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Abstract. We develop a time-dependent multicomponent code for stellar
wind from hot stars and apply them to some typical Be stars. We calculate the
Chandrasekhar dynamical friction using simple a approximation of the Chan-
drasekhar function, which help us stabilize the stiffness of the problem. We use
the vanLeer code to solve time dependent hydrodynamics equations of a two
component stellar wind. We represent Coulombic collisions between the pas-
sive bulk of plasma and the absorbing ions by calculating approximations of the
Chandrasekhar function, which allow us to use an analytical expression for the
friction term in the code. We apply this method for stars with well coupled wind
in the first and compare result with usual one component mCAK model.

1. Introduction

The idea that the stellar material is accelerated by absorbtion and scattering of
the star’s radiation was originally introduced by Milne (1926). This idea was
developed in full theory by Castor, Abbott, & Klein (1975), later referred to
as the CAK theory. In this theory, the stellar wind is described by a steady
spherically symmetric one-component flow from a nonrotating star, and the
radiative acceleration, which is acting on a whole plasma, is given mainly by the
interaction of ultraviolet photospheric radiation with resonance lines of ions such
as C iv, N v, and Si iv. The radiative force is parameterized by CAK constants
k, α. Moreover, they assumed point source approximation, which means that all
radiation was assumed to come from a point at the center of the star. Although
qualitative agreement between theory and observations was achieved, there were
still some discrepancies remaining, namely the terminal velocity v∞ being too
low,and the mass-loss rate Ṁ being too high. Further development of theory
was desirable to precise and improve predictions. Abbott (1982) added another
parameter to the theory, namely the dependence of the radiative force on the
ionization state of the stellar wind, which lead to a three parameter description of
the driving force using the parameters α, k, δ. Moreover, he included a complete
list of atomic data spanning from the first to the sixth ionization stage of the
elements H-Zn to calculate the radiative acceleration and obtained more precise
values of the CAK constant. The point star size approximation lead to an
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underestimate of the radiative force near the photosphere. Another major stride
was made by Pauldrach, Puls, & Kudritzki (1986), where the authors abandoned
this assumption, and modified the CAK theory (referred to as the mCAK theory)
by using radiative force with correction for a finite size of a disk.

The approximation of one-component flow used by the CAK theory is ac-
ceptable for most cases of stellar winds from O stars and some B stars. But in
reality the radiation is acting on absorbing ions and electrons only, and those par-
ticles share momentum through Coulombic collisions with the remaining passive
part of the plasma (namely protons). The Dynamical effect of the Coulombic
collisions on the plasma is well described by dynamical friction, which was first
used by Chandrasekhar (1943) for the case of the gravity force, and later it was
used for the electromagnetic force by Spitzer (1956). As was first shown by
Springmann & Pauldrach (1992), this more detailed multicomponent descrip-
tion of stellar wind predicts a runaway mechanism. It means that under certain
conditions, namely low density of the wind, coulombic interactions are so small
that they stop the momentum transfer between the passive bulk of plasma and
absorbing ions and as a result, wind decouples at a certain point. From this
point, called the decoupling radius, absorbing ions are highly accelerated while
passive plasma is decelerated. Moreover with the help of some approximations
they derived an analytical formula for the decoupling radius. Later, Krtička &
Kubát (2000) obtained a contradictory result from numerical calculations. They
found a nondecoupling solution with slow acceleration, which is analogous to a
shallow solution from the mCAK theory with a low density wind. This contra-
dictory result was investigated by Owocki & Puls (2002) by means of a linear
stability analysis of the multicomponent wind. They predicted that flows should
be disrupted by ion separation before reaching a solution with slow acceleration.

A very interesting result is the generation of pulsating shells, which was
first discovered by Porter & Skouza (1999). In the case when winds decouple
at the point where the local velocity of the flow is still smaller than the escape
velocity, passive plasma is still gravitationally bound to the star. It implies that
the matter is decelerated and falls, back down to the star. Interaction with an
outflow from the star leads to the pulsating shells. Unfortunatelly this result is
based on the one-component model only, with an artificial turn off of radiative
acceleration, and not on the multicomponent description of the wind.

