Searching for runaway stars in supernova remnants

Oliver Lux, Ralph Neuhäuser, Markus Mugrauer

Astrophysikalisches Institut und Universitäts-Sternwarte Jena

Stars on the run II Potsdam, 25.-30.08.2019 Version with minor changes, Jena, 14.11.2019

1 Introduction

2 Sample selection

Observations

5 Summary and future work

Motivation

Introduction

 Search for runaway stars in near and historical core-collapse SNRs
 → conclusions about the nature of the SNe and the evolution of their progenitor systems

SNR S147, Dincel et al. 2015

Vela, apod.nasa.gov / Marco Lorenzi

Motivation

Introduction

- Search for runaway stars in near and historical core-collapse SNRs
 → conclusions about the nature of the SNe and the evolution of their progenitor systems
- Up to now, most studies focussed on Oand B-type runaway stars → Now we also consider later spectral types

SNR S147, Dincel et al. 2015

Vela, apod.nasa.gov / Marco Lorenzi

Motivation

Introduction

- Search for runaway stars in near and historical core-collapse SNRs
 → conclusions about the nature of the SNe and the evolution of their progenitor systems
- Up to now, most studies focussed on Oand B-type runaway stars → Now we also consider later spectral types
- Using precise Gaia astrometry
 → More candidates, smaller errors
- This way we should find all nearby runaway stars and constrain their production rate
- If a neutron star is known, we could determine its kinematic age

SNR S147, Dincel et al. 2015

Vela, apod.nasa.gov / Marco Lorenzi

- Production mechanisms:
 - Dynamical ejection (Poveda et al. 1967)
 - Ejection from a binary system after a SN (Blaauw 1961)
- Velocities $(25 \lesssim v_{pec} \lesssim 1000) \, km/s$ (Tetzlaff PhD, U Jena)
- Different directions compared to the bulk motion of stars

- Production mechanisms:
 - Dynamical ejection (Poveda et al. 1967)
 - Ejection from a binary system after a SN (Blaauw 1961)
- Velocities (25 $\lesssim v_{pec} \lesssim 1000$) km/s (Tetzlaff PhD, U Jena)
- Different directions compared to the bulk motion of stars
- Walkaway stars: Binary SN ejection with $v_{pec} \lesssim 25 \, \text{km/s}$

• Production mechanisms:

- Dynamical ejection (Poveda et al. 1967)
- Ejection from a binary system after a SN (Blaauw 1961)
- Velocities (25 $\lesssim v_{pec} \lesssim 1000$) km/s (Tetzlaff PhD, U Jena)
- Different directions compared to the bulk motion of stars
- Walkaway stars: Binary SN ejection with $v_{pec} \lesssim 25 \ \text{km/s}$
- *Hypervelocity stars*: Higher velocity, accelerated by dynamical interaction with *Sgr A**

Introduction

- Hoogerwerf et al. (2000, 2001):
 - \rightarrow Traceback of 56 runaway star trajectories from $\it Hipparcos$ data
 - → Suggested common origin of ζ Oph and PSR B1929+10, falsified by later works Update: ζ Oph connected with PSR B1706–16 and the SN that ejected ⁶⁰Fe found in the earth crust (Neuhäuser, Gießler, Hambaryan 2019)
 - \rightarrow Suggested common origin of AE Aur, μ Col and ι Ori

Introduction

- Hoogerwerf et al. (2000, 2001):
 - \rightarrow Traceback of 56 runaway star trajectories from $\it Hipparcos$ data

→ Suggested common origin of ζ Oph and PSR B1929+10, falsified by later works Update: ζ Oph connected with PSR B1706-16 and the SN that ejected ⁶⁰Fe found in the earth crust (Neuhäuser, Gießler, Hambaryan 2019) → Suggested common origin of AE Aur, μ Col and ι Ori

• Tetzlaff et al. (2009–2014)

 \rightarrow Determination of kinematic ages of 18 young neutron stars from OR specific and supremum stars

OB-associations and runaway stars

Introduction

- Hoogerwerf et al. (2000, 2001):
 - \rightarrow Traceback of 56 runaway star trajectories from $\it Hipparcos$ data

→ Suggested common origin of ζ Oph and PSR B1929+10, falsified by later works Update: ζ Oph connected with PSR B1706–16 and the SN that ejected ⁶⁰Fe found in the earth crust (Neuhäuser, Gießler, Hambaryan 2019)

- \rightarrow Suggested common origin of AE Aur, μ Col and ι Ori
- Tetzlaff et al. (2009–2014)

 \rightarrow Determination of kinematic ages of 18 young neutron stars from OB-associations and runaway stars

• Dinçel et al. (2015):

 \rightarrow Association between HD 37424 and PSR J0538+2817 in SNR S147

Introduction

- Hoogerwerf et al. (2000, 2001):
 - \rightarrow Traceback of 56 runaway star trajectories from $\it Hipparcos$ data

→ Suggested common origin of ζ Oph and PSR B1929+10, falsified by later works Update: ζ Oph connected with PSR B1706–16 and the SN that ejected ⁶⁰Fe found in the earth crust (Neuhäuser, Gießler, Hambaryan 2019)

