a less efficient vorosity, because of smaller velocity gaps be-
tween the clumps. Of course, one may also obtain a lower ve-
locity gap between the clumps by increasing the actual velocity
spans inside the clumps, as simulated in our stochastic models
when|δv/δvβ| > 1. This effect, leading to a rather low vorosity,
has already been demonstrated to be at work in the RH models
(Sect. 4.4).

Using the parameters of our default model, Fig. 6 (right
panel) displaysη as a function of velocity and shows thatη in-
creases rapidly in the inner wind, reaches a maximum atv ≈
0.33, and then drops in the outer wind. To compare this behav-
ior with that of the line profiles, we can associate absorption at
some frequencyxobs with the corresponding value of the veloc-
ity, because absorption occurs atxobs ≈ µv ≈ v (radial pho-
tons dominate). In the default model’s absorption-part line pro-
file (see Fig. 4, the middle plot in the lower-left panel), a strong
de-saturation occurs directly after the clumping is set to start (at
r = 1.3, v ≈ 0.23), followed by a maximum atxobs ≈ 0.35, and
finally an absorption dip toward the blue edge. The behavior of
the line profile is thus well mapped byη, and we may explain
the absorption dip as a consequence of the low value ofη in the
outer wind, which in turn stems from the slow variation of the
velocity field (i.e., from radially extended resonance zones).

5.2. Density parameters

To isolate density-clumping effects, we use a smoothβ = 1 ve-
locity law in this subsection. Despite the smooth velocity field,
there are still holes in velocity space (because of the density
clumping, at the locations where the ICM is present), and the
expression forη (Eq. 7) remains valid. Since a smooth velocity
field corresponds toδv = δvβ, also the run ofη is equal to the
one displayed in Fig. 6. In this subsection we work only with in-
tegrated profile strengths (characterized by the equivalent width
Wλ of the line’s absorption part). The shapes of the line profiles
are discussed in Sect. 6.1.

Fig. 7 showsWλ as a function ofκ0, for smooth models
as well as for stochastic models with and without a contribut-
ing ICM. The figure directly tells: i) The default model (xic =
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Fig. 7. Equivalent widthsWλ of the absorption parts of line pro-
files, normalized to the value of a saturated line, as a function
of line strength parameterκ0. The solid line is calculated from
smooth models, and the dashed, dashed-dotted, and dotted lines
from stochastic models with a smooth velocity field andδt = 0.5,
fv = 0.25, andxic as indicated.

0.0025) for the intermediate line (κ0 = 5.0) displays aWλ corre-
sponding to a smooth model with aκ0 roughly ten times lower.
ii) Lines never saturate if the ICM is (almost) void. iii) Therun
of Wλ for the smooth and clumped models decouple well before
κ0 reaches unity. iv) For intermediate lines, the response ofWλ
on variations ofκ0 is weak for clumped models. Points one to
three confirm our findings from Sect. 4.3.

A variation of δt in the stochastic models affects primarily
the highκ0 part (κ0 >∼ 1.0) of the curves in Fig. 7. For example,
loweringδt in the model with a void ICM results in an upward
shift of the dashed curve and vice versa. To obtain saturation
with a void ICM, δt ≈ 0.05 is required, which may be under-
stood in terms of Eq. 7. Forδt = 0.05, theη-values correspond-
ing to the default model are decreased by a factor of ten, andη
reaches a maximum of only about unity, with even lower values
for the majority of the velocity space (cf. Fig. 6, right panel).
The velocity gaps between the clumps then become closed, and
the line saturates. In this situation, however, the intermediate line
becomes saturated as well, again demonstrating the necessity of
a non-voidICM to simultaneously saturate a strong line and not
saturate an intermediate line. Only a properly chosenxic param-
eter ensures that the velocity gaps between the clumps become
filled by low-density material able to absorb at strong line opac-
ities, butnot (or only marginally) at opacities corresponding to
intermediate lines.

When varyingxic, the primary change occurs at the highκ0
end of Fig. 7. For higher (lower) values ofxic, this part becomes
shifted to the left (right), and the curve decouples earlier(later)
from the corresponding curve for the void ICM. A higher ICM
density obviously means that the ICM starts absorbing photons
at lower line strengths and vice versa. Thus, observed saturated
lines could potentially be used to derive the ICM density (orat
least to infer a lower limit),if the mass-loss rate (and abundance)
is known from other diagnostics.

The behavior of the absorption with respect to the volume
filling factor is as expected from the expression forη; the higher
fv, the lower the value ofη, and the stronger the absorption. This
is because a higherfv for a fixedδt implies that the clumps be-
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come more extended, whereas the distances between clump cen-
ters remain unaffected. Consequently, a larger fraction of the to-
tal wind velocity is covered by the clumps, leading to stronger
absorption. For weak lines (κ0 ≈ 0.05), the ratioWλ/Wλ,sm devi-
ates significantly from unity only whenfv <∼ 0.1. Only for such
low values can high enough clump densities be produced so that
the clumps start to become optically thick.

From Fig. 7 it is obvious that, generally, clumped models
have a different (slower) response inWλ to an increase inκ0 than
do smooth models. This behavior may be observationally tested
using UV resonance doublets (Massa et al. 2008), because the
only parameter that differs between the two line components is
the oscillator strength. Thus, if a smooth wind model is used
and the fitted ratio of line strengths (i.e.,κ0,blue/κ0,red) does not
correspond to the expected ratio of oscillator strengths, one may
interpret this as a signature of a clumped wind. Such behavior
was found by Massa et al. (2008), where the observed ratios of
the blue to red component of Si IVλλ1394,1403 in B supergiants
showed a wide spread between unity and the expected factor of
two. This result indicates precisely the slow response to anin-
crease inκ0 that is consistent with inhomogeneous wind models
such as those presented here, but not with smooth ones. In inho-
mogeneous models, the expected profile strength (orWλ) ratio
between two doublet components will depend on the adopted
clumping parameters (as demonstrated by Fig. 7 and the discus-
sion above) and may in principle take any value in the range
found by Massa et al.. That is, while a profile-strength ratiode-
viating from the value expected by smooth models might be a
clear indication of a clumped wind, the opposite is not necessar-
ily an indication of a smooth wind. Furthermore, the degeneracy
between a variation of clumping parameters andκ0 suggests that
un-saturated resonance lines should be used primarily as con-
sistency tests for mass-loss rates derived from other diagnostics
rather than as direct mass-loss estimators. We will return to this
problem in Sect. 6.6, where a first comparison to observations is
performed for the PV doublet.

