Hypervelocity stars in the *Gaia* era: Runaway B stars beyond the velocity limit of classical ejection mechanisms

Andreas Irrgang¹ Stephan Geier² Simon Kreuzer¹ Thomas Kupfer³ Ulrich Heber¹ Felix Fürst⁴

¹Dr. Karl Remeis-Observatory Bamberg & ECAP, Sternwartstr. 7, 96049 Bamberg, Germany (e-mail: andreas.irrgang@fau.de) ²Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany ³Kavil Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA ⁴European Space Astronomy Centre (ESA/ESAC), Operations Department, Villanueva de la Canada (Madrid), Spain

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

NATURWISSENSCHAFTLICHE FAKULTÄT

Massive main-sequence B-stars in the Galactic halo

Dynamical ejection I: Hills mechanism

Dynamical ejection II: many-body interaction

Supernova explosion disrupting a binary system

Ejection velocities of those "classical" mechanisms

Mechanism	Ejection velocity		Reference
	(km s ⁻¹)		
	~ 99%	~ 100%	
Hills mechanisms		$\lesssim 4000$	Hills (1988)
Many-body interaction	$\lesssim 200$	$\lesssim 400$	Perets & Šubr (2012)
Many-body interaction	$\lesssim 100$	$\lesssim 400$	Oh & Kroupa (2016)
Supernova channel	≲ 200	$\lesssim 400$	Portegies Zwart (2000)
Supernova channel	$\lesssim 400$	≤ 540	Tauris (2015)
Supernova channel	$\lesssim 60$	$\lesssim 400$	Renzo et al. (2019)

 \Rightarrow Ejection velocities $\gtrsim 500 \,\text{km s}^{-1}$ seem to be compatible only with the Hills mechanism and, thus, with an origin in the Galactic center

Hypervelocity stars in the Gaia era

(Copyright: ESA)

HVS 4: still a candidate for the Hills mechanism

Red and blue shaded areas mark regions where 68% and 95% of the trajectories intersected the Galactic plane. $T_{\rm eff} = 13\,280^{+150}_{-140}\,{\rm K}$ $\log(g \,(\mathrm{cm}\,\mathrm{s}^{-2})) = 3.89 \pm 0.07$ $v\sin(i) = 138^{+14}_{-16} \,\mathrm{km}\,\mathrm{s}^{-1}$ $M = 4.0 \pm 0.2 M_{\odot}$ $\tau = 150^{+6}_{-10}$ Myr $d = 78.3^{+8.6}_{-7.2}$ kpc $v_{\rm Grf} = 630^{+120}_{-60} \,\rm km \, s^{-1}$ $P_{\text{bound}} = 0\%$ $v_{\text{Grf,p}} = 680^{+90}_{-30} \,\text{km}\,\text{s}^{-1}$ $v_{\rm ej,p} = 840^{+70}_{-130}\,{\rm km\,s^{-1}}$ $\tau_{\rm flight,p} = 129^{+56}_{-35} \,\rm Myr$ (68%-confidence intervals)

HVS 8: an extreme "classical" disk runaway star?

Red and blue shaded areas mark regions where 68% and 95% of the trajectories intersected the Galactic plane.

 $T_{\rm eff} = 10\,960^{+150}_{-130}\,{\rm K}$ $\log(g (\text{cm s}^{-2})) = 4.04^{+0.08}_{-0.07}$ $v\sin(i) = 282^{+11}_{-27} \,\mathrm{km}\,\mathrm{s}^{-1}$ $M = 2.9^{+0.2}_{-0.1} M_{\odot}$ $\tau = 226^{+24}_{-51}$ Myr $d = 37.2^{+4.4}_{-3.6}$ kpc $v_{\rm Grf} = 500^{+50}_{-40} \,\rm km \, s^{-1}$ $P_{\text{bound}} = 16\%$ $v_{\rm Grf,p} = 570^{+20}_{-10} \,\rm km \, s^{-1}$ $v_{\rm ej,p} = 450^{+40}_{-30} \,\rm km \, s^{-1}$ $\tau_{\rm flight,p} = 87^{+18}_{-14} \,\rm Myr$ (68%-confidence intervals)

HVS 7: a disk runaway star beyond the "classical" limit?

Red and blue shaded areas mark regions where 68% and 95% of the trajectories intersected the Galactic plane.

 $T_{\rm eff} = 12\,500 \pm 110\,{\rm K}$ $\log(g (\text{cm s}^{-2})) = 3.93 \pm 0.05$ $v\sin(i) = 58^{+10}_{-12} \,\mathrm{km}\,\mathrm{s}^{-1}$ $M = 3.5^{+0.2}_{-0.1} M_{\odot}$ $\tau = 185^{+7}_{-10}$ Myr $d = 48.2^{+4.3}_{-3.7}$ kpc $v_{\rm Grf} = 500^{+50}_{-40} \,\rm km \, s^{-1}$ $P_{\text{bound}} = 5\%$ $v_{\text{Grf,p}} = 570^{+20}_{-30} \,\text{km}\,\text{s}^{-1}$ $v_{\rm ej,p} = 530 \pm 30 \,\rm km \, s^{-1}$ $\tau_{\rm flight,p} = 82^{+10}_{-8} \,\rm Myr$ (68%-confidence intervals)

B434: a disk runaway star beyond the "classical" limit!