- \rightarrow Suggested common origin of AE Aur, μ Col and ι Ori
- Tetzlaff et al. (2009-2014)

 \rightarrow Determination of kinematic ages of 18 young neutron stars from OB-associations and runaway stars

• Dinçel et al. (2015):

 \rightarrow Association between HD 37424 and PSR J0538+2817 in SNR S147

- Boubert et al. (2017)
 - \rightarrow Bayesian runaway probabilities of stars in 10 northern SNRs from Gaia-data
 - \rightarrow 3 good candidates (inkl. HD 37424)

Introduction

- Hoogerwerf et al. (2000, 2001):
 - \rightarrow Traceback of 56 runaway star trajectories from $\it Hipparcos$ data

→ Suggested common origin of ζ Oph and PSR B1929+10, falsified by later works Update: ζ Oph connected with PSR B1706–16 and the SN that ejected ⁶⁰Fe found in the earth crust (Neuhäuser, Gießler, Hambaryan 2019)

- \rightarrow Suggested common origin of AE Aur, μ Col and ι Ori
- Tetzlaff et al. (2009–2014)

 \rightarrow Determination of kinematic ages of 18 young neutron stars from OB-associations and runaway stars

• Dinçel et al. (2015):

 \rightarrow Association between HD 37424 and PSR J0538+2817 in SNR S147

- Boubert et al. (2017)
 - \rightarrow Bayesian runaway probabilities of stars in 10 northern SNRs from Gaia-data
 - ightarrow 3 good candidates (inkl. HD 37424)
- Renzo et al. (2019)

 \rightarrow Population synthesis of massive binaries $\rightarrow \sim 67~\%$ of all binaries eject the secondary; $\sim 95^{+2}_{-14}~\%$ of all ejected MS-companions are *Walkaway* stars

• We want to find runaways from core-collapse SNe, down to the latest possible spectral types

- We want to find runaways from core-collapse SNe, down to the latest possible spectral types
- Distance limit from limiting magnitude of VLT/UVES: m = 19 mag

- We want to find runaways from core-collapse SNe, down to the latest possible spectral types
- Distance limit from limiting magnitude of VLT/UVES: m = 19 mag
- For $d \approx 500 \,\mathrm{pc}$: Spec. types M1 M2 \rightarrow **5 SNRs**

- We want to find runaways from core-collapse SNe, down to the latest possible spectral types
- Distance limit from limiting magnitude of VLT/UVES: m = 19 mag
- For $d \approx 500 \,\mathrm{pc}$: Spec. types M1 M2 \rightarrow **5 SNRs**
- Plus Monoceros Loop, $d = 0.6 1.6 \,\mathrm{kpc}$

- We want to find runaways from core-collapse SNe, down to the latest possible spectral types
- Distance limit from limiting magnitude of VLT/UVES: m = 19 mag
- For $d \approx 500 \,\mathrm{pc}$: Spec. types M1 M2 \rightarrow **5 SNRs**
- Plus Monoceros Loop, $d = 0.6 1.6 \,\mathrm{kpc}$
- Plus 3 historical SNRs, age exactly known

- We want to find runaways from core-collapse SNe, down to the latest possible spectral types
- Distance limit from limiting magnitude of VLT/UVES: m = 19 mag
- For $d \approx 500 \,\mathrm{pc}$: Spec. types M1 M2 \rightarrow **5 SNRs**
- Plus Monoceros Loop, $d = 0.6 1.6 \,\mathrm{kpc}$
- Plus 3 historical SNRs, age exactly known
- SNR data taken from catalogs from Green (2009, 2014)
 → e.g. Geometrical center coordinates and U Manitoba (Ferrand & Safi-Harb 2012)

Candidate selection SNRs

Sample selection

- Vela, Vela Jr., Lupus Loop, Cygnus Loop, HB9, Monoceros Loop
- Historical: Cas A, 3C58 (SN 1181), SN 393

Cassiopeia A, Multi-wavelength (Spitzer, HST, Chandra) NASA / JPL-Caltech

3C58, Chandra X-ray NASA/CXC/SAO

Vela region, X-ray MPE Garching

Cygnus Loop, GSH H α , U Jena

Oliver Lux (AIU Jena)

Runaway stars in SNRs

Jena, 14.11.2019 7 / 23

• Stellar positions, proper motions and parallaxes from Gaia

Wikimedia Commons / ESA D. Ducros, 2013

- Stellar positions, proper motions and parallaxes from Gaia
- Maximum runaway velocity 1280 (550) km/s for stars with 0.9 (10) M_{\odot} (Tauris 2015), but much smaller on average

Wikimedia Commons / ESA D. Ducros, 2013

- Stellar positions, proper motions and parallaxes from Gaia
- Maximum runaway velocity 1280 (550) km/s for stars with 0.9 (10) M_{\odot} (Tauris 2015), but much smaller on average
- Estimation of a search radius with $v_{max} = 1000 \text{ km/s}$ $\rightarrow r_{search} = 3.49 \times \frac{age[yr]}{dist[pc]} \text{ arcmin}$