5.3. Velocity parameters

The jump velocity parameter,vj , affects only the strong lines (or,
more specifically, the lines for which the ICM is significant),
and determines the maximum velocity at which absorption can
occur. For example, by settingvj = 0, no absorption at frequen-
cies higher thanx = 1 is possible (unlessδv is positive and
very high). A highervj also implies more velocity overlaps, and
thereby an increased amount of backscattering due to multiple
resonance zones. Both effects are illustrated in Fig. 8. Judging
from the line profiles of the lower panel, the blue edge and the
reduction of the re-emitted flux blueward of the line center may
both be used to constrainvj . The upper panel shows one slice of
the corresponding velocity fields, illustrating that the underlying
β law is recovered almost perfectly when usingvj = 0.01vβ and
δv = δvβ. With this velocity law and a non-void ICM, the cor-
responding strong line profile is equivalent to a profile froma
smooth model.

In Sects. 4.3 and 4.4, we showed that a higher value of the
clumps’ velocity spans led to stronger absorption for interme-
diate lines. In principle this is as expected from Eq. 7, where
η always decreases with increasing|δv/δvβ|. However, with the
very high value of|δv/δvβ| used in, e.g., the RHcopy model,
one realizes thatη in Eq. 7 becomes identically zero, because
fv|δv/δvβ| = 1. An η = 0 corresponds to the whole velocity
space being covered by clumps, and the saturation limit should
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Fig. 8. Upper: Velocity structures (one slice) in two stochas-
tic models with density-clumping parameters as for the default
model, and different velocity parameters. Dashed:δv/δvβ = 1
andvj/vβ = 0.01. Solid:δv/δvβ = −1 andvj/vβ = 0.5 below
vβ = 0.6 andvj/vβ = 0.15 above.Lower: Corresponding line
profiles for a strong line.

be reached. As is clear from Fig. 4, however, this is not the case.
This points out two important details not included when deriv-
ing the expression forη and interpreting the absorption in terms
of this quantity, namely that clumps are distributed randomly
(with δt determining only the average distances between them)
and that the parametervj allows for an asymmetry in the ve-
locities of the clumps’ starting points (see Sect. 2.2). These two
issues lead to overlapping velocity spans for some of the clumps,
whereas for others there is still a velocity gap left betweenthem,
through which the radiation can escape. Therefore the profiles
do not reach complete saturation, despite that on averageη = 0.
This illustrates some inherent limitations when trying to inter-
pret line formation in terms of a simplified quantity such asη.

The impact from the velocity spans of the clumps on the
line profiles also depends on the density-clumping parameters.
To achieve approximately the same level of absorption, a higher
value ofδv/δvβ was required in the RHcopy model (fv = 0.1)
than in the default model (fv = 0.25), see Fig. 4. Sinceδvβ ∝ fvδt
(see Appendix B), the actual velocity spans of the clumps aredif-
ferent for different density-clumping parameters, even ifδv/δvβ
remains unchanged.

By changing the sign ofδv in the default model (that is, as-
suming a positive velocity gradient inside the clumps), we have
found that our results qualitatively depend only on|δv|. Some
details differ though. For example, aδv > 0 in our stochastic
models permits absorption at velocities higher than the terminal
one also within the clumps, whereasδv < 0 restricts the clump
velocities to below the localvβ (see Fig. 2). In this mattervj plays
a role as well, sincevj controls where, with respect to the local
vβ, the clumps begin. For reasonable values ofvj , however, its in-
fluence is minor on lines where the ICM is insignificant. Finally,
tests have confirmed that optically thin lines are only marginally
affected when varyingδv/δvβ.
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Fig. 9. Total, absorption part, and re-emission part line profiles
for 1D, smooth models withκ0 = 5.0 (dashed-dotted lines) and
κ0 = 5.0/(2η) (solid lines, see Sect. 6.1), and for a 2D, stochastic
model with density parameters as the default model and aβ = 1
velocity law (dashed lines).

6. Discussion

6.1. The shapes of the intermediate lines

For intermediate lines, the shape of the absorption part of the
default model differs significantly from the shape of a smooth
model (see Fig. 4, the middle plot in the lower-left panel). We
showed in Sect. 5.1 that the shapes could be qualitatively un-
derstood by the behavior ofη. This is further demonstrated here
by scaling the line strength parameter of a 1D, smooth model,
using a parameterizationκ0 ∝ η−1 outside the radiusr = 1.3
where clumping is assumed to start. Fig. 9 displays the line pro-
files of 1D, smooth models withκ0 = 5.0 andκ0 = 5.0/(2η).
These profiles are compared to those calculated from a ‘real’2D
stochastic model with density-clumping parameters as the de-
fault model, but with aβ = 1 velocity field.η was calculated
from Eq. 7, using the parameters of the default model and a
β = 1 velocity law, and the factor of 2 in the denominator of
the scaledκ0 was chosen so that theintegratedprofile strength
of the 2D model was roughly reproduced. From Fig. 9 it is clear
that the 1D model with scaledκ0 well reproduces the 2D results,
indicating that indeedη governs the shape of the line profile. We
notice also that these profiles display a completely black absorp-
tion dip in the outermost wind, as opposed to the default model
with a non-monotonic velocity field (see Fig. 4, the middle plot
in the lower-left panel). This is because theβ velocity field does
not allow for any clumps to overlap in velocity space (see the
discussion in Sect. 5.3), making the mapping ofη almost per-
fect.