Red and blue shaded areas mark regions where 68% and 95% of the trajectories intersected the Galactic plane.

 $T_{\rm eff} = 10\,190^{+160}_{-110}\,{\rm K}$ $\log(g \,(\mathrm{cm}\,\mathrm{s}^{-2})) = 3.85 \pm 0.07$ $v\sin(i) = 101^{+14}_{-10} \,\mathrm{km}\,\mathrm{s}^{-1}$ $M = 2.8 \pm 0.1 M_{\odot}$ $\tau = 402^{+16}_{-23}$ Myr $d = 40.5^{+4.7}_{-3.7}$ kpc $v_{\rm Grf} = 380^{+50}_{-40} \,\rm km \, s^{-1}$ $P_{\text{bound}} = 92\%$ $v_{\text{Grf,p}} = 430^{+20}_{-10} \,\text{km}\,\text{s}^{-1}$ $v_{\rm ej,p} = 590 \pm 20 \,\rm km \, s^{-1}$ $\tau_{\text{flight.p}} = 118^{+26}_{-10} \text{ Myr}$ (68%-confidence intervals)

HVS 5: a disk runaway star beyond the "classical" limit!

Red and blue shaded areas mark regions where 68% and 95% of the trajectories intersected the Galactic plane. $T_{\rm eff} = 12\,530^{+130}_{-150}\,{\rm K}$ $\log(g \,(\mathrm{cm}\,\mathrm{s}^{-2})) = 4.20 \pm 0.06$ $v\sin(i) = 131^{+12}_{-13} \,\mathrm{km}\,\mathrm{s}^{-1}$ $M = 3.3 \pm 0.1 M_{\odot}$ $\tau = 97^{+31}_{-37}$ Myr $d = 31.2^{+3.2}_{-2.5}$ kpc $v_{\rm Grf} = 650 \pm 10 \,\rm km \, s^{-1}$ $P_{\text{bound}} = 0\%$ $v_{\rm Grf,p} = 760 \pm 20 \,\rm km \, s^{-1}$ $v_{\rm ej,p} = 640^{+50}_{-40}\,{\rm km\,s^{-1}}$ $\tau_{\text{flight,p}} = 46^{+4}_{-5} \text{ Myr}$ (68%-confidence intervals)

PG 1610+062: a "nearby" disk runaway star

Red and blue shaded areas mark regions where 68% and 95% of the trajectories intersected the Galactic plane. $T_{\rm eff} = 14\,800 \pm 120\,{\rm K}$ $\log(g \,(\mathrm{cm}\,\mathrm{s}^{-2})) = 4.05 \pm 0.05$ $v \sin(i) = 16 \pm 1 \,\mathrm{km}\,\mathrm{s}^{-1}$ $M = 4.4 \pm 0.1 M_{\odot}$ $\tau = 83 \pm 9 \,\mathrm{Myr}$ $d = 17.3^{+1.2}_{-1.0}$ kpc $v_{\rm Grf} = 325 \pm 5 \,\rm km \, s^{-1}$ $P_{\rm bound} = 100\%$ $v_{\text{Grf,p}} = 433^{+6}_{-5} \,\text{km}\,\text{s}^{-1}$ $v_{\rm ei,p} = 553 \pm 13 \,\rm km \, s^{-1}$ $\tau_{\text{flight,p}} = 41 \pm 3 \,\text{Myr}$ (68%-confidence intervals)

PG 1610+062: Insights from high-quality spectra

Spectrograph: ESI at the Keck Observatory, $R = \lambda / \Delta \lambda \approx 8000$, S/N ≈ 100

PG 1610+062: a bona fide main-sequence star

Differential abundance pattern (*top*) and element-to-iron abundance ratios (*bottom*) of PG 1610+062 with respect to the solar neighborhood reference star HD 137366. Error bars are 99% confidence intervals.

Phased ATLAS light curves for PG 1610+062. The oscillation properties ($P_{osc} = 4.34 \pm 0.01 \text{ d}$; semiamplitudes: $21 \pm 11 \text{ mmag}$, $35 \pm 7 \text{ mmag}$) are typical of slowly pulsating B stars, and, thus indicative of a main sequence nature.

Mass and age determination

Kiel diagram with evolutionary tracks from Ekström et al. (2012). Error bars are 68% confidence intervals.

PG 1610+062: Another star beyond the "classical" limit!