Wikimedia Commons / ESA D. Ducros, 2013

- Stellar positions, proper motions and parallaxes from Gaia
- Maximum runaway velocity 1280 (550) km/s for stars with 0.9 (10) M_{\odot} (Tauris 2015), but much smaller on average
- Estimation of a search radius with $v_{max} = 1000 \text{ km/s}$ $\rightarrow r_{search} = 3.49 \times \frac{age[yr]}{dist[pc]} \text{ arcmin}$
- Gaia parallax has to be consistent with the distance of the SNR

Wikimedia Commons / ESA D. Ducros, 2013

- Stellar positions, proper motions and parallaxes from Gaia
- Maximum runaway velocity 1280 (550) km/s for stars with 0.9 (10) M_{\odot} (Tauris 2015), but much smaller on average
- Estimation of a search radius with $v_{max} = 1000 \text{ km/s}$ $\rightarrow r_{search} = 3.49 \times \frac{age[yr]}{dist[pc]} \operatorname{arcmin}$
- Gaia parallax has to be consistent with the distance of the SNR
- Tracing back the trajectories of the stars
 → Candidate, if position at the time
 of the SN is within the error range of
 the geometrical center, or of an
 associated neutron star

Wikimedia Commons / ESA D. Ducros, 2013

Monoceros Loop Sample selection

- Diameter 220 arcmin
- $\bullet~$ Distance $1100\pm500\,{\rm pc}$
- Age 90000 \pm 60000 yr
- No associated PSR

GSH H α , Uni Jena Runaway stars in SNRs

Jena, 14.11.2019 9 / 23

Monoceros Loop Sample selection

GSH H α , Uni Jena

- Diameter 255 arcmin
- Distance $275 \pm 25 \text{ pc}$
- Age $18000 \pm 9000 \, \mathrm{yr}$
- PSR characteristic age 11300 yr

Vela (XYZ) Sample selection

- Geometric center and error ellipse
- Vela PSR.
 - x: current position,
 - ◇: Position at time of SN with error ellipse
- Gaia DR2 candidate
- Star A from Fraser & Boubert (2019) (*Gaia* DR2)

Oliver Lux (AIU Jena)

G347.3-00.5 from SN 393

Sample selection

- Diameter 65×55 arcmin
- $\bullet~$ Distance $1300\pm400\,\text{pc}$
- Age 1626 yr
- 10 runaway candidates from *Gaia* DR2

Oliver Lux (AIU Jena)

Observations of runaway candidates

Observations

- High-resolution spectroscopy
- Up to now: Observations of runaway candidates in 7 SNRs with VLT/UVES (Chile, South) and Subaru/HDS (Hawaii, North)
- Selected from Gaia DR1 TGAS (distance limit 1.6 kpc); fainter stars from DR2 are yet to be observed

Wikimedia Commons / ESO (top); Denys (bottom)

Spectral properties of runaway stars

- (Re)determination of the spectral type
- For FGKM-stars: Lithium 6708 Å as indicator for a low age
- Exclude additional absorption lines, which would indicate that the star lies in the background
- Radial velocity: Consistent with motion away from the SNR center?
- Rotational velocity: Mass transfer?
- Later: SN debris in the stellar atmosphere (heavy- and α elements) \rightarrow clear proof

Spectra Analysis

• VLT: Observations of 33 candidates in 5 SNRs \rightarrow Lithium detected in 5 stars, among which 4 can be excluded as giants \rightarrow 1 good candidate

Spectra - Parameter fits with iSpec Analysis

- Wavelength range 6035 7003 Å
- Fitting of model spectra to Fe, Ca, Si and Ni lines to determine the atmospheric parameters (temperature, surface gravity, metallicity, micro- and macroturbulence, rotational velocity)
- Radial velocity v_r measured with iSpec, Li equivalent width (EW) with IRAF splot

Cal 6122 Å

Star	T_{eff} / K	Li EW / Å	Li log(N)	v _r / km/s	v _{space} / km/s
Monoceros 1	7138 ± 397	0.031 ± 0.014	$2.67^{+0.15}_{-0.27}$	22.27 ± 0.41	25.69 ± 0.43

Spectral type F0 – F3 from T_{eff} according to Pecaut & Mamajek 2013 \rightarrow very uncertain, comparison to reference stars yields F1 – F2

Comparison to cluster ages

Analysis

• Curves (fitted to dots): T_{eff} vs. Li EW for clusters of different ages

Comparison to cluster ages

Analysis

- Curves (fitted to dots): *T_{eff}* vs. Li EW for clusters of different ages
- Rectangle: *T_{eff}* and Li EW ranges for our Li candidate
- Comparison to cluster ages (Mamajek) yields $90 250 \text{ Myr} \rightarrow \text{too old}$