Let us also point out that the line shapes can be somewhat
altered by using a different velocity law, e.g.,β , 1. Such a
change would affect the distances between clumps as well as the
Sobolev length, and thereby the line shapes of both absorption
and re-emission profiles. However, in all cases is the shape of
the re-emission part similar in the clumped and smooth models.
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Fig. 10.Upper panel:Density structures of one slice in the de-
fault stochastic model (upper), in the default stochastic model
with a modifiedδt (middle, see Sect. 6.2), and in FPP (lower).
Lower panel:Line profiles for the absorption part of an inter-
mediate line for the default model (solid line), for the default
model with a modifiedδt (dashed line), and for the default model
with an ionization structure decreasing with increasing velocity
(dashed-dotted line, see text).

6.2. The onset of clumping and the blue edge absorption dip

We have usedr = 1.3 as the onset of wind clumping in
our stochastic models, which roughly corresponds to the radius
where significant structure has developed from the line-driven
instability in our RH models. However, Bouret et al. (2003,
2005) analyzed O-stars in the Galaxy and the SMC, assum-
ing optically thin clumps, and found that clumping starts deep
in the wind, just above the sonic point. Also Puls et al. (2006)
used the optically thin clumping approach, onρ2-diagnostics,
and found similar results, at least for O-stars with dense winds.
With respect to our stochastic models, the qualitative results
from Sects. 4 and 5 remain valid when choosing an earlier onset
of clumping. Quantitatively, the integrated absorption ininter-
mediate lines becomes somewhat weaker, because the clumping
now starts at lower velocities, and of course the line shapesin
this region are affected as well. The onset of wind clumping will
be important when comparing to observations, as discussed in
Sect. 6.6.

The stochastic models that de-saturate an intermediate line
generally display an absorption dip toward the blue edge (see
Figs. 4 and 9), which has been interpreted in terms of low values
of η in the outer wind (see Sect. 5.1). However, this characteris-
tic feature (not to be confused with the so-called DACs, discrete
absorption components) is generally not observed, and one may
ask whether it might be an artifact of our modeling technique.
In the following we discuss two possibilities that may causeour
models to overestimate the absorption in the outer wind; theion-
ization fraction and too low clump separations.

Starting with the former, we have so far assumed a constant
ionization factor,q = 1 (cf. Eq. A.9). This is obviously an over-
simplification. For example, an outwards decreasingq would re-
sult in less absorption toward the blue edge. Here we merely
demonstrate this general effect, parameterizingq = v0/vβ in the
stochastic default model (see Table 2), withv0 = 0.1 the starting
point below whichq = 1. Fig. 10 (lower panel, dashed-dotted
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lines) shows how the absorption in the outer wind becomes sig-
nificantly reduced.

The temperature structure of the wind is obviously important
for the ionization balance. Whereas an isothermal wind is as-
sumed in POF (see Sect. 2.1), the FPP model has shocked wind
regions with temperatures of several million Kelvin. To roughly
map corresponding effects on the line profiles, we re-calculated
profiles based on FPP models assumingq = 0 in all regions with
temperatures higher thanT = 105 K, andq = 1 elsewhere. Since
the hot gas resides primarily in the low-density regions, how-
ever, the emergent profiles were barely affected, and particularly
intermediate lines remained unchanged.

On the other hand, the X-ray emission from hot stars (be-
lieved to originate in clump-clump collisions, see FPP) is known
to be crucial for the ionization balance of highly ionized species
such as C IV, N V, and O VI (see, e.g., the discussion in Puls et al.
2008b). X-rays have not been included here, but could in prin-
ciple have an impact on our line profiles, by illuminating the
over-dense regions and thereby changing the ionization balance.
Krtička & Kubát (2009), however, find that incorporating X-rays
does not influence the PV ionization significantly. Finally,non-
LTE analyses including feedback from optically thin clumping
have shown that this as well has a significant effect on the derived
ionization fractions of, e.g., PV (Bouret et al. 2005; Puls et al.
2008a). To summarize, it is clear that a full analysis of ionization
fractions must await a future non-LTE application that includes
relevant feedback effects from an inhomogeneous wind on the
occupation numbers.

In RH models, the average distance between clumps in-
creases in the outer wind, due to clump-clump collisions and
velocity stretching (Feldmeier et al. 1997; Runacres & Owocki
2002). Neglecting the former effect, our stochastic models have
clumps much more closely spaced in the outer wind5. We have
therefore modified the default model by settingδt = 3 outside a
radius corresponding tovβ = 0.7. This is illustrated in the upper
panel of Fig. 10. The mass loss in the new stochastic model is
preserved (because the clumps are more extended, see the fig-
ure), and this model now better resembles FPP. Recall that dif-
ferences in the widths of the clumps are expected, since in the
default modelfcl ≈ f −1

v = 4, whereas in FPPfcl ≈ 10. The corre-
sponding line profile shows how the absorption outsidex ≈ 0.7
has been reduced, as expected from the higherδt.

6.3. The velocity spans of the clumps

In Sect. 4.4 it was found that|δv| > δvβ in the RH models.
Fig. 11, upper panel, shows the velocity spans of density en-
hancements (identified as having a density higher than the cor-
responding smooth value) in the FPP model, and demonstrates
that, after structure has developed,|δv| is much higher thanδvβ
throughout the whole wind. These high values essentially stem
from the location of the starting points of the density enhance-
ments, which generally liebefore the velocities have reached
their post shock values (see Fig. 11, middle and lower panels).
By using aβ velocity law (which in principle corresponds to a
stochastic velocity law withvj = 0 andδv = δvβ, see Fig. 8)
together with the density structure from FPP, we simulated aRH
wind with low velocity spans. Indeed, for the correspondingin-
termediate line the equivalent width of the absorption partwas
∼ 35% lower than that of the original FPP model. The strong
line, on the other hand, remained saturated, because the ICMin

5 The effect is minor in POF, since these RH models only extend to
r ∼ 5 (see Sect. 2.1).
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Fig. 11. Upper: Velocity spans of density enhancements in the
FPP model (squares) and correspondingβ intervals (diamonds).
Lower:Three density enhancements and corresponding velocity
spans in the FPP model, highlighted as in Fig. 1.