Red and blue shaded areas mark regions where 68% and 95% of the trajectories intersected the Galactic plane. $T_{\rm eff} = 14\,800 \pm 120\,{\rm K}$ $\log(g \,(\mathrm{cm}\,\mathrm{s}^{-2})) = 4.05 \pm 0.05$ $v \sin(i) = 16 \pm 1 \,\mathrm{km}\,\mathrm{s}^{-1}$ $M = 4.4 \pm 0.1 M_{\odot}$ $\tau = 83 \pm 9 \,\mathrm{Myr}$ $d = 17.3^{+1.2}_{-1.0} \,\mathrm{kpc}$ $v_{\rm Grf} = 325 \pm 5 \,\rm km \, s^{-1}$ $P_{\rm bound} = 100\%$ $v_{\text{Grf,p}} = 433^{+6}_{-5} \,\text{km}\,\text{s}^{-1}$ $v_{\rm ej,p} = 553 \pm 13 \,\rm km \, s^{-1}$ $\tau_{\text{flight,p}} = 41 \pm 3 \,\text{Myr}$ (68%-confidence intervals)

Possible alternative mechanisms

Strong dynamical encounters with very massive stars in young and dense star clusters (Gvaramadze 2009)

- ► A triple system with an inner binary of two main-sequence stars of $50 M_{\odot}$ can eject its outer component of $10 M_{\odot}$ with $\leq 800 \,\mathrm{km \, s^{-1}}$.
- ► The interaction of massive close binaries could eject stars at velocities as high as the surface escape velocity of the most massive component, which could exceed 1000 km s^{-1} for $20-40 M_{\odot}$ stars.
- ► Three-body interactions between a massive close binary $(40 M_{\odot} \text{ plus } 8 M_{\odot})$ and a very massive star $(M \ge 50 M_{\odot})$ can eject stars with $\gtrsim 400 \text{ km s}^{-1}$.

Owing to the very short lifetimes of very massive stars, the ages of the ejected stars would be expected to be almost identical to their flight times.

A possible time problem

The identity line is dashed. Error bars are 68% confidence intervals.

PG 1610+062: Indications for an intermediate-mass black hole in the nearby Carina-Sagittarius spiral arm?

Alternative explanation: interaction with an intermediate-mass black hole (Gualandris & Portegies Zwart 2007). The thick blue solid lines schematically represent the loci of the spiral arms 41 Myr ago based on the polynomial logarithmic arm model of Hou & Han (2014) and the Galactic rotation curve of Model I of Irrgang et al. (2014).

Runaway stars beyond the velocity limit of classical ejection mechanisms

Star	$v_{\rm ej,p}$ (km s ⁻¹)	d (kpc)	Reference
HVS 5	640^{+50}_{-40}	$31.2^{+3.2}_{-2.5}$	Irrgang et al. (2018a,b)
B434	590^{+20}_{-20}	$40.5_{-3.7}^{+\overline{4.7}}$	Irrgang et al. (2018a,b)
LAMOST-HVS1	$568_{-17}^{+\overline{19}}$	$19.1^{+5.1}_{-3.8}$	Hattori et al. (2018)
PG 1610+062	553^{+13}_{-13}	$17.3^{+1.2}_{-1.0}$	Irrgang et al. (2019)
HVS7	530_{-30}^{+30}	$48.2^{+4.3}_{-3.7}$	Irrgang et al. (2018a,b)
HVS 12	510_{-30}^{+40}	$51.7^{+9.0}_{-6.1}$	Irrgang et al. (2018a,b)
LAMOST-HVS4	480_{-10}^{+13}	$27.9^{+1.5}_{-1.5}$	Li et al. (2018)
EC 19596-5356	475_{-83}^{+74}	$13.8^{+4.8}_{-3.7}$	Silva & Napiwotzki (2011)
HIP 56322	471^{+189}_{-99}	$6.1^{+3.2}_{-2.0}$	Silva & Napiwotzki (2011)
HIP 105912	457^{+130}_{-133}	$4.2^{+1.7}_{-1.2}$	Silva & Napiwotzki (2011)
HVS 8	450_{-30}^{+40}	$37.2^{+4.4}_{-3.6}$	Irrgang et al. (2018a,b)

Candidate main-sequence stars that were possibly ejected from the Galactic disk beyond the velocity limit of classical mechanisms.

HVS 12: Based on proper motions from HST

Red and blue shaded areas mark regions where 68% and 95% of the trajectories intersected the Galactic plane.

 $T_{\rm eff} = 11\,170^{+160}_{-180}\,{\rm K}$ $\log(g (\text{cm s}^{-2})) = 4.34 \pm 0.08$ $v \sin(i) \le 46 \,\mathrm{km}\,\mathrm{s}^{-1}$ $M = 2.5 \pm 0.1 M_{\odot}$ $\tau = 90^{+77}_{-34}$ Myr $d = 51.7^{+9.0}_{-6.1}$ kpc $v_{\rm Grf} = 500^{+60}_{-50} \,\rm km \, s^{-1}$ $P_{\text{bound}} = 8\%$ $v_{\text{Grf,p}} = 570^{+30}_{-20} \,\text{km}\,\text{s}^{-1}$ $v_{\rm ej,p} = 510^{+40}_{-30}\,{\rm km\,s^{-1}}$ $\tau_{\rm flight,p} = 88^{+19}_{-14} \,\rm Myr$ (68%-confidence intervals)