Jena, 14.11.2019

Lithium abundances and applicability Analysis

					Effectiv	re Temperature							
$\log W_\lambda(6708)$	4000	4250	4500	4750	5000	5250	5500	5750	6000	6250	6500		
3.00	3.571	3.821	4.221	4.653					-	_	_		
2.95	3.451	3.700	4.099	4.527	4.969	_	_	_					
2.90	3.327	3.577	3.973	4.400	4.815	_		_			_		
2.85	3.202	3.447	3.836	4.261	4.662	- 1	_			_			
2.80	3.068	3.307	3.691	4.115	4.508	4.904		_					
2.75	2.925	3.159	3.538	3.959	4.348	4.712		_			-		
2.70	2.773	3.003	3.370	3.788	4.173	4.519	4.874	-	-				
2.65	2.603	2.825	3.183	3.591	3.973	4.317	4.642	4.978	-	-			
2.60	2.419	2.628	2.973	3.376	3.746	4.088	4.409	4.708	5.000		_		
2.55	2.212	2.413	2.741	3.128	3.492	3.832	4.146	4.438	4.714	4.971	-		
2.50	1.980	2.176	2.495	2.872	3.226	3.557	3.872	4.161	4.429	4.686	4.900		
2.45	1.740	1.936	2.256	2.624	2.967	3.295	3.600	3.889	4.154	4.400	4.637		
2.40	1.517	1.722	2.045	2.404	2.745	3.065	3.367	3.647	3.907	4.149	4.377		
2.35	1.324	1.540	1.870	2.225	2.559	2.873	3.167	3.440	3.694	3.929	4.152		
2.30	1.163	1.386	1.725	2.079	2.400	2.715	3.000	3.271	3.517	3.747	3.962		
2.25	1.029	1.265	1.596	1.953	2.280	2.580	2.868	3.130	3.368	3.593	3.803		
2.20	0.920	1.156	1.496	1.845	2.167	2.472	2.751	3.005	3.246	3.469	3.676		
2.15	0.816	1.061	1.397	1.750	2.071	2.370	2.649	2.906	3.140	3.357	3.561		
2.10	0.729	0.972	1.315	1.663	1.980	2.282	2.557	2.808	3.043	3.260	3.463		
2.05	0.645	0.895	1.233	1.580	1.902	2.196	2.474	2.726	2.956	3.170	3.371		
2.00	0.567	0.817	1.158	1.507	1.823	2.123	2.393	2.645	2.876	3.090	3.289		
1.95	0.496	0.748	1.089	1.435	1.753	2.050	2.323	2.570	2.797	3.011	3.208		
1.90	0.426	0.681	1.019	1.367	1.685	1.979	2.252	2.501	2.729	2.941	3.138		
1.85	0.360	0.613	0.956	1.303	1.618	1.915	2.184	2.432	2.660	2.873	3.069		
1.80	0.297	0.552	0.894	1.239	1.556	1.851	2.122	2.367	2.593	2.804	3.000		
1.75	0.235	0.492	0.832	1.178	1.496	1.789	2.060	2.307	2.533	2.743	2.939		
1.70	0.177	0.432	0.775	1.122	1.436	1.731	1.998	2.246	2.473	2.683	2.878		
1.65	0.123	0.376	0.723	1.065	1.379	1.674	1.947	2.188	2.413	2.623	2.817		
1.60	0.070	0.324	0.672	1.008	1.328	1.617	1.896	2.137	2.361	2.569	2.764		
1.55	0.017	0.272	0.620	0.956	1.277	1.564	1.846	2.087	2.311	2.519	2.714		
1.50	-0.036	0.220	0.566	0.904	1.226	1.513	1.794	2.036	2.260	2.470	2.665		
1.45	-0.089	0.166	0.510	0.853	1.173	1.462	1.739	1.985	2.210	2.420	2.615		
1.40	-0.143	0.111	0.455	0.801	1.118	1.411	1.683	1.930	2.156	2.367	2.561		
1.35	-0.196	0.057	0.400	0.747	1.063	1.358	1.628	1.875	2.101	2.312	2.506		
1.30	-0.249	0.002	0.347	0.694	1.009	1.305	1.573	1.820	2.046	2.257	2.451		
1.25	-0.302	-0.052	0.293	0.640	0.956	1.251	1.519	1.766	1.992	2.202	2.396		
1.20	-0.355	-0.107	0.240	0.586	0.903	1.198	1.466	1.713	1.939	2.149	2.342		
1.15	-0.409	-0.162	0.186	0.534	0.850	1.146	1.412	1.660	1.886	2.096	2.289		

TABLE 2. Lithium abundances for the 6708 Å feature.

Soderblom et al. (1993)