FPP is not void. So, again, the RH models would in parallel dis-
play de-saturated intermediate lines and saturated stronglines,
were it not for the large velocity spans inside the clumps.

We suggest that the large velocity span inside a shell (clump)
is primarily of kinematic origin, and reflects the formationhis-
tory of the shell. The shell propagates outwards through the
wind, essentially with aβ = 1 velocity law (Owocki et al. 1988).
Fast gas is decelerated in a strong reverse shock at the innerrim
of the shell. The shell collects ever faster material on its way out
through the wind. This new material collected at higher speeds
resides on the star-facing side, i.e. at smaller radii, of the slower
material collected before. Thus, a negative velocity gradient de-
velops inside the shell. The fact that|δv| ≫ δvβ in FPP seems
to reflect that the shell is formed at small radii, and then advects
outwards maintaining its steep interior velocity gradient6. From
this formation in the inner, steeply accelerating wind, velocity
spans within the shells up to (a few) hundred km s−1, as seen in
Fig. 11, appear reasonable.

However, the dynamics of shell formation in hot star winds
is very complex due to the creation and subsequent merging of
subshells, as caused by nonlinear perturbation growth and the re-
lated excitation of harmonic overtones of the perturbationperiod
at the wind base (see Feldmeier 1995). Future work is certainly
needed to clarify to which extent the large velocity spans inside
the shells in RH models are a stable feature (see also Sect. 7.2).

6.4. 3D effects

A shortcoming of our analysis is the assumed symmetry inΦ.
The 2D rather than 3D treatment has in part been motivated
by computational reasons (see Appendix A). More importantly
though, we do not expect ourqualitativeresults to be strongly
affected by an extension to 3D. Within the broken-shell wind
model, all wind slices are treated independently, and distances
between clumps increase only in the radial direction. Therefore

6 Actually, the velocity gradient may further steepen duringadvec-
tion, due to faster gas trying to overtake slower gas ahead ofit; however,
this effect is balanced by pressure forces in the subsonic postshockdo-
main.
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the expected outcome from extending to 3D is a smoothing effect
rather than a reduction or increase in integrated profile strength
(similar to the smoothing introduced byNΘ, see Sect. 4.1). Also,
we have shown that the main effect from the inhomogeneous
winds is on the absorption part of the line profiles (see, e.g.,
Sect. 6.1). The formation of this part is dominated by radialpho-
tons, especially in the outer wind, because of the dependence
only on photons released directly from the photosphere. This
implies that most photons stay within their wind slice, restricting
the influence from any additional ‘holes’ introduced by a broken
symmetry inΦ to the inner wind. Of course, these expectations
hold only within the broken shell model, because in a real 3D
wind the clumps will, for example, have velocity components
also in the tangential directions.

6.5. Comparison to other studies

To scale the smooth opacity in the formal integral of the non-LTE
atmospheric code PoWR, Oskinova et al. (2007) used a porosity
formalism in which bothfv and the average distance between
clumps enter. Other assumptions were a void ICM, a smooth
β velocity field, and a microturbulent velocityvt ≈ 50 km s−1,
the last identified as the velocity dispersion within a clump.
However, a direct comparison between their study and ours is
hampered by the different formalisms used for the spacing of the
clumps. Here we have used the ‘broken-shell’ wind model as a
base (see Sect. 2.2), in which each wind slice is treated indepen-
dently and the distance between clumps increases only in thera-
dial direction (clumps preserve their lateral angles). This gives a
radial number density of clumps,ncl ∝ v−1, the same as used by,
e.g., Oskinova et al. (2006), when synthesizing X-ray emission
from hot stars. In Oskinova et al. (2007), on the other hand, the
distance between clumps increases inall spatial directions. In a
spherical expansion, this gives a radial number density of clumps
ncl ∝ v−1r−2, i.e., clumps are distributed much more sparsely
within this model, especially in the outer wind. Therefore their
choice ofL0 = 0.2 is not directly comparable withδt = 0.2 in our
models. The shapes of the clumps differ between the two mod-
els as well; in Oskinova et al. clumps are assumed to be ‘cubes’,
whereas here the exact shapes of the clumps are determined by
the values of the clumping parameters. Despite these differences,
our findings confirm the qualitative results of Oskinova et al. that
the line profiles become weaker with an increasing distance be-
tween clumps as well as with a decreasingvt. These results may
be interpreted on the basis of the effective escape ratio,η (see
Eq. 7). Both a decrease invt and an increase in the distance be-
tween clumps mean that the velocity span covered by a reso-
nance zone becomes smaller when compared to the velocity gap
between two clumps (see Fig. 6, left panel), leading to higher
probabilities for line photons to escape their resonance zones
without interacting with the wind material.

An important result of this paper is that models that de-
saturate intermediate lines require a non-void ICM to saturate
strong lines. This is confirmed by the Oskinova et al. model, in
which the ICM is void and strong lines indeed do not saturate
(Hamann et al. 2009).

Owocki (2008) proposed a simplified description of the non-
monotonic velocity field to account for vorosity, i.e., the veloc-
ity gaps between the clumps. Here, the vorosity effect has been
discussed using the quantityη (see Sect. 5.1), and we have in-
troduced two new parameters to characterize a non-monotonic
velocity field, δv andvj . The reason for introducing a new pa-
rameterization is that when using a single velocity parameter, we
have not been able to simultaneously meet the constraints from

strong, intermediate, and weak lines as listed in Sect. 4. Tests
using a ‘velocity clumping factor’fvel = δv/∆v as proposed by
Owocki (2008), together with a smooth density structure, have
shown that this treatment indeed can reduce the line strengths
of intermediate lines, but that the observational constraints from
strong lines may not be met. Still, the basic concept of vorosity
holds within our analysis. For example, one may phrase the high
values ofδv in the RH models in terms of insufficient vorosity.