2. Multicomponent description of the stellar wind

We start with time-dependent forms of relevant hydrodynamics equations for
a multicomponent radiatively driven flow. We restrict ourselves to standard
assumptions of 1D spherically symmetric outflow and to two components only,
namely absorbing ions and passive plasma (protons). We also neglect the effect
of macroscopic magnetic and electric fields and assume plasma quasineutrality.
Acting forces on absorbing ions are gravity, dynamical friction, pressure gradient,
and radiation, while on passive plasma they are only gravity, pressure gradient,
and dynamical friction. Continuity equations for both components are of the
form (p stands for passive plasma and i stands for absorbing ions)
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Figure 1. The plot of the Chandrasekhar function. The exact function G(x)
according to (11) is plotted by a solid line, the approximation GA(x) after
(16) by a dashed line, and the diference between both G(x) − GA(x) by a
dotted line.
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Here ρi, vi, pi are the density, velocity, and the pressure of the ions. Similarly,
ρp, vp, pp are the density, velocity, and pressure of the passive plasma. Further,
g∗ is the effective gravitational acceleration, and Rpi is the frictional force, which
is described in the text below (see Eq. 8). As another major approximation we
use the assumption of isothermality. The validity of these approximations is
discussed later in the text. Then we include state equations for partial gas
pressures for both components to the set of equations,

pp = a2
pρp (3a)
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i ρi. (3b)
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with mCAK force multipliers k, α, δ. Here L∗ is the luminosity of the star, vth

is the thermal velocity of the ions, and σref
e is a reference value of opacity for

Thomson scattering. Because now radiative acceleration is acting on absorbing
ions only, we used a scalling factor η with the value η = 0.0127 for solar abun-
dance. Finally, ffin is the correction for a finite size disk of the star (Castor et
al. 1975; Friend & Abbott 1986; Pauldrach et al. 1986)

ffin(r) =
(1 + σ)α+1 − (1 + σµ2

∗)

σ(σ + 1)α(1 − µ2
∗)(α + 1)

, (5)

where σ is given by

σ =
r
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and fion is the correction for an ionization state of the stellar wind,

fion(r) =

(
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)δ

, (7)

where W (r) corresponds to the geometric dilution factor. Number density of
the electrons ne roughly corresponds to the number density of passive plasma.
Interaction between passive plasma and absorbing ions is provided by Coulomb
collisions. Those interactions are described by the frictional force Rpi per unit
volume, using the well known Chandrasekhar formula for dynamical friction (see
Chandrasekhar 1943; Spitzer 1956)

Rpi = npnikpiG(xpi) (8)

Here np , ni are number densities of passive plasma and absorbing ions, respec-
tively, the frictional coefficient kpi is given by

kpi =
4π ln ΛZp

2Zi
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where Zi e,Zp e are the ion and passive plasma charges, respectively, and lnΛ is
the Coulomb logarithm, defined as
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kB is the Boltzmann constant, n is the total number density, T is the wind
temperature, and G(x) is the Chandrasekhar function which is defined in terms
of the error function Φ(xpi) Spitzer (1956)

G(xpi) =
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2x2
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2
√
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This function depends on the ion separation drift speed relative to the passive
plasma xpi, scaled to the mass-weighted thermal speed (Owocki & Puls 2002)

xpi =
|vi − vp|

vth

√

1 + Ai/Ap

, (12)

Ai and Ap stand for the mean atomic mass of ions and passive plasma in atomic
units.
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Figure 2. Upper left panel: The initial condition of velocity for a time de-
pendent two-component model of a τ Sco star from Table 1. This star was
chosen due to its predicted well coupled stellar wind. Upper right panel: After
few time steps we can see, how the velocity profile is attracted to the CAK
solution. Lower left panel: The same situation but much later and closer to
the CAK solution. Lower right panel: Finally, it converged to the CAK type
solution. We compared our two-component model with a one-component sim-
ulation. We see that the two-component solution (dashed line) corresponds
with the one component solution (solid line).

3. Method of solution

For solving a coupled system of hydrodynamical equations we used the classi-
cal Eulerian scheme. Equations (1) and (2) are discretized using an operator-
splitting time-explicit finite differences method on a staggered mesh. Advection
fluxes are calculated using van Leer’s monotonic interpolation see (Van Leer
1982). To satisfy the Courant condition of stability we use a time step, which
is the smallest value from calculated time steps from the Courant conditions for
both components, absorbing ions and passive plasma. As an initial condition we
used an exponential velocity profile for the subsonic part and a linear velocity
profile for the supersonic part. Initial density for both components is then calcu-
lated from the equations of continuity. To calculate the radiative force we used
tabulated values of the CAK constants from (Abbott 1982). The most impor-
tant problem which has to be solved is the inclusion of the friction term. If this
term is included, it leads to a big stiffness of equations. Roughly speaking, we
are attempting to model stellar wind on a relatively slow time scale, which rep-
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resents timescale for radiative processes in a situation where the faster processes,
which correspond to friction processes maintain local equilibrium. Due to this
fact, we approximate the friction term by an analytical expression. Namely, we
approximate the Chandrasekhar function by the formula which is analytically
integrable. We use three different aproximations applicable to three parts of the
drift speed interval. For small drift velocity we use (Owocki & Puls 2002)