_

Lithium abundances and applicability Analysis

					Effectiv	tive Temperature							
$\log W_\lambda(6708)$	4000	4250	4500	4750	5000	5250	5500	5750	6000	6250	6500		
3.00	3.571	3.821	4.221	4.653			-		-	_	_		
2.95	3.451	3.700	4.099	4.527	4.969		_	_					
2.90	3.327	3.577	3.973	4.400	4.815	_		_			_		
2.85	3.202	3.447	3.836	4.261	4.662	- 1	_			_			
2.80	3.068	3.307	3.691	4.115	4.508	4.904		_					
2.75	2.925	3.159	3.538	3.959	4.348	4.712		_			-		
2.70	2.773	3.003	3.370	3.788	4.173	4.519	4.874		-				
2.65	2.603	2.825	3.183	3.591	3.973	4.317	4.642	4.978	-	-			
2.60	2.419	2.628	2.973	3.376	3.746	4.088	4.409	4.708	5.000		_		
2.55	2.212	2.413	2.741	3.128	3.492	3.832	4.146	4.438	4.714	4.971	_		
2.50	1.980	2.176	2.495	2.872	3.226	3.557	3.872	4.161	4.429	4.686	4.900		
2.45	1.740	1.936	2.256	2.624	2.967	3.295	3.600	3.889	4.154	4.400	4.637		
2.40	1.517	1.722	2.045	2.404	2.745	3.065	3.367	3.647	3.907	4.149	4.377		
2.35	1.324	1.540	1.870	2.225	2.559	2.873	3.167	3.440	3.694	3.929	4.152		
2.30	1.163	1.386	1.725	2.079	2.400	2.715	3.000	3.271	3.517	3.747	3.962		
2.25	1.029	1.265	1.596	1.953	2.280	2.580	2.868	3.130	3.368	3.593	3.803		
2.20	0.920	1.156	1.496	1.845	2.167	2.472	2.751	3.005	3.246	3.469	3.676		
2.15	0.816	1.061	1.397	1.750	2.071	2.370	2.649	2.906	3.140	3.357	3.561		
2.10	0.729	0.972	1.315	1.663	1.980	2.282	2.557	2.808	3.043	3.260	3.463		
2.05	0.645	0.895	1.233	1.580	1.902	2.196	2.474	2.726	2.956	3.170	3.371		
2.00	0.567	0.817	1.158	1.507	1.823	2.123	2.393	2.645	2.876	3.090	3.289		
1.95	0.496	0.748	1.089	1.435	1.753	2.050	2.323	2.570	2.797	3.011	3.208		
1.90	0.426	0.681	1.019	1.367	1.685	1.979	2.252	2.501	2.729	2.941	3.138		
1.85	0.360	0.613	0.956	1.303	1.618	1.915	2.184	2.432	2.660	2.873	3.069		
1.80	0.297	0.552	0.894	1.239	1.556	1.851	2.122	2.367	2.593	2.804	3.000		
1.75	0.235	0.492	0.832	1.178	1.496	1.789	2.060	2.307	2.533	2.743	2.939		
1.70	0.177	0.432	0.775	1.122	1.436	1.731	1.998	2.246	2.473	2.683	2.878		
1.65	0.123	0.376	0.723	1.065	1.379	1.674	1.947	2.188	2.413	2.623	2.817		
1.60	0.070	0.324	0.672	1.008	1.328	1.617	1.896	2.137	2.361	2.569	2.764		
1.55	0.017	0.272	0.620	0.956	1.277	1.564	1.846	2.087	2.311	2.519	2.714		
1.50	-0.036	0.220	0.566	0.904	1.226	1.513	1.794	2.036	2.260	2.470	2.665		
1.45	-0.089	0.166	0.510	0.853	1.173	1.462	1.739	1.985	2.210	2.420	2.615		
1.40	-0.143	0.111	0.455	0.801	1.118	1.411	1.683	1.930	2.156	2.367	2.561		
1.35	-0.196	0.057	0.400	0.747	1.063	1.358	1.628	1.875	2.101	2.312	2.506		
1.30	-0.249	0.002	0.347	0.694	1.009	1.305	1.573	1.820	2.046	2.257	2.451		
1.25	-0.302	-0.052	0.293	0.640	0.956	1.251	1.519	1.766	1.992	2.202	2.396		
1.20	-0.355	-0.107	0.240	0.586	0.903	1.198	1.466	1.713	1.939	2.149	2.342		
1.15	-0.409	-0.162	0.186	0.534	0.850	1.146	1.412	1.660	1.886	2.096	2.289		

TABLE 2. Lithium abundances for the 6708 Å feature.

Soderblom et al. (1993)

Oliver Lux (AIU Jena)