6.6. Comparison to observations

We finalize our discussion by performing a first comparison to
observations. The two components of the Phosphorus Vλλ1118-
1128 doublet are rather well separated, and the singlet treatment
used here suffices to model the major part of the line complex.
Nevertheless, the two components overlap within a certain re-
gion (indicated in Fig. 12), so when interpreting the results of
this subsection, one should bear in mind that the overlap is not
properly accounted for, but treated as a simple multiplication of
the two profiles.

We used observed FUSE spectra (kindly provided by A.
Fullerton) from HD 210839 (λ Cep), a supergiant of spectral
type O6 I(n)fp. When computing synthetic spectra, we first as-
sumed optically thin clumping with a constant clumping fac-
tor fcl = 9 and a smoothβ = 1 velocity field. fcl = 9 agrees
fairly well with the analysis of Puls et al. (2006), who derived
clumping factorsfcl = 6.5 for r ≈ 1.2 . . .4.0 and fcl = 10
for r ≈ 4.0 . . .15, assuming an un-clumped outermost wind.7

We took the ionization fractionq = q(r) of PV from Puls et al.
(2008a), calculated with the unified non-LTE atmosphere code
FASTWIND for an O6 supergiant, using the Phosphorus model
atom from Pauldrach et al. (2001). The feedback from optically
thin clumping was accounted for and X-rays were neglected.
This ionization fraction was then used as input in our MC-
1D code when computing the synthetic spectra. We assigned
a thermal plus a highly supersonic ‘microturbulent’ velocity
vt = 0.05 (corresponding to 110 km s−1), as is conventional in
this approach. The mass-loss rate was derived using the well
known relation betweenκ0 and Ṁ (e.g., Puls et al. 2008b). For
atomic and stellar parameters, we adopted the same values asin
Fullerton et al. (2006).

The dashed line in Fig. 12 represents our fit to the observed
spectrum, assuming optically thin clumping, resulting in amass-
loss rateṀ = 0.24, in units of 10−6 M⊙ yr−1. Fullerton et al.
(2006) derived〈q〉Ṁ = 0.23 for this star. Because our clumped
FASTWIND model predicts an averaged ionization fraction
〈q〉 ≈ 0.9 in the velocity regions utilized by Fullerton et al.,
the two rates are in excellent agreement. On the other hand,
Repolust et al. (2004) for HD 210839 deriveḋM = 6.9 from
Hα assuming an unclumped wind, yieldinġMHα = 2.3 when
accounting for the reduction implied by our assumedfcl = 9
(ṀHα = ṀHα,sm f −1/2

cl ). This rate is almost ten times higher than
that inferred from PV, and thus results in PV line profiles that
are much too strong (see Fig. 12, dashed-dotted line). That is, to
reconcile the Hα and PV rates for HD 210839 with models that
assume opticallythin clumps also in PV, we would have to raise
the clumping factor tofcl > 100. In addition to this very high
clumping factor, the low rate inferred from the PV lines con-
flicts with the theoretical valuėM = 3.2 provided by the mass-

7 This stratification has been found to be prototypical for O-
supergiants and was, together with its well developed PV P Cygni pro-
files, the major reason for choosingλ Cep as comparison object instead
of, e.g.,ζ Pup, which displays a somewhat unusual run offcl.
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loss recipe in Vink et al. (2000) (using the stellar parameters of
Repolust et al. 2004), and is also strongly disfavored by current
massive star evolutionary models (Hirschi 2008).

Next we modeled the PV lines using our MC-2D code to-
gether with a stochastic 2D wind model. The same clump-
ing factor (fcl = 9) and ionization fraction (calculated from
FASTWIND, see above) were used. This time, we assigned
vt = 0.005, i.e., applied no microturbulence. In previous sec-
tions, e.g. 4.3 and 6.1, we showed that stochastic models gen-
erally display a line shape different from smooth models, with
a characteristic absorption dip at the blue edge as well as a dip
close to the line center. Such shapes are not seen in the PV lines
in λ Cep. Thus, to better resemble the observed line shapes, we
used different values forδt and xic in the inner and outer wind
(the former modification already discussed in Sect. 6.2) andlet
clumping start close to the wind base. Clumping parameters are
given in Table 2, model Obs1.

As illustrated in Fig. 12, the synthetic line profiles using
Ṁ = 2.3, as inferred from Hα, are now at the observed levels.
Because of our insufficient treatment of line overlap, we gave
higher weight to theλ1118 component when performing the fit-
ting, but the profile-strength ratio between the blue and redcom-
ponent was nevertheless reasonably well reproduced (see also
discussion in Sect. 5.2). However, though the fit appears quite
good, we did not aim for a perfect one, and must remember the
deficits of our modeling technique. For example, while the early
onset of clumping definitely improved the fit (using our default
value, there was a dip close to line center) and might be consid-
ered as additional evidence that clumping starts close to the wind
base, the same effect could in principle be produced by non-LTE
effects close to the photosphere or by varying the underlyingβ
velocity law. Such effects will be thoroughly investigated in a
follow-up paper, which will also include a comparison to obser-
vations from many more objects.

Clearly, a consistent modeling of resonance lines (at least
of intermediate strengths) requires the consideration of amuch
larger parameter set than if modeling via the standard diagnos-
tics assuming optically thin clumping, and a reasonable fit to a
single observed line complex can be obtained using a variety
of different parameter combinations. The analysis of PV lines
as done here can therefore, at present, only be considered as
a consistency check for mass-loss rates derived from other,in-
dependent diagnostics, and not as a tool for directly estimating
mass-loss rates. Additional insight might be gained by exploiting
more resonance doublets, due to the different reactions of profile
strengths and shapes onκ0. The different slopes of the equiva-
lent width as a function ofκ0 in smooth and clumped models,
especially at intermediate line strengths (Sect. 5.2), mayturn out
to be decisive. However, because of, e.g., the additional impact
from the ICM density, also this diagnostics requires additional
information from saturated lines. Taken together, only a consis-
tent analysis using different diagnostics and wavelength bands,
and embedded in a suitable non-LTE environment, will (hope-
fully) provide a unique view.