G1(xpi) ≈
2xpi

3
√

π
for x ≤ x12 (13)

for large drift speed we use (Owocki & Puls 2002)

G3(xpi) ≈
1

2xpi
2

for x ≥ x23 (14)

and finally for values in between we interpolate using a quadratic function,

G2(xpi) ≈ ax2
pi + bxpi + c (15)

where parameters a, b, c are chosen to achieve the best fit. For our model we use
a = −0.176, b = 0.404, c = −0.0011, and x12 = 0.15, x23 = 1.85. The whole
aproximation is given by the sum

GA(xpi) = G1(xpi) + G2(xpi) + G3(xpi) (16)

The function GA(x) and the difference from true Chandrasekhar function is
shown in Fig 1. We can see that in the dynamicaly most important part xpi ≤
xmax

pi = 0.24 of the Chandrasekhar function the difference is very small. Using

Eqn. (16) we are able to calculate the friction term from the analytical expression
at every time step. Boundary conditions were set according to characteristics.

Table 1. Model parameters
Star M Teff R qi/qp α k δ v∞

[M�] [K] [R�] [km.s−1]

B0 90.0 28 500 37 3.0 0.590 0.170 0.09 1800
κ Cas 29 21600 35.4 3.0 0.5 0.287 0.089 800
τ Sco 20 32000 6.7 3.0 0.609 0.156 0.057 1600

For absorbing ions we used a fixed density and an extrapolated momentum flux
at the inner boundary and both extrapolated at the outer boundary. For passive
plasma both variables are fixed at the inner boundary and extrapolated at the
outer boundary. As will be discused in the next section, problems arise when
decoupling occurs, because it changes the outgoing and incoming characteristic
configuration.

4. First simulation

As the first test, we use our code for stars where a well coupled wind is predicted.
More specifically, we test K Cas, τ Sco star and some a B0 star. We used the
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basic stellar parameters for κ Cas and τ Sco we found in Wilson & Dopita
(1985). Stellar parameter for B0 star were taken from Krtička & Kubát (2000).
We summarize our model parameters in Tab. 1. We compare the result of the
simulation with a one-component simulation of the star. As we expected, after
few time steps the solution converged to a mCAK solution, with a corresponding
velocity, v∞. Computed velocity v∞ is also in Tab. 1. This process is illustrate
in Fig. 2.

5. Conclusions

For a well-coupled stellar wind we see that after a few time steps, results con-
verge from arbitrary initial conditions to a solution which corresponds with the
CAK solution. We checked our code on a set of different B stars. Our next
step will be to prove the influence of our assumptions, namely the assumption
of isothermality. This assumption isn’t strictly valid, due to the presence of fric-
tional heating in multicomponent stellar winds. We will also analyse the effect
of decoupling on our method and how this dynamically important effect will
influence our simulations. Also we will test result from Porter & Skouza (1999)
about periodic shell around the star.
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Discussion

S. Owocki: I am glad to see you pursue this challenging problem. Two concerns
regards the stiffnes of the coupled equations in dense limit, and the fast nature
of the ion Abbott mode in the separation limit. I’ts not clear how one bridges
these two limits. Moreover in the separation limit, the high speed of ion Abbott
could seem effectively to make the whole outflow subcritical to this wave mode.
This raises the issue of the proper formulation of the outer boundary, since you
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can no longer simply assume that all the wave characteristic are outward point-
ing there.
Ph. Stee: Why have you used a so high mass and large stellar radius for
you simulation ? It seem more to be parameters for a LBV than a B0 star.
V.Votruba: I used B0 star and stellar parameters from Krtička & Kubát
(2000), because we want to compare result from stationary and time depen-
dent code. But of course, we studied more than only one star, as we can see
from Tab. 1.