_

Lithium abundances and applicability Analysis

	[Effectis	a Tampa	ratura				
$\log W_\lambda(6708)$	4000	4250	4500	4750	5000	5250	5500	5750	6000	6250	6500
3.00	3.571	3.821	4.221	4.653			-		_	_	_
2.95	3.451	3.700	4.099	4.527	4.969	-	_	_			
2.90	3.327	3.577	3.973	4.400	4.815			-			-
2.85	3.20	T							1 .	_	-
2.80	3.06	-							· ·	-	_
2.75	2.92	-							- :	_	_
2.70	2.60	-	Li I 6	708 Å				, logg=4.5		_	_
2.60	2.41	2					//	· logg=3.5	100	_	_
2.55	2.21	5				/			'14	4.971	_
2.50	1.09								120	4 696	4 000
2.45	1.74	~ ľ				for the second		5	54	4 400	4.637
2.40	1.51	e F		/		6.			107	4.149	4.377
2.35	1.32	돌는				[[] ,	/		i94	3.929	4.152
2.30	1.16	5 2 H		/ /	6	1		-	÷17	3.747	3.962
2.25	1.02	š –	/	· [!		/ Te=	000		168	3.593	3.803
2.20	0.92	-		li li		/			246	3.469	3.676
2.15	0.81	° L		1 1		/			40	3.357	3.561
2.10	0.72		/	li li					143	3.260	3.403
2.05	0.04	. [/			-5500					5.170	5.571
2.00	0.56	1 7.	=4000 /: '	•****5000 ·**					176	3.090	3.289
1.95	0.49	-	1						197	3.011	3.208
1.90	0.42	_T_e	=4500			v	=2.0	km s ⁻¹	129	2.941	3.069
1.80	0.29	-					TORB		;93	2.804	3.000
1.75	0.23	L.				1			i33	2.743	2.939
1.70	0.17	<u> </u>							173	2.683	2.878
1.65	0.12		0	1	2	3		4	113	2.623	2.817
1.60	0.07				log N	(Li)			361	2.569	2.764
1.55	0.01 F	igure 5. Li	ι λ6707 8	curves of a	rowth for t	emperatur	es betweer	3500 K ar	311 Id	2.519	2.714
1.50	-0.03 6	000 K from	Pavlenko	& Magazz	ü (1996), T	he solid li	nes are for	$\log g = 4.$	5; 260	2.470	2.665
1.45	-0.08 th	e dashed lir	nes are for	$\log g = 3.2$	5.				210	2.420	2.615
1.40	-0.145	0.111	0.433	0.001	1.110	1.411	1.005	1.950	∠.156	2.367	2.561
1.35	-0.196	0.057	0.400	0.747	1.063	1.358	1.628	1.875	2.101	2.312	2.506
1.30	-0.249	0.002	0.347	0.694	1.009	1.305	1.573	1.820	2.046	2.257	2.451
1.25	-0.302	-0.052	0.293	0.586	0.956	1.251	1.319	1.700	1.992	2.202	2 342
1.15	-0.409	-0.162	0.186	0.534	0.850	1.146	1.412	1.660	1.886	2.096	2.289
						6				1	
						S	oderl	olom	et al	. (19	90

TABLE 2. Lithium abundances for the 6708 Å feature

Lithium abundances and applicability

Analysis

F. D'Antona and I. Mazzitelli: Lithium depletion in stars

Table 6. See Table 1, but $M = 1.1 M_{\odot}$

		TABL	E 2. Litl	hium abu	indances	for the 6	5708 Å feat		$\log(L/L_{\odot})$	$\log T$	$\log T$	1080	м	Т	Li/init
					Effectiv	e Temper	rature	= 105(uBe)	105(1)10	, 10,51,6	10810	TOBE?	- Conv	* conv	
$\log W_{\lambda}(6708)$	4000	4250	4500	4750	5000	5250	5500	5 4.001	1.602	3.659	5.925	-1.997			1.000
2.00	3 571	2 921	4 221	4 652				5.016	0.959	3.647	6.215	-1.127			1.000
2.95	3 451	3,700	4.099	4.527	4.969	_		6.007	0.269	3.624	6.507	-0.249			1.000
2.90	3.327	3.577	3.973	4.400	4.815			· 6.267	0.097	3.621	6.580	-0.001	0.073	6.531	0.998
2.85	3.20							6.717	-0.170	3.622	6.691	0.521	0.407	6.523	0.974
2.80	3.06	-	1					7.018	-0.262	3.633	6.789	0.991	0.701	6.480	0.951
2.75	2.92	-						7.174	-0.181	3.657	6.868	1.304	0.863	6.408	0.949
2.65	2.60	-	Li I 6'	708 Å			_ K	⁹ 8.111	0.007	3.761	7.136	1.874			0.949
2.60	2.41	3 –					1	9.014	0.056	3.769	7.149	1.949			0.949
2.55	2.21:	-													
2.50	1.98	-													
2.45	1.74	A -		/			and the second s								
2.35	1.32	2 -				[[]	/	Table 7.	See Table 1, b	ut $M = 1.2$	M_{\odot}				
2.30	1.16	2 -		/ /		<i>[</i>]									
2.25	1.02					(/Ter=0	000	log(age)	$\log(L/L_{\odot})$) $\log T_e$	$\log T_c$	$\log \varrho_c$	M_{conv}	T_{conv}	Li/init
2.20	0.92			- / · · .		/		4.000		2.00	5.0.12	2 017			1.000
2.10	0.72	¥ -	/					4.020	1.001	3.004	5.945	-2.017			1.000
2.05	0.64	- F /	/ /:		1			5.007	1.030	3.030	0.234	-1.14/	0.000	6 515	1.000
2.00	0.56	1 7		a-5000 Ter	5500			6.005	0.328	3.030	0.527	-0.261	0.009	0.515	0.000
1.95	0.49		1					0.283	0.144	3.027	0.399	0.014	0.144	0.322	0.998
1.90	0.42	-T _{eff}	-4500			v	=2.0 kr	0.014	-0.049	3.627	0.079	0.404	0.397	6.514	0.990
1.85	0.30	-					TURB N.O ILI	. 7.030	-0.105	3.052	0.828	1.089	0.815	0.422	0.980
1.75	0.23					1	1	8.058	0.188	3.791	7.104	1.876			0.980
1.70	0.17							9.012	0.252	3.800	/.180	1.979			0.980
1.65	0.12		0	1	2	3	4								
1.60	0.07				log N	(Li)			111 2.507	2.704					
1.55	0.01 Fi	gure 5. Li 1	λ6707.8 α	urves of g	rowth for to	emperature	es between 3:	500 K and	2.515	2./ 14					
1.50	-0.03 60	00 K from	Pavlenko	& Magazzi	i (<mark>1996</mark>). T	he solid lin	nes are for lo	g g = 4.5;	260 2.470	2.665					
1.45	-0.08 th	e dashed lin	es are for	$\log g = 3.2$	5.				210 2.420	2.615					
1.35	-0.196	0.057	0.400	0.747	1.063	1.358	1.628	1.875 2.1	101 2.312	2.506					
1.30	-0.249	0.002	0.347	0.694	1.009	1.305	1.573	1.820 2.0	046 2.257	2.451					
1.25	-0.302	-0.052	0.293	0.640	0.956	1.251	1.519	1.766 1.9	992 2.202	2.396					
1.20	-0.355	-0.107	0.240	0.586	0.903	1.198	1.466	1.713 1.9	939 2.149	2.342					
1.15	-0.409	-0.162	0.186	0.534	0.850	1.140	1.412	1.000 1.8	550 2.096	2.289					
Soderblom et al. (1993)															