7. Summary and future work

7.1. Summary

Below we summarize our most important findings:

– When synthesizing resonance lines in inhomogeneous hot
star winds, the detailed density structure, the non-monotonic
velocity field, and the inter-clump medium are all important
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Fig. 12.Observed FUSE spectra of the PV doubletλλ1118-1128
for the O6 supergiantλCep (Fullerton et al. 2006). The synthetic
spectra are calculated for two 1D models assuming opticallythin
clumping (see Sect. 6.6) and for one 2D stochastic model with
parameters as in Table 2, model Obs1. The models have mass-
loss ratesṀ [M⊙ yr−1] as given in the figure. The zero point fre-
quency is shifted to the line center of theλ1118 component, and
the two arrows at the bottom of the figure indicate in which re-
gion the two components overlap.

for the line formation. Adequate models must be able to si-
multaneously meet observational and theoretical constraints
from strong, intermediate, and weak lines.

– Resonance lines are basically unaffected by the inhomoge-
neous wind structure in the limit of optically thin clumps, but
the clumps remain optically thin only for very weak lines.

– We confirm the basic effects of porosity (stemming from op-
tically thick clumps) and vorosity (stemming from velocity
gaps between the clumps) in the formation of primarily lines
of intermediate strengths.

– We point out the importance of a non-void ICM for the si-
multaneous formation of strong and intermediate lines that
meet observational constraints.

– Porosity and vorosity are found to be intrinsically coupled
and of similar importance. To characterize their mutual effect
on intermediate lines, we have identified a crucial parameter,
the ‘effective escape ratio’, that describes to which extent
photons may escape their resonance zones without ever in-
teracting with the wind material.

– We confirm previous results that time-dependent, radiation-
hydrodynamic wind models reproduce observed characteris-
tics for strong lines, without applying the highly supersonic
microturbulence needed in smooth models.

– A significant profile strength reduction of intermediate
lines (as compared to smooth models) is for the radiation-
hydrodynamic models prevented by the large velocity spans
of the density enhancements, implying that the wind struc-
tures predicted by present day RH models are not able to re-
produce the observed strengths of intermediate lines unless
invoking a very low mass-loss rate.

– Provided a non-void ICM and not too large velocity spans in-
side the clumps, 2Dstochasticwind models saturate strong
lines, while simultaneously not saturating intermediate lines
(that are saturated in smooth models). Using typical vol-
ume filling factors,fv ≈ 0.25, the resulting integrated profile
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strength reductions imply that these inhomogeneous models
would be compatible with mass loss rates roughly a factor
of ten higher than those derived from resonance lines using
smooth models.

– A first comparison to observations was made for the O6 su-
pergiantλ Cep. It was found that, indeed, the line profiles
of PV based on a 2D stochastic wind model, accounting for
a detailed density structure and a non-monotonic velocity
field, reproduced the observations with a mass-loss rate al-
most ten times higher than the rate derived from the same
lines, but with a model that used the optically thin clumping
approach. This alleviated the discrepancies between theoreti-
cal predictions, evolutionary constraints, and previous mass-
loss rates based on winds assumed either to be smooth or to
have optically thin clumps.

7.2. Future work

We have investigated general properties of resonance line for-
mation in inhomogeneous 2D wind models with non-monotonic
velocity fields. To perform a detailed and quantitative compar-
ison to observations, and derive mass-loss rates, simplified ap-
proaches need to be developed and incorporated into non-LTE
models to obtain reliable occupation numbers. Extending our
Monte-Carlo radiative transfer code to include line overlap ef-
fects in doublets is critical for more quantitative applications,
and an extension to 3D is also necessary. Further applications
involve synthesizing emission lines, for example to test the opti-
cally thin clumping limit both in the parameter range where this
is thought to be appropriate (e.g., for O-/early B-stars), and in
other more complicated situations. Indeed, the present genera-
tion of line-blanketed model atmospheres does not seem to be
able to reproduce Hα line profiles from A-supergiants, which
are observed as P-Cygni profiles withnon-saturatedtroughs,
whereas the simulations (assuming optically thin clumping) re-
sult in saturated troughs (R.-P. Kudritzki, private communica-
tion). Since Hα is a quasi-resonance line and not a recombina-
tion line in these cooler winds (e.g., Kudritzki & Puls 2000), this
behavior might be explained by the presence of optically thick
clumps.

Finally, it needs to be clarified if the large velocity span in-
side clumps generated in RH models is independent of addi-
tional physics that is not, or only approximately, accounted for
in present simulations (such as more-D effects and/or various
exciting mechanisms). If the large velocity span is a stablefea-
ture, one might come to the (rather unfortunate) conclusionthat
either the observed clumping features are not, or only weakly, re-
lated to the line-driven instability, or the discrepanciesbetween
observed and synthetic flux distribution (from the X-ray to the
radio regime) might involve processes different from the present
paradigm of wind clumping.
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Appendix A: The Monte-Carlo transfer code

A.1. The code

Here we describe our Monte-Carlo radiative transfer code (MC-
2D) in some detail. For an overview of basic assumptions, see
Sect. 3 in the main paper. For testing purposes, versions to treat
spherically symmetric winds, either in the Sobolev approxima-
tion (MCS-1D) or exactly (MC-1D), have been developed as
well.