Lithium abundances and applicability

Analysis

F. D'Antona and I. Mazzitelli: Lithium depletion in stars

Table 6. See Table 1, but $M = 1.1 M_{\odot}$

		TABL	.E 2. Lit	hium abu	indances	for the 6	5708 A feat	log(age)	$\log(L/L_{\odot})$	$\log T$.	$\log T$	log a.	<i>M</i>	Τ	Li/init
					Effectiv	e Tempe	rature		8()0	,8-e	8-6	840	conv	- conv	
$\log W_{\lambda}(6708)$	4000	4250	4500	4750	5000	5250	5500	4.001	1.602	3.659	5.925	-1.997			1.000
2.00	2 571	2 021	4 221	4 (52				5.016	0.959	3.647	6.215	-1.127			1.000
2.00	3.451	3 700	4.221	4.033	4 969	_		6.007	0.269	3.624	6.507	-0.249			1.000
2.90	3.327	3.577	3.973	4.400	4.815	_		6.267	0.097	3.621	6.580	-0.001	0.073	6.531	0.998
2.85	3.20							6.717	-0.170	3.622	6.691	0.521	0.407	6.523	0.974
2.80	3.06	Ľ				1		7.018	-0.262	3.633	6,789	0.991	0.701	6.480	0.951
2.75	2.92	L						7.174	-0.181	3.657	6.868	1.304	0.863	6.408	0.949
2.70	2.77.		Li I 6	708 Å			_ lo	8.111	0.007	3.761	7.136	1.874			0.949
2.60	2.41	2					/ 10	9.014	0.056	3 769	7 1 4 9	1 949			0.949
2.55	2.21	5				/			0.050			10.0			
2.50	1.98	E													
2.45	1.74 ;	a L				and the second second									
2.40	1.51	e L			l.	le l	·/	Table 7.	See Table 1. b	ut $M = 1.2$	M ~ -> S	pT F7 (Pe	ecaut &	Mamaie	ek 2013)
2.35	1.32	ã . L		/	li li	· / /	/				0	1 N			<u>(</u>
2.25	1.02	₹° [/			l ha	1000	log(age)	$\log(L/L_{\odot})$) log T.	$\log T$.	log o.	М	<i>T</i>	Li/init
2.20	0.92	9 F				/			8()-0	,	8-6	840	CORV	- conv	
2.15	0.81	0		1 1		/		4.020	1.661	3.664	5.943	-2.017			1.000
2.10	0.72	- r	/ /					5.007	1.030	3.656	6.234	-1.147			1.000
2.05	0.04	. [/			6500			6.005	0.328	3.630	6.527	-0.261	0.009	6.515	1.000
2.00	0.56	1 /ī.	,=4000 /	a				6.283	0.144	3.627	6.599	0.014	0.144	6.522	0.998
1.95	0.49		E.					6.614	-0.049	3.627	6.679	0.404	0.397	6.514	0.990
1.85	0.36	-7.4	=4500			v	TURB=2.0 kn	7.030	-0.105	3.652	6.828	1.089	0.815	6.422	0.980
1.80	0.29	-						8.058	0.188	3 791	7.164	1.876	010110	01162	0.980
1.75	0.23	- L		بتبليت				9.012	0.252	3 800	7 186	1 979			0.980
1.70	0.17		0	1	2	3	4	5.012	0.202	51000	1.100	1.575			01500
1.65	0.12		-	-		(11)									
1.55	0.01				log N	(LI)		í	11 2.519	2.714					
1.00	F	igure 5. Li	ι λ6707.8	curves of g	rowth for t	emperatur	es between 35	00 K and	(0 0 17 0						
1.50	-0.03 6	300 K from	Pavlenko	& Magazz	ü (1996). T r	he solid li	nes are for log	g = 4.5;	10 2.4/0	2.665		No+	annl	icabl	o +o
1.40	-0.145	U.111	U.933	$\log g = 3.2$	D. 1.110	1.911	1.00.2		56 2.367	2.561		INOL	appi	ICabl	
1.35	-0.196	0.057	0.400	0.747	1.063	1.358	1.628	.875 2.1	01 2.312	2.506		N.4.			1.11
1.30	-0.249	0.002	0.347	0.694	1.009	1.305	1.573	.820 2.0	46 2.257	2.451		IVIO	iocer	OS I	with
1.25	-0.302	-0.052	0.293	0.640	0.956	1.251	1.519	.766 1.9	92 2.202	2.396		<u>с</u> т		~	
1.20	-0.355	-0.162	0.186	0.534	0.903	1.198	1.400	1.660 1.8	37 2.149 86 2.096	2.289		Spl	-F1-	-2	
	-0.409	-0.102	0.100	0.004	0.000			1.000 1.0				- 14 - 1			
Soderblom et al. (1993)															

Monoceros Loop

Analysis

- Runaway candidates consistent with movement away from the SNR center
- Monoceros 1:
 - ► Li EW = 0.031^{+0.014}_{-0.012} Å
 - $T_{\rm eff} = 7138 \pm 397 \, {
 m K}$
 - SpT \sim F1
 - \rightarrow No conclusive age estimate possible from Li
- HD261393 (Boubert et al. 2017) \rightarrow consistent with beeing a runaway
- +11 further cands. observed in ESO P100

Summary

• Search for runaway stars in 9 SNRs; selection of runaway candidates from *Gaia* data and spectroscopic observations with VLT and Subaru

Summary

- Search for runaway stars in 9 SNRs; selection of runaway candidates from *Gaia* data and spectroscopic observations with VLT and Subaru
- Vela (XYZ): 1 DR2 candidate near PSR yet to be observed, Fraser cand. too faint for spectroscopy
- Vela Jr.: Many uncertain cands. (PSR proper motion unknown)
- Monoceros Loop: 13 cands., 1 early-F with Li, 1 from Boubert et al. (2017)
- HB9: No cands. in vicinity of PSR
- Cygnus Loop: 5 DR2 cands., yet to be observed
- Lupus Loop: 2 DR2 cands., yet to be observed
- Cassiopeia A: No cands.
- 3C58: No cands. in vicinity of PSR
- SN 393: 6 DR2 cands. (G < 17.0), yet to be observed

Summary

- Search for runaway stars in 9 SNRs; selection of runaway candidates from *Gaia* data and spectroscopic observations with VLT and Subaru
- Vela (XYZ): 1 DR2 candidate near PSR yet to be observed, Fraser cand. too faint for spectroscopy
- Vela Jr.: Many uncertain cands. (PSR proper motion unknown)
- Monoceros Loop: 13 cands., 1 early-F with Li, 1 from Boubert et al. (2017)
- HB9: No cands. in vicinity of PSR
- Cygnus Loop: 5 DR2 cands., yet to be observed
- Lupus Loop: 2 DR2 cands., yet to be observed
- Cassiopeia A: No cands.
- 3C58: No cands. in vicinity of PSR
- SN 393: 6 DR2 cands. (G < 17.0), yet to be observed
- \Rightarrow Total: 27 cands.

- Proposals for remaining Gaia DR2 candidates submitted
- Currently: Lux et al. in prep.
- Kinematic analysis of the candidates \rightarrow trace back 3D trajectory (incl. RV)
- If candidates can be verified, redermination of the SNR parameters (age, distance, expansion velocity) and the pre-SN binary properties
- For future searches: Careful re-determination of the explosion sites biggest uncertainty!

Thank you for the attention!

- Metallicity always assumed as $Fe/H\,{=}\,0$ (solar)
- ${\cal T}_{eff}$ can be compared to ${\it Gaia} \; {\rm DR2} \to {\rm Consistent}, \; {\rm but} \; {\rm precision} \; {\rm not} \;$ higher

Star	$T_{ m eff}/ m K$	log(g)	$v_t^{mic}/\text{km/s}$	$v_t^{mac}/\text{km/s}$	$v_{rot} imes \sin(i)/km$
Sun	5973 ± 81	4.66 ± 0.24	0.84 ± 0.26	2.2 ± 0.7	2.5 ± 0.6
lit.	5771	4.44	1.07	4.21	1.60
Monoceros 1	7138 ± 397	3.5 ± 1.4	2.9 ± 1.3	14.2 ± 7.8	8.9 ± 9.8
Gaia	7079 ± 232				
Vela 1	5960 ± 215	4.3 ± 1.0	1.0 ± 0.6	0	0
Gaia	5853 ± 100				
Vela 2	6117 ± 236	4.9	1.3 ± 0.3	2.4 ± 15.7	13.3 ± 3.3
Gaia	5614 ± 228				
Vela Jr 1	6476 ± 205	4.7 ± 0.7	1.2 ± 0.6	0	0
Gaia	6061 ± 192				
Vela Jr 2	6058 ± 171	$\textbf{4.3}\pm\textbf{0.8}$	1.2 ± 0.5	1.4 ± 4.8	0
Gaia	5806 ± 77				