Geometry. For wind models in which the spherical symmetry is
broken, we can no longer restrict photon trajectories to rays with
constant impact parameters (see below). Moreover, the observed
spectrum will depend on the observer’s placement relative to the
star. Fig. A.1 illustrates the geometry in use, a standard right-
handed spherical system (r,Θ,Φ) defined relative to a Cartesian
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set (X,Y,Z) (transformations between the two may be found in
any standard mathematical handbook). At each coordinate point
we also construct a local coordinate system using the local unit
vectors (ru,Θu,Φu), which for a photon propagating in direction
nu is related to theradiation coordinates(θ, φ) (see Fig. A.1) via

cosθ ≡ µ = ru · nu, (A.1)

sinφ sinθ = Φu · nu =
Zu × ru

|Zu × ru|
· nu, (A.2)

cosφ sinθ = Θu · nu = [Φu × ru] · nu. (A.3)

The radiation coordinates are defined on the intervalsθ = 0 . . . π
andφ = 0 . . .2π, but due to the symmetry inΦ, only the range
φ = 0 . . . π needs to be considered (see Busche & Hillier 2000).
Also, for this symmetry, the direction cosines ofnu simplify to

nx = µ sinΘ +
√

1− µ2 cosφ cosΘ, (A.4)

ny =

√

1− µ2 sinφ, (A.5)

nz = µ cosΘ −
√

1− µ2 cosφ sinΘ. (A.6)

Eqs. A.1-A.6 are used to update the physical position (r,Θ)
of the photon and the local values of the radiation coordinates
(θ, φ). By tracking the photon on a radial mesh, both the physical
and radiation coordinates can be updated exactly. Interpolations
are necessary only when a photon is scattered or when it crosses
aΘ-boundary to another wind slice. Essentially the same coor-
dinate system is used by, e.g., Busche & Hillier (2000). We col-
lect escaped photons according to theirΘ-angles at ‘infinity’8,
and bin them using the sameNΘ bins as in the underlying wind
model (see Sect. 2).

For spherically symmetric wind models, we adhere to the
customary (p, z) spatial coordinate system withp being the im-
pact parameter andz the direction toward the observer. Each time
a photon is scattered and its direction determined, a new impact
parameter is computed from the relationp = r

√
(1 − µ2), ap-

preciating that all points on a surface of constant radius can be
treated equally in this geometry.

Releasing photons. We release photons from the lower bound-
ary uniformly in φ and with a distribution function∝ µdµ in
µ (e.g., Lucy 1983). The angular coordinateΘ is selected so
that photons are uniformly distributed over the surface area
dA= sinΘdΘdΦ.

Absorption. The probability of photon absorption is∝ e−τdτ,
hence the optical depthτ the photon travels before absorption
can be selected according toτ = − ln R1, whereR1 is a random
number between 0 and 1. The position for absorption in the wind
may then be determined by inverting the line optical depth inte-
gral along the photon path

τν =

∫

χνds, (A.7)

with the frequency-dependent opacity

χν = κLρφν, (A.8)

8 The full 3D problem would require binning inΦ as well, which in
turn would require a large increase in the number of simulated photons.

Fig. A.1. Illustration of the coordinate system, see text.A color
version of this figure is available in the web version.

with φν the absorption profile,κL the frequency integrated mass
absorption coefficient, andρ the mass density. All dependen-
cies on spatial location are for simplicity suppressed hereand
in the following. For the opacity we use the parameterization
from Hamann (1981) and POF,

κLλρ =
4πR⋆v2

∞

Ṁ
κ0ρq, (A.9)

whereλ is the wavelength of the considered transition,κ0 is a
‘line-strength’ parameter taken to be constant,Ṁ the radially and
laterally averaged mass-loss rate, andq = q(r,Θ) the fraction
of the considered element that resides in the investigated ionic
stage. Default here isq = 1, but effects from other ionization
structures are discussed in Sect. 6.2.κ0 is proportional to the
product of mass-loss rate and abundance of the considered ion,
and, for a smooth wind,κ0 = 1 andκ0 = 100 give a typical
medium and strong line, respectively. The parameterization as
defined in Eq. A.9 has the advantage that for smooth winds the
radial optical depth in the Sobolev approximation collapses to

τSob=
κ0

r2vdv/dr
q, (A.10)

whenv andr are expressed in normalized units. The correspond-
ing expression for clumpy winds is provided in Eq. 5. The ab-
sorption profile is assumed to be a Gaussian with a Doppler
width vt that contains the contributions from thermal and (if
present) ‘microturbulent’ velocities. To solve Eq. A.7, weadopt
the dimensionless frequencyx with the terminal velocity of a
smooth outflow as the reference speed,

x =
ν − ν0
ν0

c
v∞
, (A.11)

and transform to the co-moving frame (hereafter CMF).ν0 is the
rest-frame frequency of the line center andc the speed of light.
We now assume that between two grid points the variation of the
factor κLρ/|Q| (see below) is small and may be replaced by an
average value. The optical depth∆τν between two subsequent
spatial points (r,Θ) then becomes

∆τν = |
λR⋆
v∞

κLρ

Q
× −∆erf[xcmf/vt]

2
|, (A.12)
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where∆erf is the difference of the error-function between the
points,xcmf the dimensionless CMF frequency, andvt is calcu-
lated in units ofv∞. Q ≡ nu · ∇ (nu · v) is the local directional
derivative of the velocity in directionnu, with velocities mea-
sured in units ofv∞ and radii in units ofR⋆. By interpolating to
the border whenever a photon crosses aΘ boundary, welocally
recover the spherically symmetric expression

Q =
∂v
∂r
µ2 +

v
r
(1− µ2). (A.13)

For spherically symmetric winds, we have written a second im-
plementation that allows for line transfer using the Sobolev ap-
proximation. With this method each resonance zone is approx-
imated by a point and the line only collects optical depth at at-
mospheric locations where the observer’s frame frequencyxobs
has been Doppler shifted to coincide with the CMF frequency
for the line center. The condition for interaction thus isxobs= µv
and the last factor in Eq. A.12 collapses to unity when calculat-
ing the Sobolev optical depth. The Sobolev approach can be ex-
pected a reasonable approximation when the variation of thefac-
tor κLρ/|Q| is small within the whole resonance zone contribut-
ing to the optical depth in Eq. A.12, i.e., small on length scales at
least a few times the Sobolev lengthL ≡ vt/|Q|. However, also in
the Sobolev approximation more than one resonance point may
be identified in a wind with a non-monotonic velocity field.

Re-emission. We assume complete redistribution and isotropic
re-emission in the CMF, allowing for a multitude of scatter-
ing events within one resonance zone. When the Sobolev ap-
proximation is applied, re-emission is assumed to be coherent
in the CMF and for the angular re-distribution we then use the
corresponding escape probabilities (Castor 1970), corrected for
a treatment of negative velocity gradients (Rybicki & Hummer
1978; POF). In this case, there is only one effective scattering
event inside the localized resonance zone.

After the photon has been re-emitted at some atmospheric
location, the procedure runs again and searches for anotherab-
sorption.

A.2. Radiative transfer code tests

In this subsection we describe some of the verification testsof
our MC radiative transfer code that we have made. The MC-
1D version was first applied on spherically symmetric winds,
comparing profiles from smooth, stationary winds to profiles
calculated using the well-established CMF (cf. Mihalas et al.
1975; Hamann 1981) and SEI methods, and profiles from time-
dependent RH winds to profiles calculated using the Sobolev
method developed in POF. Thereafter we applied the MC-2D
version on models in which all lateral slices had the same radial
structure, comparing the results to the MC-1D version.

First we calculated line profiles for smooth, 1D winds. We
have verified that for low9 values ofvt, profiles from all the meth-
ods described above agree perfectly, whereas for higher values
the MC-1D and CMF give identical results but the SEI deviates
significantly, especially for a medium-strong line (see Fig. A.2,
upper panel). This is due to the hybrid nature of the SEI tech-
nique, which approximates the source function with its local
Sobolev value but carries out the exact formal integral. Because
of this, the method does not account for the increasing amount of

9 For a typical terminal velocity valuev∞ = 2000 km s−1, vt = 0.005
corresponds to 10 km s−1 andvt = 0.2 to 400 km s−1.
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Fig. A.2. Synthetic line profiles for spherically symmetric mod-
els, calculated with the labeled methods. Profiles are shownfor
a smooth model withκ0 = 1.0 andvt = 0.2 (upper) and for two
POF snapshots withκ0 = 100 (middle) andκ0 = 5.0 (lower) and
vt = 0.005. The 2D profile is for an observer at the equator.x is
the normalized observer’s frame frequency (see Eq. A.11), and
the ordinate displays the emergent flux normalized to the contin-
uum flux.

photons close to line center that are backscattered into thepho-
tosphere when the resonance zone grows and overlaps with the
lower boundary.10 Consequently the re-emitted flux in this re-
gion is higher when calculated via the SEI than when calculated
via the CMF or MC methods. These discrepancies between the
CMF and SEI are quite well documented and discussed (e.g.,
Hamann 1981; Lamers et al. 1987), however we still emphasize
that one should exercise caution when applying the SEI method
with high microturbulence on wind resonance lines. Especially
today, when increased computer-power enables us to compute
fast solutions using both methods, the CMF is preferable.

Next we calculated line profiles for structured, 1D winds.
Profiles computed with all three methods agreed for weak and in-
termediate lines. For strong lines, the agreement between MCS-
1D and the method from POF, which uses a Sobolev source
function accounting for multiple-resonance points, was satisfac-
tory. However, minor discrepancies between Sobolev and non-
Sobolev treatments occurred for the strong line also when no
microturbulent velocity was applied (see Fig. A.2), as opposed
to the smooth case.

Finally we performed a simple test of our MC-2D code by
applying it on models in which all lateral slices had the same
radial structure, i.e., the wind was still spherically symmetric and
all observers ought to see the same spectrum. We confirmed that
indeed so was the case, both for smooth and structured models
(in Fig. A.2 the latter case is demonstrated).

10 Remember that neither the SEI nor the CMF, as formulated here,
include a transition to the photosphere, but treat the lowerboundary as
sharp with a minimum velocityvmin.
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Appendix B: The effective escape ratio

We define the ratio of the velocity gap∆v between two clumps
(see Fig. 6 in the main paper) and the thermal velocityvt as

η ≡ ∆v
vt
. (B.1)

In the following, we derive an expression forη, for the wind
geometry used throughout this paper. If∆vtot = ∆v + |δv| is the
velocity difference between two clumpcenters, we may write
(omitting the absolute value signs here and in the following)

∆v = ∆vtot − δv =
∆vtot

∆vtot,β
∆vtot,β −

δv
δvβ
δvβ, (B.2)

where we have normalized the arbitrary velocity intervals to the
correspondingβ intervals.β suffixes are used to denote parame-
ters of a smooth velocity law. For notational simplicity we write

ξ1 =
∆vtot

∆vtot,β
, ξ2 =

δv
δvβ
. (B.3)

Assuming radial photons,∆v may be approximated by

∆v ≈
∂vβ
∂r
∆rtot,β(ξ1 − ξ2

δrβ
∆rtot,β

), (B.4)

with the notations ofr following those ofv. The volume filling
factor for the geometry in use is

fv ≡
Vcl

Vtot
≈

r2
1δr

r2
2∆rtot

(B.5)

with Vcl the volume of the clump,Vtot the total volume, and
r1 ≈ r2 the radial points associated with the beginning of
the clump and the ICM. Using Eq. B.5 and∆rtot = vβδt (see
Sect. 2.2), we obtain

∆v ≈
∂vβ
∂r

vβδt(ξ1 − ξ2 fv), (B.6)

and for η, using the radial Sobolev length of a smooth flow
Lr = vt/(∂vβ/∂r),

η ≈
vβδt(ξ1 − ξ2 fv)

Lr
. (B.7)

In our modelsξ1 is not given explicitly, but is on the order of
unity, because we distribute clumps according to the underlying
smoothβ = 1 velocity law. Thus we approximate

η ≈
vβδt(1− ξ2 fv)

Lr
. (B.8)

We notice that the porosity lengthh as defined by
Owocki et al. (2004) ish = l/ fv, wherel is the length associ-
ated with the clump. For the geometry used here this becomes
h ≈ δr/ fv ≈ vβδt. Hence, usingξ2 = 1 for a smooth velocity
field,η represents the porosity length corrected for the finite size
of the clump, and divided by the radial Sobolev length.
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